
May 6, 2015 9:55 WSPC/245-JMM 1350015

Journal of Multiscale Modelling
Vol. 5, No. 4 (2013) 1350015 (24 pages)
c© Imperial College Press
DOI: 10.1142/S1756973713500157

Application of Multiscale Process Zone Model
to Simulate Fracture in Polycrystalline Solids

Houfu Fan∗, Chunxiang Shi∗,† and Shaofan Li∗,‡
∗Department of Civil and Environmental Engineering
University of California, Berkeley, CA 94720, USA

†College of Urban Construction and Safety Engineering
Shanghai Institute of Technology, Shanghai 201418, P. R. China

‡shaofan@berkeley.edu

Published 8 May 2015

In this work, an early proposed atomistic-based multiscale process zone model is revised
and employed to simulate crack propagation and spall fracture in polycrystalline solids.
The multiscale process zone model is capable of describing heterogenous materials by
incorporating the effect of inhomogeneities such as grain boundaries, slip lines and inclu-
sions. A consistent depletion potential resulting from fundamental principles in colloidal

physics is used to describe the cohesive laws for both the grain interfaces and pro-
cess zones in bulk materials, which provides microstructure-based interface potentials in
both normal and tangential directions with respect to finite element boundary separa-
tions in contrast to conventional cohesive methods. The polycrystalline microstructure
are generated by using the Voronoi tessellations. Two different approaches of treating
the process zone are proposed. The multiscale process zone model is implemented in
a Lagrange framework based on the Galerkin weak form formulation. In addition, to
eliminate the zero-energy modes and avoid shear locking in the interphase elements, a
reduced integration technique is adopted in simulations. Numerical simulations on crack
propagation in materials with various cohesive strengths have been carried out, and they
can describe both inter-granular and trans-granular fractures. Finally, the spall-fracture
of a specimen under high-impact load is captured using the proposed multiscale process
zone model.

Keywords: Process zone model; crack; fracture; multiscale simulation; polycrystalline
solids.

1. Introduction

Polycrystalline materials like metals, alloys or ceramics are of great importance in
materials science and engineering. Most common structural materials like ceramics
and metals or alloys are in polycrystalline form in which each grain has a unique
crystallographic orientation, shape, and size, and each of them has a direct effect on
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local or global mechanical properties. To model the mechanical behavior of poly-
crystalline solids, researchers have developed methods based on theories at vari-
ous scales, ranging from Quantum Mechanical (QM), classical Molecular Dynamics
(MD), Monte Carlo simulation (MC) to Geometrical Models (GM) and Contin-
uum Mechanics (CM).1 For instance, ab-initio calculations (based on QM) are
used to design BCC Mg-Li alloys for ultra-lightweight applications.2 MD simu-
lations have been used to investigate the transition with decreasing size from a
dislocation-based to a grain-boundary based mechanism of nanocrystalline met-
als.3 With a three-dimensional MC model, recrystallization and grain growth are
studied.4 These methods at nano/micro scale are very useful in uncovering certain
new features or mechanisms at very small size, but they are in general limited to
the length and time scales. For practical applications, one should consider meth-
ods at macro level, which mainly consists of two different types of methods: the
classical continuum damage model5–8 and the cohesive finite element method.9–13

For example, a temperature dependent creep damage model is developed to study
the damage in polycrystalline ice.14 Void growth of polycrystalline solids is studied
based on an extension of the continuum damage model.15 Constitutive theory for
brittle to damage of polycrystalline materials under dynamic loading is developed
based on a continuum damage model that incorporates several microscale dam-
age mechanisms.16 A nonlocal cohesive zone model for finite thickness interfaces
is applied to polycrystalline solids.17 The interplay between cohesive cracking and
plasticity in polycrystal solids is investigated by a three-dimensional cohesive zone
model.18 Meanwhile, there are also some other multiscale methods in the simula-
tion of material damage or fracture. For instance, a multiscale boundary element
method is developed to study material degradation and fracture.19 A hierarchical
multilevel method is developed for plastic deformation of polycrystalline materials,
which consists of macroscopic models of which the parameters have to be identified
through a sub level.20

In this work, we are focusing on the multiscale process zone method, because
that the classical continuum damage models do not contain the lattice orientations
of constitutive grains and other related information at microscale. The multiscale
process zone method used in this work is different from the cohesive zone model
developed by Xu and Needleman.9 In that model, a so-called cohesive zone is embed-
ded along the edge between two bulk elements. which acts as a ‘glue’. An empirical
surface of traction-displacement relation is adopted in the cohesive zone. By doing
so, stress singularity can be avoided. Moreover, the crack initiation or propagation
does not rely on any artificial criterion but a natural outcome of simulations.

One obvious drawback of the conventional cohesive zone FEM is that the con-
stitutive relations in the bulk element and in the cohesive zone are disjointed, to
certain degree. Aside from the fact that the traction-displacement relation is empir-
ical, separate normal and tangential cohesive laws are also prescribed. This empir-
ical cohesive laws can easily reach its limit of sub-micron scale due to the high
size-dependence of plasticity at small scale. Ideally a good cohesive zone model
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should be directly built on the mesoscale cohesive potential. In principle, the exact
mesoscale cohesive potential is to be derived from the atomistic potential based on
a first-principle calculation.

To resolve this problem, Zeng and Li took a completely different approach,21 by
proposing a multiscale cohesive zone model or the multiscale process zone model. In
the model proposed, both the bulk constitutive relation and the cohesive laws are
constructed based on the atomistic potential, which naturally takes into account the
information of lattice microstructure such as atom position and lattice orientation.
Two scale of coarse graining are considered in this model, one for the bulk medium
and the other for the material interfaces. In both the bulk element and the cohesive
zone of finite width, the Cauchy-Born rule is used to describe the corresponding
deformations inside. The multiscale process zone model has been applied to solve
many practical problems. For instance, Zeng and Li employed the method to model
composites.22 He and Li proposed a multiscale embedded atom cohesive process
zone finite element model to simulate fracture and crack propagations.23 Liu and
Li proposed a finite temperature multiscale interphase zone model to study fracture
process of metallic materials at finite temperature.24 More importantly, Qian and
Li have used the multiscale process zone model to study fracture in polycrystalline
solids.25 A review of the process zone model and its applications in fracture can be
found in Ref. 26.

In this work, the application of the multiscale process zone model to fracture of
polycrystalline solids is revisited. There are several differences between the current
work and that in Ref. 25. In the original work of Qian and Li,25 the deformation
inside the process zone is assumed to be homogeneous, and a special depletion
potential is used to derive the constitutive model inside the process zone; whereas
in the present work, to account for the highly nonuniform deformation in the process
zone, two different approaches are implemented. In the first approach, a reduced two
point integration is employed to obtain the traction force resulting from the process
zone, as what has been proposed by Li.26 Although the regular first order Cauchy-
Born rule is still employed to derive the constitutive relation (i.e, the deformation is
assumed to be uniform at each Gauss integration point), the overall deformation in
the process zone is in general nonuniform. In the second approach, the deformation
inside the process zone is assumed to be inhomogeneous and nonlinear, and the
second order Cauchy-Born rule or a strain gradient Cauchy-Born rule is employed
to derive constitutive relation in order to accommodate the nonuniform deformation
inside the process zone.

The multiscale process zone model is implemented in a Lagrange type of the
Galerkin finite element weak form formulation. Reduced integrations are employed
to eliminate the zero-energy modes and avoid shear lockings in the cohesive ele-
ments. Numerical simulations on crack propagations with various cohesive strengths
that govern the fracture path (inter-granular or trans-granular) are carried out,
using the two different approaches. By comparing the corresponding crack surface
morphologies with that of the normally used assumption that the deformation is
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uniform in the cohesive zone, it is shown that the proposed approaches are better
in terms of numerical performances. Meanwhile, using a series of consecutive refine-
ments of am uniaxial tension model, it is revealed that the proposed model is size-
independent in terms of the crack propagation along the grain boundaries. Finally
the spall-fracture of a specimen under high-impact load is successfully captured
using the proposed multiscale process zone model.

This paper is organized into five sections. We first present the modeling of the
polycrystalline structure in Sec. 2. In Sec. 3, the detail of the multiscale process
zone model is provided. The Galerkin weak form and corresponding implementation
is offered in Sec. 4. Several numerical examples are presented in Sec. 5. We close
our presentation by making a few remarks in Sec. 6.

2. Polycrystalline Microstructure

A polycrystalline solid consists of many grains of different size, shape and crystal-
lographic orientation. In this work, the voronoi tessellations are used to generate
different randomly shaped microstructure in order to study the effect of polycrys-
talline grain morphology, which has been studied by many researchers.13,27,28 As
shown in Fig. 1(a), each Voronoi cell represents a grain and the edge between
two neighboring cells is considered as the grain boundary. Inside each grain, tri-
angle elements are generated using the method of delaunay triangulation. All the
elements in the grains are treated as the bulk elements. In the cohesive Finite Ele-
ment Method, cohesive zones are always needed such that one can link two bulk
elements. In a way, a cohesive zone can be viewed as a “glue” for the corresponding
bulk elements. As can be seen from Fig. 1(b), the triangular meshes are conforming
between adjacent grains, which is important because that cohesive zones are not
only built up as the interface zones in the bulk, but also those along the grain
edges. If the triangular meshes between two neighboring grains are not consistent,

(a) (b)

Fig. 1. Mesh generation: (a) Voronoi cell. (b) Triangular bulk elements over grains.

1350015-4



May 6, 2015 9:55 WSPC/245-JMM 1350015

Application of Multiscale Process Zone Model to Simulate Fracture in Polycrystalline Solids

Fig. 2. Orientation of grains and grain boundary.

then one would encounter difficulties in generating the cohesive zones along the
corresponding edge.

From microscale perspectives, each grain has its unique orientation. In this
work, each grain is randomly assigned a lattice orientation αg, indicating that all
the bulk elements and the process zones in one grain share the same lattice ori-
entation. Notice that the superscript g represents granular region and the super-
script gb denotes the zones on grain boundaries. In addition, the lattice orientation
of grain boundary zones αgb may be assigned according to various principles or
assumptions. For the sake of simplicity, the lattice orientation of a grain boundary
zone is chosen to be the average of orientations from the two adjacent grains, i.e.,
αgb = 1

2 (αA + αB), as shown in Fig. 2.
Other than the lattice orientation, another important factor for the constitutive

relations in the process zones is the magnitude of the depletion potential. Different
scenarios regarding the relative strength between the depletion potential in the
process zones in the grain and that along the grain boundaries are considered in
the simulation.

3. A Multiscale Process Zone Model

The multiscale process zone model (MPZM) is a generic coarse grain model based
on the atomistic information of the lattice structure, which provides the consti-
tutive modeling for process zones among bulk elements. In the MPZM, a global
nonuniform deformation field can be viewed as macroscale piecewise uniform defor-
mation fields inside the bulk elements of uniformed deformations, connected by
finite-width process zones with highly nonuniform deformations. Making use of the
lattice structure, orientation and the inter-atomic interaction potential, the effective
constitutive properties in bulk elements can be modeled by the Cauchy-Born rule,
as shown in Fig. 3(a). To better characterize the highly nonuniform deformations
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Fig. 3. Multiscale process zone model: (a) Triangular bulk element and cohesive zone. (b) Hexag-
onal lattice used in this paper.

inside the cohesive zones, in this work, we propose to use the second order Cauchy-
Born rule in these regions. Two different approaches in treating the finite-width
process zones are proposed. In the first approach, the stresses at the Gauss integra-
tion points inside the cohesive zone are calculated using the first order Cauchy-Born
rule. Through a two point reduced integration, one can obtain the corresponding
traction vectors, which are further integrated along the process zone to obtain
the finite element nodal forces for the corresponding bulk elements. In the second
approach, a process zone is viewed as a four-node quadrilateral element, where the
four nodes are coming from that of the adjacent bulk elements. Importantly, to
account for the severe nonlinearity in the process zone, the stresses at the Gauss
integration points are obtained using the second order Cauchy-Born rule, which
are then integrated to obtain the resulting nodal forces. In both approaches, the
coarse grain model for the process zone is properly connected with the kinematics
of bulk elements. It can be seen that using the proposed approaches, the effective
deformation field inside the process zones can be uniquely determined by the bulk
finite element nodal displacements. In addition, the MPZM eliminates the discon-
tinuous jump operator approach in description of the displacement field required
in the traditional cohesive finite element method.

In this work, the following 12-6 Lennard-Jones potential is used to describe the
inter-atomic potential of lattice in the bulk element

φbulk = 4ε
[(σ

r

)12

−
(σ

r

)6]
. (1)

Compared to the bulk element, the process zone is a relatively weak interface,
where slip lines, inclusions and dislocations usually reside. A so-called depletion
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potential29 can be derived for the highly inhomogeneous deformation field inside
the process zone. The depletion potential can be viewed as a genetic enrichment
from the underneath atomistic structure. In fact, if we assume that the process zone
is a compliance interface that is much weaker than the adjacent bulk elements, and
the intermolecular interaction inside the cohesive zone is long-range like the Van der
Waals interaction between noncovalent bonds or quasi-covalent bonds, the depletion
potential can be obtained by integrating the bulk atomistic potential over the rigid
bulk medium half space. For instance, corresponding to the bulk potential in Eq.
(1), the depletion potential can be derived as,

φdepl(r) =
∫

Half Space

βφbulk(r − r′)dV ′ =
πε√

2

( 1
45

(r0

r

)9

− 1
3

(r0

r

)3)
, (2)

where β is the atomic density, ε the depth of the potential well, σ the finite dis-
tance at which the bulk atomistic potential is zero, and r0 = 21/6σ the equilibrium
bond distance in the bulk. In this way, we obtained a closed-form expression of the
interface depletion potential for the cohesive zone.

3.1. Constitutive relations in the bulk

In order to reduce the complexity in describing the bulk atomistic potential based
on the lattice model, the first order Cauchy-Born rule is adopted. Consider a two-
dimensional lattice model consists of multiple cells with the six-node hexagon being
the basic unit cell. (see Fig. 3(b)). Each hexagon unit has six nearest bonds Ri,
i = 1, nb, nb = 6. Based on the first-order Cauchy-Born rule, the bulk element
deformation is uniform. Thus the deformed bond ri can be related to the unde-
formed bond Ri by a constant tensor Fe, i.e., ri = Fe · Ri. This constant tensor
Fe is the averaged deformation gradient with this bulk element. Consequently, the
strain energy density function in each bulk element can be written as

We =
1

2Ωb
0

nb∑
i=1

φ(ri(Fe)) = We(Fe), (3)

where superscript b indicates bulk element, Ωb
0 is the volume of the unit cell in

the referential configuration, φ(ri) is the atomistic potential, ri, i = 1, 2, . . . , nb are
the current bond lengths in a unit cell. Notice that in Eq. (3) there is a factor of
1
2 in the front, this is because that the potential energy φ(ri) is always shared by
two atoms. With the strain energy density function, the constitutive relations for
the bulk medium can be readily established. For instance, the first Piola-Kirchhoff
stress P can be written in the following form:

P =
∂We

∂Fe
=

1
2Ωb

0

nb∑
i=1

∂φ

∂ri

ri ⊗ Ri

ri
. (4)

Once P is determined, one can easily substitute it into the Galerkin weak form (see
Sec. 4) and perform the related computation.
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3.2. Multiscale modeling of the process zone

Due to the highly nonuniform deformation inside the process zone, the conventional
Cauchy-Born rule is not suitable to be directly employed. Instead, we turn our
attention to the second order Cauchy-Born rule, in which a deformed bond vector
ri is expressed as

ri = Fc ·Ri +
1
2
Gc : (Ri ⊗ Ri), (5)

where the Gc is the derivative of the deformation gradient

Gc =
∂Fc

∂X
=

∂2x
∂X⊗ ∂X

. (6)

The subscript c indicates the quantity is defined within the cohesive or process zone.
Using the depletion potential in Eq. (2), and assuming the basic hexagon unit cell
(in the reference configuration) in the process zone, the corresponding strain energy
density function can be written as

Wc =
1

2Ωc
0

nb∑
i=1

φdepl(ri(Fc)) = Wc(Fc,Gc). (7)

Notice that Wc is a function of Fc and Gc. To characterize the internal virtual
work, in addition to the first Piola-Kirhhoff stress Pc, a higher order stress couple
Qc is defined within the process zone. The mathematical expressions for the two
stresses are

Pc =
∂Wc

∂Fc
=

1
2Ωc

0

nc∑
i=1

∂φdepl

∂ri

ri ⊗ Ri

ri
, (8)

Qc =
∂Wc

∂Gc
=

1
2Ωc

0

nc∑
i=1

∂φdepl

∂ri

ri ⊗ Ri ⊗ Ri

ri
. (9)

As can be seen, the modeling of the process zone requires the computation of both
the deformation gradient Fc and the derivative of the deformation gradient Gc. It
seems very challenging to obtain the above two quantities out of a finite width zone
sandwiched by two triangle elements. For the FEM mesh considered here, we can
always view the process zone as a four-node quadrilateral element (see Fig. 4), in
which the two nodes on the top and two on the bottom come from the adjacent
triangle bulk elements. Using the standard four-node isoparametric FEM, one can
obtain

Fc = I +
∂N
∂X

· d (10)

and

Gc =
∂2N

∂X⊗ ∂X
· d, (11)
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Fig. 4. Schematic in treating the cohesive zone as a four-node quadrilateral element.

where I is the second-order identity matrix, N is the FEM shape functions and d
denotes the nodal displacements. For details on the isoparametric shape functions,
their derivatives, the reader may consult Ref. 30.

In addition to the second order Cauchy-Born rule, one can also distribute mul-
tiple Gauss integration points inside the process zone element, such that the highly
nonuniform deformation is better captured. Compared to the conventional four-
node quadrilateral element, the process element has a very small width, which has
its pros and cons in real applications. On one hand, it can easily lead to shear
locking, which requires special techniques (such as reduced integration) in compu-
tations. In this work, the 2×1 integration scheme is adopted, which is believed to be
the minimum number of Gauss integration points needed to eliminate the associated
zero-energy modes, especially the hour-glass mode. On the other hand, instead of
following the conventional FEM procedure to obtain the finite element nodal forces,
it enables us to directly treat the top and bottom surface as the boundaries of the
corresponding bulk elements. This means that one can first obtain the stresses in
the process zone, and then the traction forces on the two boundaries, which are
further integrated to obtain the nodal forces. Nevertheless, the two approaches in
treating the process zone are both implemented in the current work.

3.2.1. The first approach

As shown in Fig. 4, we first obtain the first Piola-Kirchhoff stress Pc at the two
Gauss integration points using Eq. 8. In the first approach, for each Gauss inte-
gration point, one can obtain the traction force at the top and bottom boundary
using

T = P · N, (12)
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where N is the unit out normal of the triangle element at the corresponding bound-
ary in the reference configuration. Integrating over the boundary, one can obtain

fct = cLT, (13)

where cL denotes the length of the process zone. This resultant force fT needs to
be distributed onto the two nodes of the corresponding boundary,

f1 = fctN1; f2 = fctN2, (14)

where N1 and N2 are the FEM shape functions of the two nodes, evaluated at the
corresponding Gauss integration point. Note that in this approach, the information
from the high order stress Qc is not included.

3.2.2. The second approach

In the second approach, the contribution of the process zone element is accommo-
dated through the standard FEM prodedure. Consider the first variation of the
internal strain energy in the process zone element

δWc =
∫

Ωc

(
Pc : δFc + Qc

...δGc

)
dv. (15)

Substituting the FEM displacement interpolation u = Nd and its variation δu =
Nδd into Eq. (15), and with some standard manipulation, one can obtain the
resulting nodal force vectors of the process zone elements as

fce =
∫

Ωc0

(
Pc · ∂N

∂X
+ Qc :

∂2N
∂X⊗ ∂X

)
dV. (16)

In practical application, the above integration is replaced with finite summation
over the two Gauss integration points.

4. FEM Implementations

Based on the two different approaches in treating the process zone, the Galerkin
weak form of the multiscale process zone model can be written as (the first
approach —(17), and the second approach — (18))

nb
elem∑
e=1

{∫
Be

0

ρ0ϕ̈
h · δϕhdV +

∫
Be

0

P(ϕ) : δFhdV −
∫

Se
c

Tcohe · δϕhdS

}

=
nb

elem∑
e=1

{∫
Be

0

B · δϕhdV

}
+

∫
Γt

Tcohe · δϕhdS, (17)

1350015-10



May 6, 2015 9:55 WSPC/245-JMM 1350015

Application of Multiscale Process Zone Model to Simulate Fracture in Polycrystalline Solids

or
nb

elem∑
e=1

{∫
Be

0

[
ρ0ϕ̈

h · δϕh + P(ϕ) : δFh
]
dV

}

+
nc

elem∑
e=1

{∫
Ce

0

[
P(ϕ) : δFh + Q(ϕ)

...δGh

]
dV

}

=
nb

elem∑
e=1

{∫
Be

0

B · δϕhdV

}
+

nc
elem∑
e=1

{∫
Ce

0

B · δϕhdV

}
+

∫
Γt

T · δϕhdS,

(18)

where Be
0 represents the domain of a bulk element, Ce

0 is the domain of a process
zone element, Γt is the traction boundary of the system, and Se

c := ∂Be
0/∂tB

e
0 .

Notice that in the above weak form, the mass of the process zone element is omitted,
because they are of very small width compared to the bulk element.

Consider following FEM interpolations,

uh(X) =
nnode∑
I=1

NI(X)dI .

Following the standard FE discretization procedure, one can obtain the following
discrete equations of motion

Md̈ + f int(d) + f cohe(d) = fext, (19)

where

M =
nb

elem

A
e=1

∫
Be

0

ρ0NeTNedV

f int =
nelem

A
e=1

∫
Be

0

BeTPe(d)dV

fext =
nelem

A
e=1

{∫
Be

0

NeTBedV +
∫

∂tBe
0

NeT T̄edS

}
,

where A is the element assemble operator, Ne is the element shape function matrix,
and Be is the element B-matrix. For the first approach, the force vector fcohe can
written as

fcohe = −
nc

elem

A
e=1

∫
Se

c

NeTTcohe
e dS

while for the second approach,

fcohe =
nc

elem

A
e=1

{∫
Ce

0

[
BeTPe

c(d) + CeTQe
c(d)

]
dV

}
,

where the second order stain-displacement matrix Ce := ∂2Ne

∂X⊗∂X .
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The Newmark-β method with β = 0, γ = 0.531 is adopted in the explicit time
integration,

vn+ 1
2

= vn− 1
2

+ an∆tn

dn+1 = dn + vn+ 1
2
∆tn (20)

an+1 = M−1(fext − f int − fcohe),

where dn is the displacement field at the time step at time step n, vn− 1
2

is the half
step velocity field at the time step n − 1

2 , and an is the acceleration field at the
time step n. The subscript n and n + 1 denote the quantities evaluated at time tn
and tn+1. After the displacement field is updated, the stress measures can then be
updated correspondingly, and hence the force vectors and acceleration an+1 in the
next time step are obtained.

5. Numerical Simulations

In this section, numerical examples are presented, to demonstrate the capability of
the proposed process zone model, in the simulations of crack propagation and spall
fracture in polycrystalline solids.

5.1. Fracture in polycrystalline material

In this example, a two-dimensional plate with dimension (2 mm× 2 mm) is sub-
jected to unilateral tension in Y direction (see Fig. 5). Using the cohesive FEM,

Fig. 5. Schematic of the unilateral tension.
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the plate is discretized into 121 grains and 2376 bulk elements (see Fig. 5), which
ultimately contains 3484 cohesive elements in the system. A pre-crack is set along
several grain boundaries on the left side of the plate. The time step is chosen to
be ∆t = 1 × 10−10 s. in the simulation. It is postulated that with different relative
strength of the cohesive zones between bulk elements in the grains and those on
the grain boundary, the crack path might be different. In this work, strength of
the cohesive zone is represented by the depth of the depletion potential. Two dif-
ferent cases are considered in this example, i.e, εgb

depl = εg
depl and εgb

depl = 0.5εg
depl,

where εg
depl denotes the width of the depletion potential in the process zones within

the grains and εgb
depl represents the width of the depletion potential in the process

zones on the grain boundaries. We first implemented the method using the second

(a) (b)

(c) (d)

Fig. 6. Crack propagates through grains: (a) t = 1.5 µs; (b) t = 2.5µs; (c) t = 3.5 µs; (d) t = 4.5 µs.
The simulation is conducted using the second approach.
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(a) (b)

(c) (d)

Fig. 7. Crack propagates along grain boundaries: (a) t = 1.5 µs; (b) t = 2.0 µs; (c) t = 3.0 µs;
(d) t = 4.0 µs. The simulation is conducted using the second approach.

approach. From Fig. 6, it can be seen that crack propagated through grains for the
first case. However, for the second one, the crack path followed closely along the
grain boundaries as shown in Fig. 7.

5.2. Comparison studies

To evaluate the numerical performance of the proposed approaches, two subsequent
simulations with exact the same parameters and problem setup of the trans-granular
crack propagation are carried out. The second simulation is conducted using the
first approach, whose result is shown in Fig. 8. The last example, as a compari-
son, is implemented by assuming uniform deformation within the cohesive zones,
with the result given in Fig. 9. As one can see, the results from two approaches
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(a) (b)

(c) (d)

Fig. 8. Crack propagates along the grain boundaries: (a) t = 1.5 µs; (b) t = 2.0 µs; (c) t = 3.0 µs;
(d) t = 4.0 µs. The simulation is conducted using the first approach.

proposed are almost the same, but the one based on the assumption of uniform
deformation is quite different. As a comparison, the results from the three different
methods is shown in Fig. 10. By assuming that the deformation in the cohesive
zone is uniform, the crack surfaces become very wavy as the propagations progress.
This can be attributed to several factors. First, the first order Cauchy-Born rule
applied cannot correctly represent the nonuniform deformations in the cohesive
zone. Second, because of the uniform deformation assumption, zero energy modes
(especially the hour-glass modes) are present during the corresponding simulations.
On the contrary, the approaches the second order Cauchy-Born rule and adopting a
reduced two-point integration in the cohesive zone region provide very smooth and
robust results. Therefore, in practical application, the two proposed approaches are
recommended.
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(a) (b)

(c) (d)

Fig. 9. Crack propagates along grain boundaries: (a) t = 1.5 µs; (b) t = 2.0 µs; (c) t = 3.0 µs;
(d) t = 4.0 µs. The simulation is conducted by assuming the deformation is uniform in the cohesive
zone.

5.3. Convergence test

In general, the results obtained from the simulations based on cohesive zone model
are size-dependent. To test the effects of mesh size in multiscale process zone
method, a unilateral tension test is implemented with four different meshes. Same
as the previous simulation, the specimen is a two-dimension plate with dimension
(0.02mm× 0.02mm), which contains 121 grains. Constant velocity boundary con-
dition is applied on both top and bottom edges. The ration ρ between average
element size and average grain size is used to define mesh density. The three differ-
ent meshes, corresponding to ρ = 0.5, 0.2, 0.1, 0.05, are used, as shown in Fig. 11.
In addition, the cohesive strength in the cohesive zones inside grains are set to be
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Crack surface morphologies at t = 3.0 µs. (a) Trans-granular — uniform deformation
in the cohesive zone; (b) Trans-granular — the second approach; (c) trans-granular — the first
approach; (d) inter-granular — uniform deformation in the cohesive zone; (e) inter-granular —
the second approach; (f) inter-granular — the first approach.

(a) (b)

Fig. 11. Different meshes over grains: (a) Mesh 1: ρ = 0.5. (b) Mesh 2: ρ = 0.2. (c) Mesh 3: ρ = 0.1.
(d) Mesh 4: ρ = 0.05.
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(c) (d)

Fig. 11. (Continued)

stronger than that of the grain boundary, which shall lead to transgranular crack
propagations. In all the four tests, the second approach is adopted. Figure 12 shows
the crack propagations in the specimen. It can been clearly seen that the crack
propagates along same grain boundaries although mesh density varies so much.

To further check the convergence of the numerical simulation, the total reaction
forces ri

f on top edge are calculated in each mesh size, and they are plotted in
Fig. 13. It can been seen that the evolutions of the reaction forces for the four
different meshes are very close to each other and the gap between the curves from

(a) (b)

Fig. 12. Crack surfaces calculated by different meshes: (a) Mesh 1: ρ = 0.5. (b) Mesh 2: ρ = 0.2.
(c) Mesh 3: ρ = 0.1. (d) Mesh 4: ρ = 0.05.
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(c) (d)

Fig. 12. (Continued)

Fig. 13. Reaction force varies along time.

two consecutive meshes becomes smaller and smaller as the mesh size decreases,
which proves the convergence and robustness of the proposed model.

5.4. Simulations of spall fracture under high speed impact

In this example, numerical simulations have been carried out to simulate spall
fractures under high-speed impact, which is a very difficult task that has been
elusive to many existing numerical methods.32–34 As shown in Fig. 14, the left
is a rigid block with impact velocity v = 200m/s, the right is the target block
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(a) (b)

Fig. 14. Example of high speed impact: (a) Sketch of impact model. (b) Mesh of the plate.

with dimension 1mm× 2mm. In the simulation, the target block is discretized into
861 grains and 4838 triangular bulk elements, which gives rise to a total of 7148
cohesive elements. As in the first example, the lattice orientations for the bulk
element are randomly distributed based on the different grains and the orientation
of the cohesive zone is set to be the average of the two sandwiching bulk elements.
The second approach is adopted and the simulation time step is chosen as ∆t =
1×10−10 s. The method in Ref. 35 is employed to enforce the exact impenetrability
condition in a single time step. It is observed that the wave propagation initially
starts from the contact point and bounces back after reaches the opposite boundary.
Using different relative strength of the cohesive element in the bulk and that on
the grain boundary, spall fractures under high speed impacts have been successfully
captured, as shown in Figs. 15 and 16.

(a) (b) (c) (d)

Fig. 15. Spall fracture propagates through grains: (a) t = 0.5 µs; (b) t = 1.0 µs; (c) t = 1.2 µs;
(d) t = 1.4 µs.
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(a) (b) (c) (d)

Fig. 16. Spall fracture propagates along grain boundaries: (a) t = 0.5 µs; (b) t = 1.0 µs; (c) t = 1.2 µs;
(d) t = 1.4 µs.

6. Discussions

In this work, a multiscale process zone model is employed to simulate dynamic
fractures in ploycrystalline solids. The multiscale process model makes use of the
atomistic information, such as lattice structure and orientation in the polycrys-
talline solid to characterize the constitutive relations. The multiscale process zone
model formulates the interface depletion potential to represent the mesoscale mate-
rial properties in the process zone. Two different approaches in characterizing the
process zone are compared: (1) the depletion potential approach, and (2) the higher
order Cauchy-Born rule approach. By adopting the second order Cauchy-Born rule
and the reduced integration technique in the process zone, fracture of polycrys-
talline solids with great accuracy and flexibility are demonstrated.

First by using the second approach, it is shown that the multiscale process zone
model can predict both inter-granular and trans-granular fractures and their transi-
tions. A comparison study of the crack surface morphologies of the simulation based
on the two approached have been carried out. It is revealed that the approach with
higher order Cauchy-Born rule and the reduced integration (2 × 1) in the process
zone provides much better numerical accuracy and computing performance. More-
over, the second order Cauchy-Born is better in capturing the highly nonuniform
deformation inside the process zone. On the other hand, the reduced integration
is needed to eliminate the zero-energy modes while at the same time, to maintain
the computation accuracy. In addition, based on the simulation results from the
consecutive refinements of the same numerical test, one may find that the proposed
model is size-independent in the simulation of crack propagations along the grain
boundaries.

Second, spall fracture induced by high-speed impact loads is captured using the
proposed model, without adding any artificial viscosities. The numerical simulation
results are in good qualitatively agreement with the experimental observation.

The main difference between the multiscale process zone model and the conven-
tional cohesive finite element method is how to construct interfacial surface cohesive
potential. In the conventional cohesive model, the descriptions of the cohesive zone
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and the bulk element are some what disjointed. In the cohesive zone model, the
empirical cohesive traction-separation relation is imposed, without any consider-
ation of the bulk constitutive relation. In fact, the prescribed cohesive traction-
separation relation is fixed in the sense that it does not take into account some
most important physical characteristics of interfacial fracture, such as interphase
orientation, its orientation difference with adjacent bulk elements, and interface
micro-structures, etc. In the conventional cohesive zone model, the empirical inter-
face cohesive laws are employed to model every cohesive zones for any arbitrary
orientation, implicitly assuming material isotropy for every interfaces with arbi-
trary orientations, which is the main reason why we have so many difficulties in
practice to match its results with experimental results. Whereas in the multiscale
process zone model, the only objective constitutive relation is the bulk constitutive
relation. The interface constitutive relation is obtained based on that in the bulk
process zone, which varies from interface to interface. Moreover, by adopting the
second order Cauchy-Born rule in the process zone, the model can better charac-
terize the highly nonuniform deformation, making the model more realistic. It is
because of these differences that the multiscale process zone model proves to be a
better approach in simulation of fractures in polycrystalline solids.
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