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One of the major problems in failure analysis of composite materials is how to accurately describe interfacial material
properties and related interface constitutive modeling at the nanoscale, mesoscale, and macroscale. In this work, we
have applied a recently developed multiscale cohesive zone method to model composite materials and, subsequently,
we have simulated the failure process of laminar composites. We have shown that the multiscale cohesive zone method
can adequately describe mesoscale interface material properties such as interface strength, microstructures, and possible
defects or damage. Moreover, we have applied the multiscale cohesive zone model to simulate spall fracture in composite
materials induced by high-speed impacts. Simulations of different fracture patterns for composite materials with defects
are also presented.
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1. INTRODUCTION

Strength-based failure criteria are commonly used to predict failure in composite materials. A large number of
continuum-based criteria have been proposed in the past to relate stresses and experimental measures of material
strength to the onset of failures. For composite structures that can accumulate damage before structural collapse, the
use of failure criteria is not sufficient to predict ultimate failure. In order to attain satisfactory accuracy and to capture
the basic characteristics of quasi-brittle fracture of a laminate composites, detailed fracture mechanics simulation and
analysis are necessary.

As early as the 1970s, people started using crack-band-type or cohesive zone-type finite elements to simulate
fractures in composite materials such as laminar plates and reinforced concretes (e.g., Hillerborg et al., 1976). One may
find the recent developments on cohesive finite-element methods in Matous et al. (2008), Alfaro et al. (2009, 2010),
and Samimi et al. (2009). One of the current trends in cohesive finite element research is to develop multiscale cohesive
zone model to simulate fracture and damage in composite materials (e.g., Hirschberger et al., 2009; Geers et al.,
2010). The cohesive laws derived in the above literature are essentially empirical cohesive formulations, and the term
multiscale is used in only the sense as a multiscale mathematics paradigm. In fact, it has been public consensus now
that the ideal approach or the best way to form a truly reliable cohesive law is to extrapolate constitutive information
from atomistic microstructures (see Nguyen and Ortiz, 2002; Hayes et al., 2004; Braides et al., 2006).

Following a multiscale approach, in this work, we apply a newly developed multiscale cohesive zone model
(MCZM) (Zeng and Li, 2010) to model the composite materials and simulate their failure process. There are several
advantages in applying the MCZM to study composite materials: (1) composite material is very easy to model by
using the MCZM, because it can precisely model each individual phase or component corresponding to their atomistic
constituents; (2) the MCZM provides a very accurate description for interface material properties at the mesoscale;
and (3) the MCZM provides naturally a material frame-indifference or objective interface failure criterion so it may
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finally resolve the outstanding problem of how to model the mixed-mode fracture and damage by employing the
cohesive zone finite-element methods.

The paper is organized in five sections: in Section 2 we shall review the MCZM; and Section 3 is focused on
finite-element implementation of the cohesive zone model. In Section 4 we shall discuss the mixed-mode cohesive
law. In Section 5 we study the mesh sensitivity of the multiscale cohesive zone method. A few numerical examples are
presented for composite materials modeling and simulations in Section 6 and, finally, we shall conclude thea current
study in Section 7.

2. A MULTISCALE COHESIVE ZONE MODEL

In a recent work (Zeng and Li, 2010), the present authors have proposed and implemented a MCZM. In this method,
there are two coarse graining models: one for bulk medium and another for material interfaces, or defects (e.g., persis-
tent slip band). By constructing a finite width cohesive zone and extending the Cauchy–Born rule to the coarse scale
deformation field, the MCZM can simulate the overall behaviors of a non-uniform deformation caused by defects.
With the aid of the multiscale cohesive zone method, it is much easier and more efficient to study composite materials
with full consideration of microstructure characteristics. There are three major technical ingredients in the MCZM: (a)
development of interfacial potential; (b) effective deformation gradient in the cohesive zone; and (c) the Cauchy–Born
rule for effective field.

2.1 Development of interfacial potential based on colloidal physics

Modeling the weak interface in composite materials has been a challenge. In most engineering applications, empirical
damage or plasticity laws have been used in practice. Most of them are numerical adoptions of the Dugdale–Barenblatt
model (Dugdale, 1960; Barenblatt, 1962). Xu and Needleman (1994) provided both cohesive laws in Modes I and II,
in which the Mode II cohesive law is an empirical modeling of atomistic potential. However, there are only few
mixed-mode cohesive zone models (e.g., Park et al., 2009). Usually, in composite material study, how to relate the
parameters of the cohesive zone model with the measurable experimental data appears to be another challenge or an
often frustration.

In this work, we propose to employ the MCZM to provide constitutive modeling of the cohesive interface. To
characterize such a decohesion mechanism in the interlaminar interface at the mesoscale, we use a generalized deple-
tion potential that has been extensively used in colloidal physics to represent the damaged cohesive strength inside the
chosen cohesive zone.

To obtain the depletion potential in the cohesive zone, we assume that the damaged cohesive zone is a compliance
interface, and it is much weaker than the adjacent bulk elements. This is because most covalent bonds, metallic
bonds, or ionic bonds may have been degenerated to non-covalent bonds, and the intermolecular interaction inside
the damage cohesive zone can be described by the van der Waals interaction. The cohesive strength of the cohesive
zone can then be determined by the intermolecular forces in surrounding the bulk medium. Under these assumptions,
when we calculate the interaction between two material points inside the cohesive zone and the bulk medium, we may
consider that the bulk medium is rigid with almost no deformation, so the two bulk elements adjacent to the compliant
cohesive zone may be viewed as two rigid body half-spaces.

If the atomistic potential for a given bulk medium is available, which can be a pairwise potential or many-body
potentials such as the embedded atom method (EAM) (Daw and Baskes, 1984), we can obtain the atomistic potential
of the cohesive zone by integrating the bulk potential over the rigid bulk medium half-space. For instance, if the
Lennard–Jones (LJ) potential is chosen as the bulk potential shown in Eq. (1), a coarse graining interface potential
can be obtained by analytical integration (see Israelachvili, 1992):
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whereϵ is the depth of the potential well,σ is the (finite) distance at which the bulk atomistic potential is zero; and
r0 = σ21/6 is the equilibrium bond distance in the bulk material.

2.2 Effective Deformation Gradient in the Cohesive Zone

In order to represent possible non-uniform local deformation fields caused by the presence of defects, we first re-
model the material interface as a finite width compliance cohesive zone, which is the weakest link in an otherwise
homogeneous medium. A primary assumption of this work is that the global non-uniform deformation field may be
represented by a piece-wise uniform deformation field that consists of the bulk element of uniformed deformation, and
they are connected together by finite-width cohesive zones with highly non-uniform deformation. To quantitatively
deal with the non-uniform deformation inside the finite-width cohesive zone, it is then assumed that the non-uniform
deformation is multiscale in character; i.e., the displacement field inside the cohesive zone may be written as

u = ū+ u′ (3)

whereū is the coarse scale displacement field, which may be also called as the Taylor displacement field; whereasu′

is the fine scale displacement fluctuation field. Using Eq. (3), one may write

x = X+ u = (X+ ū) + u′ = x̄+ x
′

(4)

wherex̄ = X+ ū andx′ = u′.
Since inside the cohesive zone the deformation is non-uniform, we may separate the total deformation into differ-

ent scales, and the spatial deformation gradient in the coarse scale will change far more slowly than that of the fine
scale fluctuation field. This may allow us to apply the Cauchy–Born rule to the coarse scale field.

Using a computational homogenization technique, we may represent the general deformation field as

x = FcX+ u
′

(5)

whereFc is the coarse scale deformation gradient that can be determined by the boundary data along the cohesive
zone:

Fc =
1

|Ω0|

∫
∂Ω0

x⊗NdS (6)

Since the boundary of a cohesive zone is also the boundary of the adjacent bulk elements, on the boundary of each
cohesive element the fine scale fluctuation displacement filed should vanish, by which we postulate that the following
weak condition for fine scale displacement field,∫

∂Ωc

u′ ⊗NdS = 0 (7)

That is,x = x̄, ∀X ∈ ∂Ω0.
In fact, the above procedure is a multiscale version of the Hill–Mandel homogenization (Hill, 1972), and we can

prove that the average deformation gradient in a cohesive zone is exactly the same asFc; i.e.,

< F >Ω0= Fc (8)

whereFc may be viewed as the coarse scale deformation gradient.
Substituting Eq. (5) into the definition of spatial average, we have

< F >=
1

|Ω0|

∫
Ω0

∂x

∂X
dΩ =

1

|Ω0|
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(
Fc +
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∂X
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dΩ (9)

whereΩ0 denotes the volume of the cohesive zone.
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Integration by parts and using Eq. (7),

1

|Ω0|

∫
Ω0

∂u′

∂X
dΩ =

1

|Ω0|

∫
∂Ω0

u′ ⊗NdS = 0

whereN are the out-normal of∂Ω0. It is then straightforward to show that Eq. (8) holds.
In particular, if the coarse scale deformation field inside the cohesive zone is compatible with the uniform defor-

mation field inside the bulk elements, the coarse scale deformation field can then be represented by an affine function
of coordinates. Hence,

F̄ =< F >Ω0= Fc :=
∂x̄

∂X

∣∣∣
X∈Ω

(10)

Then we can determine the affine deformation map,F̄c, if we know the finite-element nodal displacement. For
example, in the case of plane strain, for a given finite-element method (FEM) nodal point along the boundary of the
cohesive element, we have

x̄1 = a1 + F̄ c
11X1 + F̄ c

12X2 (11)

x̄2 = a2 + F̄ c
21X1 + F̄ c

22X2 (12)

x̄3 = a3 +X3 (13)

whereF̄ c
ij are constants.

Fixing the rigid body motion (a1 = a2 = a3 = 0), one can easily determine the effective deformation gradient
F̄c by using the information of FEM nodal displacements. For example, we can use the deformations of two diagonal
lines of the cohesive zone, which can be expressed by the four FEM nodal displacements:

x+
I+1 − x−

I = F̄c · (X+
I+1 −X−

I ), and x+
I − x−

I+1 = F̄c · (X+
I −X−

I+1) (14)

to explicitly determine effective deformation gradientF̄c inside the cohesive zone as follows (see Fig. 1):
F̄ c
11

F̄ c
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F̄ c
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F̄ c
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x+
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I+1

y+I − y−I+1

 (15)

where
a = X+

I+1 −X−
I , b = Y +

I+1 − Y −
I , c = X+

I −X−
I+1, d = Y +

I − Y −
I+1 (16)

FIG. 1: Deformation gradient in cohesive zone.
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2.3 Cauchy–Born Rule for Effective Field

In the proposed MCZM, to reduce the computational cost and complexity in computing the atomistic potential energy,
the Cauchy–Born rule (Ericksen, 1984) has been adopted to calculate elastic energy in each element. The so-called
Cauchy–Born assumes the deformation in each element is uniform, then the deformation gradient,F, is constant in
each element. Since in a given elemente the deformation gradient,Fe, is a constant tensor, an arbitrary deformed
bond vectorri in a unit cell in the element can be found by mapping the corresponding primitive Bravais lattice vector
(i.e., the undeformed bond vectorRi), into the deformed vectors,

ri = FeRi, i = 1, 2, · · · , nb (17)

wherenb is the total number of bonds in a unit cell.
Note that the bond vectorri is the distance vector between the center atom in the unit cell to one of the atoms at the

vertex of the unit cell. Taking the hexagonal lattice for example, if we only consider the nearest-neighbor interaction
and there are six interatomic bond vectors. The deformed bond length is a function of deformation gradient of the
element that the unit cell belongs to; i.e.,ri = |ri| = ri(F).

On the other hand, because the deformation in each element is uniform, we can calculate the elastic energy density
in any given element by calculating the energy density of an arbitrary unit cell inside the element,

We =
1

Ωb
0

nb∑
i=1

ϕ(ri) =
1

Ωb
0

nb∑
i=1

ϕ(FeRi) = We(Fe), e = 1, 2, · · · , nelem (18)

whereΩb
0 is the volume of the unit cell in the referential configuration;ϕ(ri) is the atomistic potential; andri,

i = 1, 2, · · · , nb is the current bond length for theith bond in a unit cell. Note that superscriptb indicates bulk, and
Ωb

0 is the undeformed volume for the unit cell.
Consequently, the constitutive relations for the bulk medium can be established. For instance, the second Piola–

Kirchhoff stress in the local QC method can be written in the following form:

S(C) =
1

Ωb
0

nb∑
i=1

ϕ
′
(ri)

∂ri
∂C

=
1

Ωb
0

nb∑
i=1

∂ϕ

∂ri

Ri ⊗Ri

ri
(19)

whereC = FT · F is the right Cauchy–Green tensor. Similarly, we can find the first Piola–Kirchhoff stress tensor in
each element as

P = FS =
1

Ωb
0

nb∑
i=1

∂ϕ

∂ri

ri ⊗Ri

ri
(20)

Since the deformation inside the bulk element is assumed to be uniform, we can then use the Cauchy–Born rule to
establish the constitutive relation for the bulk elements, and this will provide us an atomistically enriched macroscale
constitutive relation in multiscale computations.

This then provides us a means and justification to apply the Cauchy–Born rule to the mean field of interfacial
cohesive zone; that is, the average of deformed lattice bond vector in each cohesive zone may be calculated as follows:

r̄i = F̄c ·Ri, i = 1, 2, · · ·, nc (21)

Subsequently, we can calculate the averaged first Piola–Kirchhoff stress tensor in each cohesive zone as

P̄ =
∂W

∂F̄c
=

1

Ωc
0

nc∑
i=1

∂ϕcohe

∂r̄i

r̄i ⊗Ri

r̄i
(22)

Therefore, in the proposed MCZM, we are making two coarse graining models: one for the bulk medium and
another for the material interfaces, or defects. The beauty of such a coarse-grain procedure is that the effective defor-
mation field inside the cohesive zone can be uniquely determined by the bulk finite-element nodal displacements, and
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there is no finite-element (FE) interpolation inside the cohesive zone. The coarse-grain model for the cohesive zone is
properly connected with the kinematics of bulk elements.

Without a coarse graining interface model, applications of the Cauchy–Born rule to FEM can only provide a
coarse-grained model for bulk materials, and it cannot solve small-scale defect evolution problems. By constructing a
finite-width cohesive zone and extending the Cauchy–Born rule to the coarse scale deformation field, the MCZM can
simulate the overall behaviors of a nonuniform deformation caused by defects.

3. FEM IMPLEMENTATIONS

Based on the constitutive relations developed in the MCZM, we can compute the stress for each bulk element and in
each cohesive zone. Once we obtain the stress information inside the cohesive zone, we can then find the cohesive
traction forces along the boundaries of adjacent bulk elements as

Tcohe = P̄ ·N (23)

whereN is the out-normal of adjacent bulk FEs.
For a given bulk element, the Galerkin weak formulation of the MCZM can be derived as∫

Be
0

ρ0φ̈
h · δφhdV +

∫
Be

0

P(φ) : δFhdV −
∫
Se
c

Tcohe · δφhdS =

∫
Be

0

B · δφhdV +

∫
∂tBe

0

T̄ · δφhdS (24)

whereB is the body force;Be
0 is theeth element domain;∂tBe

0 is the traction boundary of the element; andSe
c is the

cohesive boundary of the element.
Consider following linear FEM interpolation in each element,

uh(X) =

nnode∑
I=1

NI(X)dI (25)

Following the standard FE discretization procedure (e.g., Hughes, 1987), we have the following discrete equations of
motion:

Md̈+ f int(d)− f cohe(d) = f ext (26)

where

M =
nelem

A
e=1

∫
Be

0

ρ0N
eTNedV (27)

f int =
nelem

A
e=1

∫
Be

0

BeTPe(d)dV (28)

f cohe =
nelem

A
e=1

∫
Se
c

NeTTcohe
e dS (29)

f ext =
nelem

A
e=1


∫
Be

0

NeTBedV +

∫
∂tBe

0

NeT T̄edS

 (30)

whereA is the element assemble operator,Ne is the element shape function matrix, andBe is the elementB matrix.
If the Newmark-β time integration method (withβ = 0 andγ = 0.5) is used in the displacement update, we have

dn+1 = dn + vn∆tn +
1

2
an (∆tn)

2 (31)
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an+1 = M−1
(
f ext − f int + f cohe

)
(32)

vn+1 = vn +
1

2
(an + an+1)∆tn (33)

wheredn is the displacement field at time stepn; vn is the velocity field at time stepn; andan is the acceleration field
at time stepn. The subscriptsn andn+1 denote the quantities evaluated at timetn andtn+1. After the displacement
field is updated, the deformation gradient in each bulk element can be subsequently updated as

Fe
n = I+

nnode∑
I=1

Be
Id

e
n (34)

and, subsequently, the stress measures can then be updated according to Eq. (38).
Similarly, the effective deformation gradient in each cohesive element can be also updated. For the case of plane

strain, it is updated based on the following equations:
F̄ c
11(tn)

F̄ c
12(tn)

F̄ c
21(tn)

F̄ c
22(tn)

 =


1
0
0
1

+
1

2LR0


−d 0 b 0
c 0 −a 0
0 −d 0 b
0 c 0 −a




u+
I+1(tn)− u−

I (tn)
v+I+1(tn)− v−I (tn)
u+
I (tn)− u−

I+1(tn)
v+I (tn)− v−I+1(tn)

 (35)

where[u±
I (tn), v

±
I (tn)] = d±

I (tn), and the meaning of the superscripts± is referred to Fig. 1 for their definitions;
L is the side length of the adjacent bulk elements; andR0 is the thickness of the cohesive element. The constants,
a, b, c, d, are defined in Eq. (16). The stress inside the cohesive zone can then be updated by using Eq. (22). Here,R0

is a physical parameter that is related to the characteristic length scale of specific defects considered. For instance,
for composite modeling, this length scale should correspond to the actual interfacial width between the two phases,
which is a measurable quantity. In the case of polycrystal, it should be the width of the grain boundary, which varies
from case to case; and for single crystal, it should be the width of a typical persistent slip band, depending on which
stage of failure that we are modeling. As an alternative, different length scales can be built in the MCZM by applying
a newly developed multiresolution theory (see McVeigh et al., 2006; Vernerey et al., 2007, 2008; McVeigh and Liu,
2009).

4. MATERIAL COHESIVE LAW IN THE MIXED MODE

After obtaining the stress inside the cohesive zone, we can readily find the cohesive traction forces along the boundary
of the cohesive zone, which is the same boundary of the adjacent bulk elements with the opposite out-normals:

Tcohe = Pc(F̄c) ·N (36)

whereN is the out-normal of adjacent bulk FEs. We can then find the relationships between the cohesive traction and
corresponding opening displacements of the cohesive zone.

To demonstrate the process, we let the local coordinateX1 parallel to the element mesh boundary be considered.
We can then denotēu as the relative effective horizonal (tangential) opening displacement, andv̄ as the relative
effective vertical (normal) opening displacement of the cohesive zone. Therefore, one may find that the traction
along the element boundary is an explicit function of the effective deformation gradient inside the cohesive zone.
For simplicity, we demonstrate this for the pair potential, for instance LJ potential, and the corresponding depletion
potential. Consider the effective deformation gradient inside the cohesive zone for the cases of the pure Mode I and
mixed mode are given separately as follows:

F̄n =

[
1, 0
0, 1 + v̄/R0

]
and F̄m =

[
1, ū/R0

0, 1 + v̄/R0

]
(37)
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or F̄m(∆) in short. Note thatR0 is the width of the cohesive zone. Substituting the relations in Eq. (37) into Eq. (36),
one can find the relationship between the element traction and the relative separation (opening displacements) of the
cohesive zone:

Tcohe = Pc[F̄(∆)] ·N

Recall that the first Piola–Kirchhoff stress inside the cohesive zone may be written as

Pc = F̄m(∆)S(∆) =
1

Ωb
0

nb∑
i=1

∂ϕ

∂ri
(∆)

ri(∆)⊗Ri

ri(∆)
(38)

This is becauseri = F̄m(∆) ·Ri.
In Fig. 2, the cohesive laws of both the normal traction/Mode-I opening displacement and the mixed mode opening

displacement are displayed, which are calculated based on Eqs. (36) and (37).
After we obtained the bulk potential and the depletion potential, we may construct a mesoscale cohesive zone

potential as:

ϕcohe = (1− α)ϕbulk + αϕdepl, 0 ≤ α ≤ 1 (39)

where parameterα may depend on an internal variable, such as the von Mises stress; i.e.,α = α(σe). Initially, the
bulk zone and the cohesive zone have the same bulk potential, which means initiallyα = 0. Then, we may define the
following simple criterion forα:

α(σe) =

{
0, if σe < σ∗

1, if σe ≥ σ∗ (40)

whereσ∗ is the material strength.
When the above criterion is met,α will switched from 0 to 1, and the cohesive law then will switch from the bulk

potential to the depletion potential during the material failure process. This process is irreversible, because parameter
α here plays a role of “internal variable” that is a state variable or damage variable.

A major advantage of the MCZM is that it can easily provide cohesive traction along the bulk element boundary
for both normal and tangential traction from the same expression [Eq. (36)], whereas in the conventional cohesive
FEM approach, these two traction laws are given separately, and they are not related to lattice structure or atomistic
potential.

(a) (b)

FIG. 2: (a) cohesive normal traction vs. normal deformation and(b) cohesive normal traction vs. mixed deformation
in cohesive zone.
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5. MESH CONVERGENCE TEST

Generally, the results of the cohesive method are sensitive to its elements size. To test the effects of mesh size in the
MCZM, a unilateral tension test is implemented with three different meshes. The test specimen is a two-dimensional
(2D) plate with dimension (2000× 2000). Constant velocity boundary condition is applied on both top and bottom
edges. Hereby, three cases, which are corresponding to different mesh sizes, are employed as shown in Fig. 3. There
is a small pre-crack in the left central region of the specimen. As a result, Fig. 4 shows the crack propagation in the
specimen. It can be seen clearly that the crack propagates along the same path although the mesh density varies much
more.

It is worthwhile to mention that if the cohesive zone has no thickness, there is a convergence problem as the
conventional cohesive FEM suffers. This is where precisely this method excels, because between a pair of triangle
elements, we have a finite-width cohesive zone element. More detailed discussion on mesh convergence can be found
in Qian and Li (2011).

(a) (b) (c)

FIG. 3: Different mesh densities for crack propagation simulation:(a) Case 1 with 1,600 bulk elements;(b) Case 2
with 6,400 bulk elements;(c) Case 3 with 10,000 bulk elements.

(a) (b) (c)

FIG. 4: Crack propagation for different mesh densities(stress contour):(a) Case 1;(b) Case 2;(c) Case 3.
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6. NUMERICAL SIMULATIONS

6.1 Example I: Simulations of High-Speed Impact and Spall Fractures in Composite Materials

To validate the proposed MCZM, we have applied it to simulate a special dynamic fracture problem that has been
thoroughly studied (Zeng and Li, 2010).

In this study, numerical simulations have been carried out to simulate high-speed impact-induced spall fractures
in composite materials. The exact problem statement is described in Fig. 5. It is a rigid projectile impacting with a
deformable plate. In the simulation, a 2D plate with dimension(LX × LY = 8000 × 3200) is under free boundary
condition. There are 16,000 bulk elements used with the characteristic dimension of 20∼ 30 nm, and there are 23,860
cohesive zone elements used with the thickness of 5 atomic spacings. The specimen size in reduced units corresponds
to micrometers in physical dimensions. The impact speed in the reduced unit isv = 0.64, corresponding to 100 m/s in
physical dimensions. The time step in the Newmark-β integration method is chosen as∆t = 0.01. Contact problems
are characterized by impenetrability conditions that need to be enforced during computation. We adopted the exact
enforcement of the impenetrability condition in a single time step (see Hughes et al., 1976).

In the composite materials model, there are seven reinforced rims along vertical direction and four along the
horizontal direction with rim widthLR = 320. The cohesive strength in the reinforced rims (zone “Mat1”) isσmat1 =
σ∗. We assume cohesive strength in cohesive zone “Mat2” is weaker than “Mat1” with cohesive strengthσmat2 =
0.3σ∗. We also assume that cohesive strength in interface zone “Mat3” is the weakest zone in the specimen with
strengthσmat3 = 0.1σ∗.

A time sequence of the fracture process is shown in Fig. 6. After the initial impact, the compressive stress wave
starts to propagate from the contact surface to the opposite boundary, when the stress wave reached the boundary, it
will change from a compressive stress wave to a tensile stress wave, and propagates back to the initial impact surface.
The reflected shock wave has long been identified as the main mechanism that causes the so-called spall fracture.
In Fig. 6, the phenomena of spall fracture due to impact loads are captured. From Fig. 7, one can find that first the
fracture starts from the horizontal interfacial cohesive zone, the cracks then propagate along the horizontal direction
to reach the reinforced rims, and then the crack starts to climb along the vertical interfacial zone [see Fig. 7(b) for a
zoom-in view of the right corner of the specimen].

For comparison purposes, we changed the cohesive strength in interface zone “Mat3” toσmat3 = 0.4σ∗, and we
assume that cohesive strength in cohesive zone “Mat2” is the weakest zone in the specimen with strengthσmat2 =
0.1σ∗. A time sequence of the fracture process is shown in Fig. 8. Different from the first simulation, one can find that

FIG. 5: The statement of the impact problem.
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(a) (d)

(b) (e)

(c) (f)

FIG. 6: Case 1: Time sequence of a high speed impact induced spall fracture in composite materials.

(a) (b)

FIG. 7: Case 1: High speed impact induced spall fracture in composite materials.
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(a) (b)

FIG. 8: Case 2: High speed impact induced spall fracture in composite materials.

the fracture starts from the horizontal cohesive zone in “Mat2” because it is now the weakest zone in the specimen;
subsequently, the fracture starts to shear along a 45 degree angled line, and it finally reaches the interlaminar interface
and then the interface starts debonding.

6.2 Example II. Simulations of Different Fracture Patterns in Composite Materials with Defects

To further illustrate the versatility of the model, numerical simulations have been carried out to simulate the fracture
process in composite materials with defects. In the simulation, a 2D plate with dimension(LX ×LY = 8000× 3200)
is under dynamically prescribed uniaxial tension load. There are 16,000 bulk elements and 23,860 cohesive zone
elements.

The cohesive strength in the reinforced rims (zone “Mat1”) isσmat1 = σ∗. There are 4 cohesive elements with
defect strengthσdefect = 0.02σ∗, which are much weaker than the regular cohesive elements (zone “Mat2”) with
mechanical strengthσmat2 = 0.4σ∗; the interfacial cohesive elements (zone “Mat3”) have the same mechanical
strength as the regular cohesive elements withσmat3 = 0.4σ∗.

We designed two simulations for comparison purposes. In the first simulation, the reinforced rims are all along the
specimen boundary with rim widthLR = 480; in the second simulation, we add two more reinforced rims with one
along the central vertical direction and another along the central horizontal direction.

The time sequences of the fracture process for the two simulations are shown in Figs. 9 and 10, respectively.
For both simulations, the fractures start to grow around the defects. The phenomena of crack initiation, nucleation,
growth, and coalescence are captured from the simulations. The differences between these two simulations are that for
the first case, the two horizontal cracks will coalescence to become one big crack; however, in the second case, when
the two horizontal cracks reach the vertical rims the material starts to debond along the interfacial elements. Those
simulations can enhance our understanding of interfacial debonding and decohesion in the bi-material interface and
may provide help in composite materials design.

7. DISCUSSIONS AND CONCLUSIONS

Composite materials bring together the individual properties of physically different phases or components with the
aim of creating a material that shows new and superior properties compared to the individual components. In order to
maximize the ability of the composite materials it is necessary to develop reliable and accurate simulation techniques
to predict the behaviors of composites in operation. Most of composite materials have multiscale properties by design.
Multiscale prediction for physical and mechanical parameters of composite materials, including materials with peri-
odic configurations and materials with random defect distributions, has become a central issue in simulation-based
technology. The focal point of the current research is multiscale simulations for fracture, localized softening and/or
strengthen, and micro-structural evolution of materials and mechanical systems.
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(a) (d)

(b) (e)

(c) (f)

FIG. 9: Case 1: Time sequence of fracture process in composite materials with defects.

(a) (d)

(b) (e)

(c) (f)

FIG. 10: Case 2: Time sequence of fracture process in composite materials with defects.
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In this paper, we have applied a recently developed MCZM to study the possibility of using atomistic information
to extrapolate constitutive information of both bulk materials as well as composite interfaces in order to precisely
study the responses of composite materials under impact loads and to quantitatively simulate the failure mechanism
and fracture patterns in composite materials. This method is capable of simulating strong discontinuities across a solid
at the nanoscale, such as micro-cracks and dislocations at small scales. Compared to the conventional cohesive finite
element method, the proposed cohesive zone model is a multiscale model that employs the basic principles of colloidal
physics and surface chemistry to determine the interface cohesive force, and it exploits the underneath atomistic
structure to construct surface or interface cohesive laws. By using the MCZM, we have successfully described both
bulk and interface material properties of a given composite material/structure at the mesoscale, and simulate the
possible failure mechanisms that may happen during impact loads. By doing so, we have demonstrated the potential of
the MCZM as a major modeling and simulation technique in both composite material modeling as well as multiscale
simulations in general. The main point of this paper is to demonstrate the applicability of the proposed multiscale
cohesive zone method by applying a simple LJ potential. To solve realistic engineering problems, we are working
on an embedded atom cohesive zone model, in which an EAM-type potential is used to extrapolate both bulk and
interface cohesive material properties. This work will be reported in a separate paper.
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