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In this work, an atomistic-based finite temperature multiscale interphase finite element
method has been developed, and it has been applied to study fracture process of metallic
materials at finite temperature. The coupled thermomechanical finite element formulation
is derived based on continuum thermodynamics principles. The mesoscale constitutive
relations and thermal conduction properties of materials are enriched by atomistic
information of the underneath lattice microstructure in both bulk elements and interphase
cohesive zone. This is accomplished by employing the Cauchy–Born rule, harmonic
approximation, and colloidal crystal approximation. A main advantage of the proposed
approach is its ability to capture the thermal conduction inside the material interface. The
multiscale finite element procedure is performed to simulate an engineering nickel plate
specimen with weak interfaces under uni-axial stretch. The simulation results indicate that
the crack propagation is slowed down by thermal expansion, and a cooling region is found
in the front of crack tip. These phenomena agree with related experimental results. The
effect of different loading rates on fracture is also investigated. [DOI: 10.1115/1.4006583]
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1 Introduction

Fracture is a very complex multiphysics and multiscale problem
that relates to multiple different spatial and temporal scales, multi-
ple different physical fields, and their interactions. In the process
of a crack propagation, the interaction between the fine scale ran-
dom atomistic vibration and macroscale surface separation is
manifested by thermal dissipation and heat conduction, which in
turn affect the subsequent fracture process. Hence, to study a real-
istic fracture process of materials, one must consider the tempera-
ture effect in order to precisely capture the multiscale energy
interaction, dissipation, and release.

In recent years, much success has been made in simulating frac-
ture of metallic materials by brute-force molecular dynamics
(MD), which can simulate crack propagation in a solid material
system of billions of atoms. Nevertheless, the scale of that system
that can be simulated or studied is still in the range of nanoscale
to submicron scale, far away from the goal toward to the macro-
scale engineering design. This has motivated recent developments
of multiscale simulation technology, for example, the quasi-
continuum (QC) method [1], the virtual-internal-bond (VIB)
method [2–4], and Bridging scale method [5], and among many
others. A main technical ingredient in all these multiscale methods
is the so-called Cauchy–Born rule, which assumes that local de-
formation in a crystal is uniform and homogeneous, and under
such condition or assumption one can link material properties
between continuum scale and atomistic scale. However, at the vi-
cinity of a defect, i.e., crack and dislocation sites where the defor-
mation is nonuniform, such assumption is no longer valid.

Recently, Li and his co-workers [6–8] have proposed a multi-
scale cohesive zone model, which combines the strength of
Cauchy–Born rule based atomistic finite element method and
the cohesive zone model, and they have successfully simulated

fracture processes in polycrystalline solids and other engineering
materials.

On the other hand, by taking into account of temperature effect,
Liu and Li [9,10] and Yang et al. [11] have also extended the
Cauchy–Born rule to finite temperature situations. By adding ther-
mal contribution, they coined the Cauchy–Born rule under such
condition as thermal–mechanical Cauchy–Born rule (TCBR). In
this paper, a thermomechanical multiscale interphase zone model
is proposed to study fracture process under thermomechanical
coupling conditions. The proposed method combines the TCBR
and the multiscale cohesive zone model, so one can calculate ma-
terial thermal–mechanical properties in both bulk element and
interphase zone. The proposed finite temperature multiscale finite
element method has been implemented and validated by applying
it to solve a crack propagation problem in a single crystal nickel
plate.

The paper is organized into seven sections: we start off Sec. 2
by discussing the thermomechanical Cauchy–Born rule; then, in
Sec. 3, we present a mesoscale thermal–mechanical theory inside
the interphase zone. The multiscale thermal–mechanical finite ele-
ment formulation is discussed in Sec. 4, and in Sec. 5, we present
a numerical simulation of crack propagation in a single crystal
nickel plate. Finally, we conclude the study in Sec. 7.

2 Thermal–Mechanical Cauchy–Born Rule (TMCBR)

Following Refs. [9–11], we first briefly outline the basic
assumptions and theory of TCBR in this section. To begin with,
we consider the Helmholz free energy of a canonical ensemble at
an equilibrium state of finite temperature, which can be written as
follows [12]:

FH ¼ �kBh ln Z ¼ �kBh ln

ð
C

expð�Hðp; qÞ=ðkBhÞÞdpdq

� �
(1)

where FH is the Helmholz free energy, kB Boltzmann constant, h
the temperature of system, Z the partition function, H the
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hamiltonian of the system, p the position vector of particles, and q
the momentum vector of particles.

The basic assumptions of TCBR are: (1) the atoms of the sys-
tem only oscillate near their equilibrium positions, and the motion
of atoms is approximated as purely harmonic vibration and (2) the
local deformation in the bulk material is assumed to be uniform.
Under these conditions, one can obtain the following harmonic
approximation of free energy [13–15]

FHðF; hÞ ¼ WcðFÞ þ kBh
XN

i¼1

Xn

b¼1

ln 2 sinh
hxibðFÞ
4pkBh

� �� �
(2)

where Wc(F) is the potential energy at equilibrium state, F ¼ @x
@X

is
the deformation gradient, xib is the ith frequency of the system in
the direction b, which is the eigenvalue of dynamic matrix D,
defined as

Diajb ¼
1ffiffiffiffiffiffiffiffiffiffi

mimj
p

@2Wc

@xia@xjb

� �
(3)

Considering

FH ¼ Eint � hS (4)

where Eint, S are the internal energy and entropy of the system,
respectively, and substituting Eq. (2) into Eq. (4), the entropy S of
the system can be expressed as

S ¼ kBh
XN

i¼1

Xn

b¼1

2 cot
hxibðFÞ
4pkBh

� �
hxibðFÞ

4pkB

� kB

XN

i¼1

Xn

b¼1

ln 2 sinh
hxibðFÞ
4pkBh

� �� �
(5)

where N is the total numbers of atoms and n is the number of
degrees of freedom for each atom. Based on Eqs. (4) and (5), the
internal energy can be also derived as

Eint ¼ WcðFÞ þ kBh
XN

i¼1

Xn

b¼1

2 cot
hxibðFÞ
4pkBh

� �
hxibðFÞ

4pkB
(6)

So is the specific heat of constant volume Cv

Cv ¼
@Eint

@h
¼ kBh

XN

i¼1

Xn

b¼1

1

sinh2 hxibðFÞ
4pkBh

� �
0
BB@

1
CCA hxibðFÞ

4pkBh

� �2

(7)

and the specific heat at constant temperature CT as well

CT ¼ h
@S

@F
¼ �h

@2FH

@h@F
(8)

where xib are the vibration frequencies of the system, and they
are the eigenvalues of the dynamical matrix D defined in Eq. (3).
The quasi-harmonic approximation assumes that atoms in the sys-
tem only oscillate around their equilibrium positions, and we only
consider the harmonic part of those oscillations. After finding all
the eigenvalues of dynamic matrix, we make further simplifica-
tions upon the harmonic approximation by neglecting all coupling
modes of vibrations among different atoms, and we assume that
all the atoms have the same vibration mode in different coordinate
direction. Based on these simplifications, we may assume that the

harmonic approximation may be localized in each unit cell, and
by doing so we make it consistent with the Cauchy–Born rule.
This localized harmonic approximation is a very strong assump-
tion, and it may or may not be hold in practical problems.

However, if we adopt the assumption, and then it makes sense
to discuss the Helmholtz free energy in a unit cell, which can be
cast into the following form:

Fuc
H ¼ WucðFÞ þ nkBh

Xnbound

i¼1

ln sinh
hDi

1
2n

2pkBh

" #
(9)

where potential energy Wuc is

WucðFÞ ¼
Xnbond

l¼1

/ðrlÞ (10)

Note that the unit cell of a Bravais lattice is a primitive cell, which
only considers the nearest neighbor interaction. However, the unit
cell referred in Eq. (9) should not be understood as a primitive
cell in a Bravais lattice. This is because that the small number of
atoms in a primitive cell may not be capable of consisting of an
equilibrium ensemble or even a local equilibrium region. In gen-
eral, we need include long range multibody interactions even for a
local canonical ensemble. In this work, however, we postulate an
idealization that is coined as consistently localized harmonic
approximation in Cauchy continuum (CLHACC). In such ideal
case, one may take a primitive cell in a Bravis lattice as an effec-
tive local canonical ensemble. This is an additional strong
assumption on the local equilibrium approximation (LEA), e.g.,
Ref. [16], which implies that not only the mean displacement field
(coarse scale) is uniform, the fluctuation displacement field (the
fine scale) is also locally self-similar in a local region.

Under such assumption and in the classical limit, we have

sinh
hxib

4pkBh

� �
� hxib

4pkBh
(11)

and

Cv ¼ nkBnbound (12)

subsequently, the Helmholz free energy in a unit cell, i.e., Eq. (9),
becomes

Fuc
H ¼ WucðFÞ þ nkBh

Xnbound

i¼1

ln
hDi

1
2n

2pkBh

" #
(13)

where

Di ¼
Yn

b¼1

xib

 !2

(14)

The first Piola–Kirchihoff stress (PK-I) can be written as

P ¼ 1

Xunit
0

@FH
uc

@F
¼ 1

Xunit
0

@WucðFÞ
@F

þ kBh

2Xunit
0

Xnbound

i¼1

1

Di

@Di

@F
(15)

The second term in the above equation is the thermal stress that is
caused by increase of temperature. From this equation, we can
calculate macro stress for any crystalline materials based on aver-
age elastic energy density in a single Bravais unit cell.

For example in Fig. 1 [17], we consider a two-dimensional hex-
agonal lattice unit cell. Based on the microstructure of the unit
cell, PK-I stress tensor, Eq. (15), becomes
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P ¼ 1

Xunit
0

Xnbond

l¼1

@/
@rl

rl � Rl

rl
þ kBT

2Xunit
0

XN

i¼1

1

Di

@Di

@F
(16)

Only the center atom is considered in 2D hexagonal unit cell for
calculating the dynamic matrix, so the dynamic matrix becomes

Dab ¼
1

mc

@2Wuc

@xla@xlb

� �

¼ 1

mc

Xnbond

l¼1

@2/ðrlÞ
@r2

l

xlaxlb

r2
l

� @/ðrlÞ
@rl

xlaxlb

r3
l

þ @/ðrlÞ
@rl

dab

rl

� �

(17)

3 Thermal–Mechanical Couplings in Interphase

Elements

The multiscale finite element model proposed in this work con-
tains two types of elements: (1) the bulk element, and (2) the
interphase element. The interphase element is a narrow strip that
forms a subscale buffer zone between any pair of bulk elements.

To distinguish our approach with the conventional cohesive
zone model, in which the cohesive zone is a virtual entity that has
no width, we label the finite width interface element in the pro-
posed multiscale finite element method as the interphase element
or interphase zone.

We assume that the deformation inside the bulk element is uni-
form, so that we can apply the thermal–mechanical Cauchy–Born
rule to calculate its stress state if we know the deformation gradi-
ent of each element. On the other hand, the deformation inside the
interphase element is highly nonlinear and nonuniform, so one

cannot apply the Cauchy–Born rule to calculate stresses (see Fig. 2).
Moreover, one may not be able to use harmonic approximation
inside the interphase element, because of the drastic deformation and
atomistic bond breaking inside the interphase element. In this sec-
tion, we discuss how to calculate stress, deformation, temperature,
and thermal–mechanical couplings inside interphase elements.

3.1 Stress Calculation in the Interphase Zone. In principle,
a Cauchy–Born based coarse grained continuum formulation is
not adequate for an accurate calculation of stress distribution
inside the interphase element, because of its nonlinear, nonuni-
form, and an-harmonic characters.

One way to improve the accuracy but still using finite element
continuum approach is to adopt high order interpolation field
instead of linear interpolation. The justification is as follows: For
linear interpolation field in an element, one can use only one
quadrature point for complete integration. In the multiscale finite
element method (FEM) formulation, this is equivalent to carry out
a molecular dynamics (MD) computation for one unit cell per ele-
ment. If we continuously increase the order of interpolation and
hence the number of quadrature points, we will need to carry out
MD calculations in more and more unit cells per element, and
consequently the calculation may become more and more accu-
rate. This approach could easily capture the nonuniform deforma-
tion of one element.

To capture the nonlinear and an-harmonic responses inside the
interphase zone, we adopt a so-called colloidal crystal approach.
The colloidal crystal approach in this work is different from what
is discussed in Refs. [18,19]. In the proposed crystal approach, we
retain the original lattice structure but we use the colloidal deple-
tion potential to replace the original atomistic bond potential, and
the coarse grain depletion potential in interphase zone can be
obtained by the following analytical integration [20]

/deplðrÞ ¼
ð

halfspace

b/bulkðr � r0ÞdV0 (18)

where /bulk is the potential of bulk materials and b is the number
of atoms per volume.

It should be noted that the deformation gradient inside the inter-
phase zone is not constant, because the deformation is nonuni-
form. In this paper, we use the bilinear FEM shape function of
quadrilateral elements in interphase zone. Therefore, the deforma-
tion gradient inside the interphase zone is a linear function of the
position vector X, i.e., Fintp¼Fintp(X). We can then calculate the
stress at each quadrature point inside the interphase element by
averaging atomistic bond force in a unit cell as shown in Eq. (15).
However, this may cause shear locking in the interphase zone and
ill-condition of the stiffness matrix. This is because the aspect ra-
tio of the interphase element is too large, L/R! 103–105.

Fig. 1 The unit cell for 2D hexagonal lattice

Fig. 2 Deformation of the interphase zone
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To avoid shear locking inside the interphase zone, in this work
we adopt the reduced integration technique to integrate the weak
form inside the interphase zone. Instead of using standard four quad-
rature points, we only use two quadrature points in each interphase
element as shown in Fig. 3. Each quadrature point is corresponding
to a unit cell. By doing so, we can capture some nonuniform
deformations in the interphase element and also avoid the unstable
(hour-glass mode) results that is caused by zero energy mode of a
first order approximation (one quadrature point integration) [21].

3.2 Governing Equations of Thermomechanical Interphase
Zone Model. In nonlinear continuum mechanics, the equation of
motion can be written as

r � Pþ q0b� q0€u ¼ 0 (19)

where P is the first Piola–Kirchhoff stress, b is the body force, q0

is the density at initial configuration, and u is the displacement.
According to the first law of thermodynamics, the rate of inter-

nal energy in a continuum system is

De
Dt
¼ P : _F�r � qþ q0Q ðbulk zoneÞ (20)

and the rate of internal energy in the interphase zone is

De
Dt
¼ P : _F�r � q ðinterphase zoneÞ (21)

where Q is the internal heat source and q is heat flux.
We neglect the heat generation in the interphase zone due to

the interphase zone is very thin, and substitute Eq. (6) into
Eqs. (20) and (21), we have

1

Xunit
0

CT : _FþCv
_h

� �
¼�r�qþqQ¼ kr2hþqQðtÞ ðbulk zoneÞ

(22)

and

1

Xunit
0

CT : _Fþ Cv
_h

� �
¼ �r � q ¼ kr2h ðinterphase zoneÞ

(23)

3.3 Heat Generation in the Interphase Zone. The mechani-
cal energy release due to the breaking of interphase zone is

C ¼
ðDmax

0

T � dD (24)

where T is the traction force along the boundary of interphase
zone and bulk element, and D is the separation of the interphase
zone, and Dmax is the maximum separation of the interphase zone.
Hence, the energy release rate in the interphase zone will be

_C ¼ T � _D! d _C ¼ T � d _D: (25)

In this work, we assume that all the mechanical fracture energy
completely convert to heat without any loss or save to other form
of potential energies in the process of fracture. The fracture of the
interphase zone will then cause temperature rise inside the inter-
phase zone as well as strong thermal induced deformation, which
is equivalently manifested as both displacement jump as well as a
temperature jump at the two sides of the interphase zone. There-
fore, we postulate thatð

@Xiþ
intp

T � d _DdS ¼
ð

Xi
intp

1

Xunit
0

ðCT : _Fþ Cv
_hÞdX (26)

where @Xiþ
intp is just one side of boundary of the interphase ele-

ment i, i.e., @Xi
intp ¼ @Xiþ

intp

S
@Xi�

intp.

3.4 Heat Conduction in Interphase Zone. Because it is dif-
ficult to determine kintp inside the interphase zone, we adopt an
approximation that convert the weak form of heat conduction
term inside the interphase zone into the following boundary
integral: ð

Xi
intp

kintprhrdhdX ¼
ð
@Xiþ

intp

qintp � ndhdS (27)

Again here, @Xiþ
intp is just half of the interphase element boundary,

and the total boundary is @Xi
intp ¼ @Xiþ

intp

S
@Xi�

intp.
Depending on the interphase zone’s damage state, i.e., partially

open or completely open, the heat flux across the interphase zone
can be written as

qintp ¼ hintpDhn (28)

where Dh is the temperature jump, and hintp is the heat conduction
of interphase zone.

In this work, we adopt an approach that is similar to that used
in Ref. [22], and the interphase heat conductance is chosen as
follows:

Fig. 3 Linear quadrilateral element for the interphase zone

031014-4 / Vol. 134, JULY 2012 Transactions of the ASME

Downloaded From: http://materialstechnology.asmedigitalcollection.asme.org/ on 08/11/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



hinpt ¼ shi;inpt þ ð1� sÞ
kg;0 þ Cgh
	 


g
; s > sc (29)

where hi,inpt is the initial interphase conductance and
hi,air¼ [kg,0þCgh]/g, which is the ratio of gas conductivity and
the effective crack (normal) opening length g. The parameter s is
an indicator to measure the damage state of the interphase, which
is calculated by the average stretched bond length inside the inter-
phase zone, i.e.,

s ¼ R0

�r

where �r is the average stretched bond length inside the interphase
zone. When �r � R0; s! 0, i.e., the interphase is completely
opened or being fractured. In actual computation, when s ! 0 or
s< sc, we take the thermal conductance of the interphase zone
hinpt¼ 0, because we assume that the gas conductance is far
smaller than crystalline thermal conductance, its effect can be
neglected.

4 Finite Element Galerkin Weak Formulation for

Multiscale Interphase Zone Model

In the following, we present the Galerkin variational weak for-
mulation of the proposed finite temperature multiscale interphase
zone method. Denote the domain of interests in the reference con-
figuration as X0. In two-dimensional space, we can discrete it in a
set of disjoined triangle bulk elements, Xe, e ¼ 1; 2;… nb

elem, and
a set of disjoined quadrilateral interphase element Xi;
i ¼ 1; 2;…; nc

elem, such that

X0 ¼
[nb
elem

e¼1

Xe
b

0
@

1
A[ [nc

elem

i¼1

Xi
c

 !
(30)

Note that mathematically or topologically the set of triangle ele-
ments and quadrilateral elements may not be able to form a com-
pact cover of X0, because there could be a tiny hole in the vertex
of the triangle elements, if all the elements are within the same
scale. Nevertheless, Eq. (30) is essentially a physical statement
rather than a mathematical statement. We may interpret the mesh
as a multiscale mesh, which means that at macroscale the set of
triangle elements forms a mathematical cover of X0, but zooming
in the fine scale one may find an interphase quadrilateral layer
between two adjacent macroscale triangle elements.

With the aid of trail function u
h and test function du

h, a Lagran-
gian type of Galerkin Lagrangian weak formulation may be
expressed as follows:

Xnb
elem

e¼1

ð
Xe

b

q0€uh � duhdXþ
ð

Xe
b

P : dFhdX

( )

þ
Xnc

elem

i¼1

ð
Xi

c

q0€uh � duhdXþ
ð

Xi
c

P : dFhdX

( )

¼
Xnb

elem

e¼1

ð
Xe

0

b � duhdXþ
ð
@tX

e
0

T � duhdS

( )
þ
Xnc

elem

i¼1

ð
Xi

c

b � duhdV

(31)

where b is the body force, Xe
b is the eth bulk element, @tX

e
b is the

interception between the traction boundary and the boundary of
the eth element, and Xi

c is the ith interphase element. The inter-
phase element does not overlap with traction boundary.

Assume that there is no heat source or sink in the computational
domain. The weak form of energy equation can be written as

Xnb
elem

e¼1

ð
Xe

b

krh � rdhdX

( )
þ
Xnc

elem

i¼1

ð
Xi

c

kintprh � rdhdX

( )

þ
Xnb

elem

e¼1

ð
Xe

b

1

Xunit
0

CT : _Fþ Cv
_h

� �
dhdX

þ
Xnc

elem

i¼1

ð
Xi

c

1

Xunit
0

C
intp
T : _Fþ Cintp

v
_h

� �
dhdX

¼
Xnb

elem

e¼1

ð
@tX

e
b

q � ndhdS (32)

where @tX
e
b is the intersection between @Xe

b and @Xq
0, which is the

heat flux boundary.
In Section 3, we have derived thatð

@Xiþ
c

T � d _DdhdS ¼ �
ð
@Xeþ

b

T � d _DdhdS

¼
ð

Xi
c

1

Xunit
0

ðCT : _Fþ Cv
_hÞdhdX (33)

andð
@Xiþ

c

qintp � ndhdS ¼ �
ð
@Xeþ

b

qintp � ndhdS ¼
ð

Xi
c

kintprhrdhdX

(34)

The weak form for energy equation becomes

Xnb
elem

e¼1

ð
Xe

b

krh � rdhdX
ð

Xe
b

1

Xunit
0

CT : _Fþ Cv
_h

� �
dhdX

( )

¼
Xnb

elem

e¼1

ð
@tX

e
b

q � ndhdSþ
ð
@Xeþ

b

qintp � ndhdSþ
ð
@Xeþ

b

T � d _DdhdS

( )

(35)

where qintp � n¼ hintp(h)Dh, and Dh is the temperature jump across
the interphase zone.

Fig. 4 Finite element mesh
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4.1 Continuum Multiscale Finite Element Formulation.
Consider the finite element interpolation representation

uh ¼
X

e

Nðn; g; fÞdeðtÞ ¼
X

e

XNe

I¼1

NIdI (36)

where N is the shape function and dI is nodal displacement. Fol-
lowing the standard FE discretization procedure, e.g., Ref. [23],
we have the following discrete equations of motion

M€dþ f intðdÞ ¼ fext (37)

where

M ¼ A
nb

elem

e¼1

ð
Xe

0

q0NeT
NedV þ A

nc
elem

i¼1

ð
Xi

0

q0NiTNidV (38)

f int ¼ A
nb

elem

e¼1

ð
Xe

0

BeT
PeðdÞdV þ A

nc
elem

i¼1

ð
Xi

0

BiTPiðdÞdV (39)

fext ¼ A
nb

elem

e¼1

ð
Xe

b

NeT
BedV þ

ð
@tB

e
b

NeT �T
e
dS

( )
þ A

nc
elem

i¼1

ð
Xi

0

NiTBidV

(40)

Fig. 5 Temperature distribution at time 0.14 ls (V0: 100 m/s, T0: 293 K)

Fig. 6 Temperature distribution at different time (V0: 100 m/s, T0: 293 K)
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where A is the element assemble operator, Ne is the element shape
function matrix, and B

e is the element B-matrix.

4.2 Finite Element Formulation for Heat Transfer. Let

hðx; tÞ ¼
X

e

NTðn; g; fÞheðtÞ ¼
X

e

XNe

I¼1

NTIhI (41)

where NT is the shape function, and hI is nodal temperature.
Then, we have the discrete dynamic equations for heat conduction

½Cv�½ _h� þ ½CT�½ _d� þ ½K�½h� ¼ Qbody þQbound þQinpt þQfrac

(42)

where h is the global temperature vector, and

Cv ¼ A
nb

elem

e¼1

ð
Xe

b

1

Xe
b

CvN
T
TNTdX

" #
(43)

CT ¼ A
nb

elem

e¼1

ð
Xe

b

1

Xe
b

CeT½ �NT
T

@N

@R
dX

" #
(44)
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where Cv is the global specific heat matrix at constant volume, CT

is the global specific heat matrix at constant temperature, K is the
global thermal conductivity matrix, Qbound is the global external
heat load vector due to external heat flux, Qintp is the global heat
load vector which go through interphase zone due to thermal con-
duction, Qfrac is the global heat load vector that is caused by frac-
ture energy, and n is the unit out normal vector of boundary
surface.

Fig. 7 Stress (r22) distribution at different time (0.83027 3 107 Pa) (V0: 100 m/s, T0: 293 K)
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5 Numerical Examples

In this section, we report some preliminary results of a numeri-
cal example where simulations of thermal–mechanical fracture of
a nickel plate is performed. The facture process of the nickel plate
is simulated by using the proposed thermal-mechanical Cauchy-
Born (TMCB) interphase zone model. The nickel plate has an
in-plane dimension of 2 mm� 2 mm, a precrack is set in the mid-
dle of the plate (see Fig. 4). The finite element discretization
model of the plate contains 10,032 triangle bulk elements and
15,000 interphase zone elements. All the material properties, such
as specific heat, are calculated according to the above theory,
except thermal conductivity k and thermal conduction hinpt of the
interphase zone. In fact, the value of macro experiments
k¼ hintp¼ 90 W/(m �K) is adopted due to the difficulty in calcu-
lating the thermal conductivity based on thermodynamics.

The plate is subjected to a constant velocity V0 boundary condi-
tion at its top and bottom sides, so it is being stretched in the verti-
cal direction (see Fig. 4); dt¼ 1.0� 10�10 s is chosen as the time
step for time integration. A standard Lennard-Jones (L-J) potential
(Eq. (49)) is used to describe the interaction between atoms in the
bulk, with �¼ 0.5188 eV, r¼ 2.28 Å

/ðrÞ ¼ 4�
r
r

� �12

� r
r

� �6
� �

(49)

For the interphase zone in nickel plate, the depletion potential
(Eq. (50)) can be obtained by substituting Eq. (49) into Eq. (18).

/deplðrÞ ¼
p�ffiffiffi

2
p 1

45

r
r

� �9

� 1

3

r
r

� �3
� �

(50)

To investigate the effect of the interphase zone on fracture pro-
cess, an artificially lowered potential-well of the interphase zone,
0.1620 eV, is used in the simulation. Except the potential-well,
the other parameters of interphase zone are the same as the bulk.

Figures 5 and 6 display the temperature distribution on a frac-
tured nickel plate in the case of the loading rate at 100 m/s. A
local region of temperature cooling in front of the crack tip can be
found while the crack is propagating. In fact, from Fig. 5 (a snap-
shot at t¼ 0.14 ls), one may find that (i) a temperature increase of
27 K at the crack tip, and (ii) a 7 K temperature drop at a region
between the two bifurcated cracks. This result agrees with the
experiment results reported in Ref. [24], and it is also very similar
to the simulation results reported in Ref. [25]. The explanation to
this is that the speed of crack propagation and stress wave is much
higher than that of thermal conduction. When the interphase zone
fractures, the mechanical energy release converts to heat or crack
surface temperature rise on one hand, and on the other hand, it

Fig. 8 Thermal stress (r22) distribution at different time (0.83027 3 107 Pa) (V0: 100 m/s, T0: 293 K)
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Fig. 9 Temperature distribution at time 0.084 ls (V0: 400 m/s, T0: 293 K)

Fig. 10 Temperature distribution at different time (V0: 400 m/s, T0: 293 K)
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will also suck mechanical energy toward to the crack tip, which,
due to the thermal–mechanical coupling, will also create a heat
flux flow toward to the crack tip as well. This will transfers the
energy from the further away region to the nearer adjacent region
of the crack tip. If we compare the thermal stress distribution
(Fig. 8) with the mechanical stress distribution (Fig. 7), we found
that the thermal stress (Fig. 8) only exists in the local regions near
the crack, but the magnitude of the thermal stress is far lower than
that of the mechanical stress. This characteristics of the stress dis-
tribution will leas crack bifurcation; and this may explain why
there are so many fragments if we continue to apply load. This
phenomenon is different from the fragmentation simulation result
obtained by penetration that does not take into account tempera-
ture effect [6]. Figures 9, 10, and 12 display the temperature distri-
bution in a specimen that is under stretching rate of 400 m/s.
Comparing it with the case of the stretching rate of 100 m/s, one
may find that the onset fracture time is obviously affected by the
loading rate and temperature. The onset time of fracture for high
loading rate is much earlier than that of low loading rate. It is also
found that the mode of the fracture is different for different load-
ing rates. In the case of the loading rate at 400 m/s (Fig. 11) the
stress waves will first collide with each other in the middle of
plate before the crack propagates, this collision causes high tensile

stress wave at the middle, which generate some secondary
horizontal cracks in the front of the precrack tip if the amplitude
of stress waves is large enough. After that, there is a temperature
increase in a large region surrounding the cracks (Fig. 10), due
to the release of fracture energy. In the case of the loading rate
at 100 m/s, the colliding waves cannot generate an amplitude of
stress waves that is large enough to cause secondary fracture, so
a typical shear fracture and subsequent crack bifurcation can be
found. On the other hand, we have also found that the stress
distributions of these two cases are distinctly different. In the
case of the loading rate at 100 m/s (see Fig. 13(a)), a narrow
U-shape tensile stress band ahead of the crack tip is formed af-
ter the first stress wave collision, and the maximum tensile
stress occurs in the direction of some 45 deg with respect to the
precrack direction (see Fig. 13(a)); whereas in the case of the
loading rate at 400 m/s, a large spindle-shaped tensile stress
region (see Fig. 13(b)) is formed at the same location. The
maximum tensile stress also can be found in this region, and the
entire region may be fractured due to the high tensile stress. In
summary, different loading conditions may produce different
stress waves, which lead to different characteristics of
thermal–mechanical responses, and hence a different fracture
modes at macroscale.

Fig. 11 Stress (r22) distribution at different time (0.83027 3 107 Pa) (V0: 400 m/s, T0: 293 K)

Fig. 12 Thermal stress (r22) distribution at different time (0.83027 3 107 Pa) (V0: 400 m/s, T0: 293 K)
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We also do some preliminary investigation about the size effect
of crack length. Figures 14(a) and 14(b) display the stress distri-
bution for the crack length L¼ 1 mm and L¼ 0.2 mm, respec-
tively. A significant difference of stress distribution for two cases
can be found in these figures, in the case of crack length L¼ 1
mm, we can find there is a very large compressive region, but we
can’t find that in the case of L¼ 0.2 mm. In both two cases, a dis-
tinguished tensile region can be found at the head of crack tip, but
there only is a slight different for two cases (Fig. 14). The above
results indicate our multiscale method can be used to investigate
the size effect of crack on the fracture strength of materials,
which, as indicated by Gao et al [26], is a main characteristics of
small scale fractures.

6 Conclusions

In this work, an atomistic-based thermal–mechanical interphase
zone model is proposed, and the associated finite temperature
multiscale finite element method has also been implemented. The
atomistic-based thermal–mechanical interphase zone model
connects the atomistic structure of the material with its macro
properties based on statistical thermodynamics. In specific, this is
accomplished by combining the Cauchy–Born rule, harmonic

approximation, local equilibrium assumption, and colloidal crystal
approximation. To make the harmonic approximation and local
equilibrium approximation consistent with the Cauchy–Born rule,
we postulate at the first time an idealization that is coined as the
CLHACC, which makes the multiscale thermal–mechanical finite
element possible.

Since the proposed multiscale interphase zone model takes into
account thermomechanical coupling effects, we can study the
temperature effect on fracture process. In particular, this provides
a realistic physical constitutive relation that includes thermal dis-
sipation, which is important in the simulations of material failure
and damage during high strain rate loading and high-speed
impact, such as spall fracture, propagation of adiabatic shear
band, and blast load induced fragmentation. This is because the
accurate prediction of thermal dissipation not only provides the
correct estimate of energy release rate but also provides a physics-
based stable computational formulation that can capture shock
wave propagation in solids without invoking artificial damping
mechanism to stabilize numerical computations.

Using the finite temperature multiscale finite element method,
we have carried out some examples of numerical simulation, and
the preliminary results indicate that the proposed method can
accurately capture the dynamics fracture process under finite

Fig. 13 Stress (r22) distribution at time 0.08 ls (0.83027 3 107 Pa) (T0: 293 K)

Fig. 14 Stress (r22) distribution at time 0.16 ls for different crack length (0.83027 3 107 Pa) (T0: 293 K, V0 5 100 m/s)
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temperature. For instance, it may be the first time that any simula-
tion result has shown and confirmed that there is a cooling region
in front of a moving crack tip.
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