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a b s t r a c t

The work is concerned with the modeling and simulation of large scale ductile fracture in plate and shell
structures. A meshfree method – the reproducing kernel particle method (RKPM) – is used in numerical
computations in order to enact dynamic crack propagation without remeshing. There are several novel-
ties in the present approach. First, we have developed a crack surface approximation and particle split
algorithm for three-dimensional through-thickness cracks. Second, to represent evolving crack surface
in 3D shell structures, a 3D parametric visibility condition algorithm is proposed, which re-constructs
the local connectivity map for particles near the crack tip or crack surfaces, so that the meshfree interpo-
lation field can represent physical material separation in the computational domain. Third, the constitu-
tive update formulas in explicit time integration by different versions of Gurson models and the
rate-dependent Johnson–Cook model are implemented for 3D computations. Finally, the performance
of different Gurson-type models are investigated and compared with the experimental data of large scale
in-plate tear process. Numerical simulations of crack propagation in stiffened plates and shells demon-
strate that the proposed method provides an effective means to simulate ductile fracture in large scale
plate/shell structures with engineering accuracy.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The crack propagation in metallic and composite plate and shell
structures is a common failure phenomenon encountered in engi-
neering structures such as in ship grounding, aircraft fuselage rup-
ture, and automobile vehicle crash, etc. There have been many
experimental studies reported in the literature about dynamic frac-
ture process in large scale engineering structures. For instance,
Erdogan and Ratwani (1972) conducted a both experimental and
analytical study of fracture of cylindrical and spherical shell struc-
tures; Simonsen and Tornqvist (2004) investigated the in-plate tear
and tension fracture of a large scale plate in experiments as well as
in numerical simulations; and Alsos and Amdahl (2009) and Alsos
et al. (2009) also studied ductile fracture or puncture of stiffened
plates by carrying out hull indentation tests on the plates.

In current computational engineering practice, there are essen-
tially three approaches to simulate fracture by adjusting the topol-
ogy structure of a FEM mesh in order to represent a ongoing
material surface separation in the computational domain: (1) use
the so-called element erosion technique, e.g. Chen (1992), to create
a region separation, which simply discards or ‘kills’ the elements
along the crack path; (2) embed cohesive zone (crack) paths in the

original FEM mesh e.g. Tvergaard and Hutchinson (1996) and
Tvergaard (2001), which will allow crack propagating along the
cohesive zone network, and (3) adding appropriate discontinuous
functions as an enrichment to represent surface separation, which
is known as the so-called eXtended finite element method (X-
FEM) (Moës et al., 1999; Bordas et al., 2008). The first approach
has been extensively used and implemented in commercial FEM
softwares, which leads to loss of the element mass, energy, momen-
tum, and results the loss of overall accuracy theoretically. However,
in practice, it can be made fairly accurate by using a constitutive
model that couples with a damage indicator, such as the Gurson
model (Gurson, 1977). Here the load carrying capacity of the re-
moved elements can be made close to zero with a proper criterion.
The second approach is a phenomenological model, and it is proven
difficult to construct proper cohesive laws for 3D ductile material
under mixed load condition. The third approach is mainly applicable
to brittle or quasi-brittle fractures. On the other hand, ductile fail-
ure, especially large scale ductile fracture, is often associated with
large scale yielding, finite plastic deformation, as well as tempera-
ture rise. These often occur during high strain rate loadings with
localized high strain gradients, which usually accompanies with se-
vere mesh distortion. In general, the mesh based approach may have
difficulties to simulate history dependent ductile fracture process.

Meshfree or particle-based methods (e.g. Li and Liu (2004))
have intrinsic advantages to represent evolving geometry of the
computational domain during crack propagation. To solve
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engineering fracture problems, Belytschko and his co-workers (e.g.
Belytschko et al. (1995)) have developed the Element Free Galerkin
(EFG) method to simulate crack growth; Liu et al. (1999) demon-
strated the ability of RPKM for large deformation fracture and dam-
age problems, and Li and Simonsen (2005) proposed a 2D
parametric crack formation algorithm to update meshfree interpo-
lation field to represent the evolving crack automatically. Based on
this algorithm, Simkins and Li (2006) incorporated the thermal
effect into ductile failure process; Rabczuk and Areias (2000) have
used meshfree method to simulate elastic fracture in thin shell
structures, and Qian et al. (2008) have employed RKPM method
to simulate ductile fracture in thin shell structures. Recently, Rab-
czuk and his co-workers (Rabczuk and Zi, 2007; Rabczuk et al.,
2007; Rabczuk et al., 2008) have combined meshfree particle
method with extended finite element method (X-FEM) to develop
a class of extended meshfree method to simulate cohesive fracture.
Ren and Li (2010) proposed a meshfree algorithm to represent
crack nucleation, growth, and arrest automatically to simulate
two-dimensional plugging fracture problems. Recently, Ren et al.
(2011a) reported their effort to develop a two-dimensional mesh-
free void growth algorithm that can used for spall fracture simula-
tion as well.

There are two main challenges in simulating ductile fracture in
3D engineering plate/shell structures. First, the evolving crack
surface leads to time-evolving traction-free boundary growth in
computational domain, hence the finite element representation of
evolving material geometry and topology have to change accord-
ingly. To do so without remeshing and computational unloading is
a real challenge in 3D ductile fracture simulations. This is because
ductile fracture is a thermodynamic irreversible process, the loading
and unloading processes, no matter they are physical or computa-
tional, are path-dependent and dissipative. Second, the large scale
ductile fracture often undergoes drastic plastic deformation, which
makes ductile fracture a multi-scale problem (Antoun et al., 2003).
How to predict macro-scale mechanical behavior of structures with
micro-scale damage feature is the other challenge.

In the recent decades, there have been many works reported in
the literature studying how to predict ductile fracture, e.g. finite
element approach (FEA) by Anderson (1995) and Mikkelsen
(1997), and meshfree approach by Li and Simonsen (2005), Ren
and Li (2010) and Ren et al. (2011a,b). However most of these efforts
remain as academic research that is mainly demonstrated by 2D
illustration problems. Recently researchers have applied different
numerical methods simulating fractures in engineering structures
e.g. using the cohesive zone model by Cirak et al. (2005) and using
X-FEM method by Song and Belytschko (2009). However, most of
these works are still focused on fractures in brittle materials.

To predict material failure behavior, a successful approach is to
employ linear elastic fracture mechanics theory (LEFM), which
uses J-integral or stress intensity factor to evaluate material tough-
ness in predicting material failure. LEFM gives satisfactory descrip-
tion of crack tip fields for brittle fracture or fracture under small
scale yielding. However LEFM is unable to predict ductile fracture
process especially for large scale yield and drastic finite plastic
deformation (Anderson, 1995). The ductile failure may be inter-
preted as a process of voids nucleation-growth-coalescence (Chev-
rier and Klepaczko, 1999). Voids are nucleated at the sites of
inhomogeneity or inclusion inside solids at mesoscale, and they
may then grow and coalesce. Some void growth can be trigged
by local deformation, for instance by the triaxial deformation or
triaxial strain rate. During void coalescence, voids merge with each
other, and macro-scale cracks start to form (Antoun et al., 2003).

Lacking energy release indicator around the ductile crack tip,
alternative approaches have been developed for ductile fracture
such as micromechanics-based damage approach, which models
the ductile failure at constitutive modeling stage with an evolving

material damage measure at the fine scale. Well-known examples
are the Rice–Tracey model (Rice and Tracey, 1969) and the John-
son–Cook model (Johnson and Cook, 1985), where the accumula-
tive damage indicator is related to plastic strain, void population,
or triaxial stress, etc. Once a macro-scale damage indicator reaches
certain threshold, a macro-scale crack may start to grow. Based on
multi-scale micromechanics, Gurson (1977) derived an inelastic
damage model that governs macro-scale plastic flow, in which
the damage indicator is related to the micro-scale void volume
fraction, i.e., the ratio of voids volume in a Representative Volume
Element (RVE), and it is incorporated into the macro-scale material
constitutive law. Consequently, the Gurson model relates the
macro fracture behavior to micro-scale damage evolution.

The original Gurson model was formulated and calibrated based
on the mechanics of void growth under axisymmetric stress state
(Gurson, 1977; Nahshon and Hutchinson, 2008). Tvergaard and
Needleman (1984) made the Gurson model into a computational
model, and introduced a physics-based computation algorithm to
model void nucleation, growth and coalescence; their model is
now commonly referred to as the Gurson–Tvergaard–Needleman
model (GTN model). Recently, by considering the damage mecha-
nisms such as void distortion and inter-void interaction under
purely shear deformation state, Nahshon and Hutchinson (2008)
modified the mechanism of void fraction growth by taking into ac-
count the effect of shear stress. Their model is referred as the Shear
Modified Gurson (SM-Gurson) model in this paper. However, as
pointed out by Nielsen and Tvergaard (2009), the additional dam-
age contribution from SM-Gurson model may be over-estimated
when stress triaxiality is high. To remedy this shortcoming, Nielsen
and Tvergaard (2010) make the shear stress contribution depend-
ing on the level of stress triaxiality, and we refer their model as the
Modified Gurson (M-Gurson) model in this paper. The M-Gurson
model is considered to be able to capture mixed-mode fracture
behavior.

Ductile fracture is often accompanied with enormous high plas-
tic deformation, and in turn the material plastic flow will generate
a large amount of heat at the local area where material exhibits
viscoplastic behavior. However, the various Gurson models men-
tioned above are still rate-independent plasticity model, and they
do not consider thermo-mechanical coupling effect. To take into
account the rate-dependent and thermal-mechanical coupling ef-
fects, Johnson and Cook (1983, 1985) proposed a rate-dependent
plasticity constitutive model, which is referred to as the John-
son–Cook model.

The scope of the paper is focused on discussion of meshfree
computational formulation and algorithm to simulate large scale
ductile fracture in engineering plate/shell structures. The paper is
organized in seven sections. In Section 2, the Galerkin weak formu-
las and interpolation function of 3D RKPM method are discussed.
In Section 3 the crack surface approximation and a 3D parametric
visibility condition algorithm are discussed. In Section 4, the differ-
ent versions of Gurson-type models and the related constitutive
update are discussed. In Section 5, we briefly introduce the John-
son–Cook model and its constitutive update; and in Section 6 the
results of numerical simulations are reported to validate and dem-
onstrate the capacity of the proposed method. Finally, to conclude
the work, a few remarks are made in Section 7.

2. Modeling and meshfree discretization

2.1. The nonlinear kinematics

Usually the fracture in metallic material goes with dramatic
plastic deformation. To solve this nonlinear problem, we first de-
scribe some basic kinematic definitions that will be later used in
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the constitutive update. In meshfree simulations, a particle X in
reference configuration at t ¼ 0, will move to x in the current
configuration at time t. The deformation gradient is then defined
as:

F ¼ @x
@X
¼ xi;Jei � EJ ð1Þ

where ei and EJ denote the coordinate basis vectors in reference and
current configurations respectively. The determinant of F is denoted
as J ¼ detjFj.

In this work, a total Lagrange approach is adopted to represent
finite deformation of solids.

The rate of deformation and the rate of spin can be expressed
as:

d ¼ ð _F � F�1 þ F�T � _FTÞ=2 ð2Þ

w ¼ ð _F � F�1 � F�T � _FTÞ=2 ð3Þ

where _F ¼ @v
@X.

For ductile fracture problems, the total rate of deformation can
be decomposed to elastic, plastic, and thermal parts,

d ¼ de þ dp þ dt ð4Þ

2.2. Galerkin variational weak formulation

The equation of balance of linear momentum for a continuum in
a computational domain at reference configuration X0 is,

rXPþ q0b ¼ q0
€u ð5Þ

where P is the first Piola–Kirchhoff stress, which is related to the
Cauchy stress as P ¼ Jr � F�T ; b denotes the body force, q0 is the ini-
tial density of material, and u is the displacement field.

The Galerkin weak formulation of (5) can be written as,Z
X0

P : dFdX0 �
Z

CT
0

T � dudS�
Z

X0

q0b � dudX0 þ
Z

X0

q0 €u � dudX0 ¼ 0

ð6Þ

where du is the test function, CT
0 denotes the traction boundary

where traction T is prescribed. For meshfree simulations, the test
function du does not automatically satisfy the essential boundary
condition, therefore some special care must be taken to handle
essential boundary condition (see Li and Liu (2004)).

For the Galerkin type weak form solutions such as FEM and
meshfree method, the field variable is represented by values of no-
dal points over a generally complex domain X0, and the interpola-
tion function is used to approximate the field variable, such as
position vector uðtÞ, at any time instance t,

uðX; tÞ ¼
X

I

NIðXÞuIðtÞ ð7Þ

where NI denotes the global interpolation shape function, and we
shall discuss a meshfree interpolation function (RKPM) in next
section. uI is the nodal displacement. Considering the Bubnov–
Galerkin method, the test function du is constructed using the
same shape function as that of the trial function u, consequently
we can obtain,

duðX; tÞ ¼
X

I

NIðXÞduIðtÞ ð8Þ

Substituting Eqs. (7) and (8) into the weak form Eq. (6), we can de-
rive the discrete dynamic equation,

½M� €uþ f int � fext ¼ 0 ð9Þ

where f int and fext are internal and external nodal force vectors
respectively, and M is the mass matrix, which is then simplified
by using the row-sum lumped mass matrix. The components of
internal force, external force, and the mass matrix are given as,

f int
Ii ¼

Z
X0

PiJ@NI=@XJdX0; ð10Þ

f ext
Ii ¼

Z
X0

q0biNIdX0 þ
Z

CT
0

TiNIdS ð11Þ

MIJ ¼
Z

X0

q0NIdIJdX0; ð12Þ

in which the row-sum lumped technique is used in computing the
mass matrix.

2.3. RKPM meshfree approximation

In Eq. (7), the interpolation shape function NIðXÞ is introduced,
which depends on the adopted approximation method. In this
work, we employ a meshfree method – the reproducing kernel par-
ticle method (RKPM) – to simulate ductile fracture. The RKPM
meshfree shape function NIðXÞmay be viewed as an enhanced ver-
sion of original Smoothed Particle Hydrodynamics(SPH) shape
function (Lucy, 1977). The basic ideal of RKPM is to construct a
proper kernel function by ‘correcting’ the original SPH kernel func-
tion, wðX;XIÞ, to satisfy the partition of unity condition and repro-
duce linear functions so that the rigid body motion and uniform
deformation can be correctly represented. The RKPM interpolation
function can be written as (Li and Liu, 2004):

NIðXÞ ¼ CðX;XIÞwðX;XIÞDX0I ð13Þ

In this work, wðX;XIÞ is obtained by a Cartesian product of the
one-dimensional cubic spline function, DX0I is the volume that par-
ticle I possesses, and CðX;XIÞ is the so-called correction function:

CðX;XIÞ ¼ BTðXÞpðX;XIÞ ð14Þ

It should be noted that the correction function ensures the accuracy
of RKPM interpolation function in order to solve displacement field
at any point, for example at a crack tip. In above equation, pðX;XIÞ is
the interpolation basis function:

pTðX;XIÞ ¼ 1; X1 � XI1; X2 � XI2; X3 � XI3; ðX1 � XI1ÞðX2 � XI2Þ;½

ðX2 � XI2ÞðX3 � XI3Þ; ðX1 � XI1ÞðX3 � XI3Þ;

ðX1 � XI1ÞðX2 � XI2ÞðX3 � XI3Þ� ð15Þ

In Eq. (14), BðXÞ is a coefficient vector, and it is determined by the
reproducing condition (Li and Liu, 2004), which is given as
following,

BðXÞ ¼m�1ðXÞpð0Þ ð16Þ

mðXÞ ¼ pðX;XIÞpTðX;XIÞwðX;XIÞDX0I ð17Þ

pTð0Þ ¼ ð1;0;0;0;0;0;0;0Þ ð18Þ

Assume that there is a valid particle distribution with total np par-
ticles, and they are position initially in the reference configuration,
XI 2 X0; I ¼ 1; . . . ;np. The RKPM interpolation field, for instance for
the displacement field, can be expressed as,

uhðX; tÞ ¼
Xnp

I¼1

NIðXÞuIðtÞ ð19Þ

where NIðXÞ is the RKPM shape function.
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3. 3D visibility condition and 3D crack growth algorithm

3.1. Crack approximation in plate structures

From computational viewpoint, crack propagation may be
viewed as the growth of traction-free boundary in the computa-
tional domain, and it is associated with evolving and changing of
the interpolation field. The meshfree method has inherent advan-
tage for simulation of crack growth or representing a ‘fracturing’
interpolation field, because the interpolation field does not depend
on mesh. In fact, a focal point of the early meshfree method (e.g.
Belytschko et al. (1995)) is to develop the visibility condition algo-
rithm that can serve as a criterion to automatically adapt the con-
nectivity map of meshfree particles, so that the associated evolving
interpolation field can represent growing crack surfaces. Li and
Simonsen (2005) proposed a practical 2D parametric visibility con-
dition algorithm in two-dimensional space. Following the same ba-
sic idea, Ren and Li (2010) proposed an algorithm to represent
whole lifespan of crack growth including crack nucleation, propa-
gation and arrest.

In this work, we are interested in crack growth in large scale
thin plate and shell structures where the ratio between the plate
span and plate thickness is >50.

To make the modeling and simulation simple, we make the fol-
lowing assumptions and approximations: (1) First, in this work we
only deal with the through-thickness crack, so the crack tip always
cuts through the thickness of the plate. In the meshfree discretiza-
tion, we place several layers of particle along the thickness direc-
tion of the plate or shell, and we call a particle array that is
perpendicular with the plate surface as a fiber, e.g. the red1 line
shown in Fig. 1(a) and (b). Hence each particle at the plate surface
corresponds a fiber that is perpendicular to the plate surface, and
each fiber has n particles along its axial direction. In general the plate
may be discretized by n layers of meshfree particles, and in all the
simulations done in this work we choose n ¼ 3.

(2) The 3D crack surface may be represented by piece-wise
plane facets constructed by the particles on crack surface as shown
in Fig. 2(b). Here the particles on crack surface are marked as red
diamonds, except the one at the crack tip, which is marked as blue
square, whereas the normal meshfree particles are represented as
black circles.

(3) In our approach, the crack tip is always attached to a fiber,
which means it only moves from fiber to fiber.

Fig. 1. Crack approximation in large scale plate, (a) crack tip searching algorithm, (b) illustration of fiber.

Fig. 2. Crack approximation in 3D plate, (a) particle splitting around crack tip, (b) 2D illustration of crack surface approximation.

1 For interpretation of colour in Figs. 1, 2 and 6, the reader is referred to the web
version of this article.
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The macro-scale ductile crack growth criterion is postulated as
a material damage criterion. In specific, we measure the material
damage state of all the particles surrounding the current crack
tip, and subsequently we can calculate the accumulated damage
value for any fiber near the current crack tip. If the damage value
at one particular fiber exceeds the critical value, we then declare
it as the new crack tip, and subsequently, a crack length increment
is performed, and the crack tip moves from old position to a new
position.

In this work, we first choose either the volume fraction of voids,
or the effective plastic strain as the damage measure D. We then
choose a radial distance R, and draw a circle centered at the current
crack tip on the plate surface shown as the blue circle in Fig. 1(a).
Subsequently we can compute the damage value for each particles
inside the thin circular slice volume encircled by the blue line. Now
we can determine the damage value for each fiber inside the circu-
lar slice by adding the damage value of each particle along the fi-
ber. For example, the variable DJ of fiber J is defined as sum of
damage values of each particle on the fiber J, i.e. DJ ¼

PM
i¼1DJi, here

M ¼ 3 as shown in Fig. 1. We then apply the crack growth crite-
rion: DJ P Dc; 8J ¼ 1; . . . np for every fiber inside the circle slice.
If there is a fiber J such that the condition DJ > Dc holds, we then
choose the fiber J as the new crack tip.

In practice, however, if the new crack tip is located behind the
current crack tip, it could lead to some complications such as
crack-direction-reverse phenomenon. To simplify the crack
approximation algorithm, we limit the potential new crack tip in-
side a fan region hc in the blue circle, shown as in Fig. 1(a). Here the
vector V1, which points from the previous crack tip to the current
crack tip, is shown as a dashed vector, and the angle h is defined
between the vector V2 (from the current crack tip to particle inside
circle) and vector V1. Finally, the new crack tip will be selected by
criterion,

DJ P Dc and � hc=2 6 h 6 hc=2 ð20Þ

When using the criterion, Eq. (20), the computational accuracy of
predicting crack growth mainly depends on an appropriate damage
criterion. Moreover, an obvious limitation of this criterion is that
the crack reverse phenomenon is not considered.

3.2. Crack surface representation in plates

Once the new crack tip (a fiber) is selected, the old crack tip (a
fiber) will be split to two fibers, i.e., all particles in that fiber should
be split into two particles in order to form two new fibers. The par-
ticle splitting algorithm must keep conservation of volume, mass,
and kinematic energy. Assume that the previous crack orientation
vector (V1 in Fig. 1) and current crack orientation (V2 in Fig. 1)
split the computational domain into two part with angles /1 and
/2, as shown in Fig. 1. The mass and volume of the new particles
are re-assigned according to the following rules,

Massnew1 ¼
/1

2p
Massold ð21Þ

Massnew2 ¼
/2

2p
Massold ð22Þ

Volumenew1 ¼
/1

2p
Volumeold ð23Þ

Volumenew2 ¼
/2

2p
Volumeold ð24Þ

The kinematic field variables, such as original position, displace-
ment, velocity, and acceleration of the new particles are assigned
according to,

Xnew1 ¼ Xold þ d ð25Þ
Xnew2 ¼ Xold � d ð26Þ

Dispnew1 ¼ Dispold þ d ð27Þ
Dispnew2 ¼ Dispold � d ð28Þ
Velnew1 ¼ Velold ð29Þ
Velnew2 ¼ Velold ð30Þ
Accnew1 ¼ 0:0 ð31Þ
Accnew2 ¼ 0:0 ð32Þ

where d is a vector that is perpendicular to the new crack orienta-
tion V2 at plate surface and jdj � 1. By using this particle splitting
procedure, the old particle Xold on the outer surface of a shell is split
to two new particles (Xnew1 and Xnew2) with a tiny spatial distance
between them in reference configuration, in which the 3D paramet-
ric visibility algorithm is used. After particle splitting, the old crack
tip fiber will be split into two new fibers, and there is a small dis-
tance between them, shown as Fig. 2(a), where the old crack tips
are marked as black squares.

3.3. 3D parametric visibility condition algorithm

The objective of the particle splitting algorithm is to separate
crack tip into two sets of particles in order to form new crack sur-
faces in physical space. In numerical simulations, the most crucial
step is how to adjust interpolation field surrounding the growing
crack tip to represent material separation in a computational do-
main. In contrast with FEM interpolation, meshfree interpolation
relies on a local connectivity map to associate one particle with
its neighboring particles. Therefore there must be an artificial algo-
rithm to ‘cut off’ the interpolation connection of particles due to
crack surface. In the 2D problem, Li and Simonsen (2005) consider
the crack surface as piece-wise straight line segments. They pro-
posed a 2D parametric visibility condition algorithm to re-interpo-
late the computational domain. Following a similar philosophy, in
this work we propose a 3D parametric visibility condition algo-
rithm, which can adjust meshfree interpolation field along crack
surfaces in three-dimensional space.

For macro-scale fracture problems, the crack surface can be
treated as an opaque wall, which may be figuratively thought as
a medium that blocks the sight between two particles in two sides
of the crack surface. In Fig. 2(a) the dashed vectors denote the
sights that are blocked by crack surface. From Fig. 2, one can find
the old crack tip fiber (marked as black square) located at the mid-
dle of crack surface at reference configuration. This paper approx-
imates the crack surface as piece-wise plane facets, one can
construct triangle plane facets by old crack tip fibers which are al-
ways located in the middle of crack surfaces as shown in Fig. 2(b),
here the dashed triangle facets is constructed by connecting the
first and last particles of crack tip fibers. In meshfree interpolation,
every particle has its own local connectivity map to define its
neighboring particles, once the line segment between a specified
particle and its neighboring particle intersects with the crack sur-
face (the dashed vector in Fig. 2(a)), we say that these two particles
cannot ‘see’ each other. Then this neighboring particle must be re-
moved from the local connectivity map of the particle. Since crack
growth is incremental, one only needs to check and modify the
connectivity maps for a limited number of particles or quadrature
points around the current crack tip.

The crack growth algorithm in 3D shell structures presented
here is designed for through-thickness cracks, which can be
accomplished by the modification of the local connectivity map
of specified particles that are identified by using geometric inter-
ception test between the line segment (Fig. 2(a)) and the triangle
surface element (Fig. 2(b)). In practice, since the triangle element
is composed of triangle facets, we can test the facets one by one,
eventually the meshfree re-interpolation update can be proceed
as we sort out visibility relations among all neighboring particles
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through the interrelation between line segments and triangle fac-
ets. The 3D parametric visibility algorithm is based on the geomet-
ric relation between a line segment with the end points AðXA;YA;

ZAÞ, and BðXB;YB; ZBÞ, and a triangle facet with vertices TiðXi;Yi;

ZiÞ; i ¼ 1;2;3, which is explicitly illustrated in Fig. 3.
To begin with the test, we can first define two vectors T1T2ðX2

�X1;Y2 � Y1; Z2 � Z1Þ and T1T3ðX3 � X1;Y3 � Y1; Z3 � Z1Þ on a trian-
gle facet. Then the normal vector of the triangle facet is,

N ¼ T1T2 � T1T3 ð33Þ

In 3D space, the general relationships between a line segment and a
triangle has three scenarios:

1. A line segment is in parallel with a triangle facet, but not in
the triangle facet plane. The condition may be stated as,

N � AB ¼ 0 and T1A �N – 0 ð34Þ

If the condition, Eq. (34), holds, it means that particle A can ‘see’
particle B;

2. If, however,

N � AB ¼ 0 and T1A �N ¼ 0 ð35Þ

this means that the line segment AB is actual in the triangle facet
plane. Even thought this is a special case, this case is not simple.
One the other hand, however, in this case, the 3D visibility condi-
tion will degenerate to the 2D parametric visibility condition, be-
cause we can basically use the 2D visibility condition presented in
Li and Simonsen (2005) and Simkins and Li (2006) to test whether
or not the line segment AB intersects any one of the three sides of
the triangle. To do this in a general 3D plane is tedious. In actual
computations, an orthogonal projection decomposition method is
used, in which the triangle facet plane is project to three Cartesian
coordinate planes, X1OX2;X1OX3;X2OX3. In general, the triangle fa-
cet in space will have three affine projection images on those three
coordinate planes, unless they are in perpendicular. For instance, if
N � Ek – 0, a particle Aðx1; x2; x3Þ in 3D space can be projected to 2D
space Ei � Ejði; j – kÞ with coordination ðxi; xjÞ, and this particle can
be the intersection point P or one of the three vertices of the trian-
gle. After the orthogonal projection decomposition, we use the 2D
visibility condition presented in Li and Simonsen (2005) to test
the visibility condition between the projection image of the line
AB and the images of three sides of the triangle.

If all tests are passed, we can say that particle A can ‘see’ par-
ticle B.

3. The last scenario is the case that the line segment AB actually
intersects the triangle facet plane. In this case, we first find the

intersection point between the line segment and the triangle facet
plane, and we label the intersection point as P.

We can then try to determine whether the point P is inside the
triangle or not. The detailed testing procedure is outlined as fol-
lows: If N � AB – 0, the line segment AB is not parallel with the tri-
angle facet, we can define a vector D as,

D ¼ B� A ð36Þ

Assume that the line segment AB insects with the plane of triangle
facet at the point P (one triangle facet can define one plane) at
P ¼ Aþ kD with parameter k as shown in Fig. 3. Since P is located
on the plane of the triangle facet, we have,

N � T1P ¼ 0 ð37Þ

where T1P is defined as the line segment, A� T1 þ kD as shown in
Fig. 3. From Eq. (37), the parametric k can be solved as,

k¼
ðX1�XAÞ YZ23

1 �YZ32
1

� �
þðY1�YAÞ ZX23

1 �ZX32
1

� �
þðZ1�ZAÞ XY23

1 �XY32
1

� �
DX YZ23

1 �YZ32
1

� �
þDY ZX23

1 �ZX32
1

� �
þDZ XY23

1 �XY32
1

� �
ð38Þ

where YZij
k ¼ ðYi � YkÞðZj � ZkÞ; ZXij

k ¼ ðZi � ZkÞðXj � XkÞ; XYij
k ¼ ðXi

�XkÞðYj � YkÞ; i; j; k ¼ 1;2;3. If k < 0 or k > 1, the line segment AB
does not intersect with the triangle facet plane, even though
they are not in parallel. In this two cases, the particle A can see
particle B.

If 0 6 k 6 1, it is then that the line segment does intersects the
triangle facet plane at the point P. Now the point P may locate
either inside or outside of the triangle facet, or on the surface of
the triangle facet as shown in Fig. 4. Hence we have to conduct fur-
ther tests to judge the visibility. The point P and any two vertices of
the triangle facet can form three new triangle facets in total. We
can define the normal of these new triangle facets as:

N1 ¼ PT1 � PT2 ð39Þ
N2 ¼ PT2 � PT3 ð40Þ
N3 ¼ PT3 � PT1 ð41Þ

We have the following visibility condition: if

N � N1 P 0 and N � N2 P 0 and N � N3 P 0 ð42Þ

the point P locates inside the triangle facet, and hence particle A
cannot ‘see’ particle B. Otherwise, particle A can ‘see’ particle B.
Some of these conditions are illustrated in Fig. 4.

In computations, the condition that particle A can ‘see’ particle
B means that the particle B will remain in the local connectivity
group of the particle A. In contrast with the fact that particle A
cannot ‘see’ particle B, which means that the particle B will be re-
moved from the local connectivity group of the particle A.

In the following example, we illustrate how a shape function of a
particle changes when it is located along a crack path. When the
crack just reached the particle, the original shape function of the
particle is shown in Fig. 5(a). The meshfree interpolation field is a
3D distribution field, and to illustrate this 3D field clearly, we use
the color contour intensity indicates the height or value of the
shape function. For visualization purpose, we set the 3D computa-
tional domain transparent. At the beginning the crack surface does
not ‘cut off’ any local connectivity of neighboring particles at the
crack tip. Consequently, the shape function has finite values both
inside the solid as well as on the crack surface (the dark shadow).
After the crack passes through that particle, the particle is split into
two new particles on newly formed crack surface, and this is done
by the particle splitting algorithm to enact surface separation.

In numerical simulation, this leads to modification of local con-
nectivity map by using the 3D parametric visibility condition. In
Fig. 5(b) and (c), one can find that the shape functions of the newly
split particles of the old crack tip only have values in their part of

Fig. 3. 3D parametric visibility condition.
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the half body, and they do not spread across crack surface. This
illustrates that the proposed 3D parametric visibility condition
algorithm can automatically update the local connectivity map
and consequently interpolation field while a crack grows.

4. Gurson-type of ductile damage models

Both the Gurson type plasticity damage models and the John-
son–Cook plasticity damage model have been extensively used in
modeling ductile materials and their failure analysis. In this sec-
tion, we first discuss various Gurson type models, and their consti-
tutive update in simulations.

4.1. The Gurson-type constitutive models

(1) Original Gurson model
The basic assumption of the Gurson model is that deviatoric

stress state controls plastic yielding while triaxial stress state con-
trols the damage progress with the mechanism of void growth of
coalescence (Rice and Tracey, 1969; Nielsen and Tvergaard, 2010).

The yield surface of the Gurson Model (Gurson, 1977; Nahshon
and Hutchinson, 2008) is given as follows,

Uðre;rm; f Þ ¼
re

rM

� �2

þ 2q1f cosh
3q2

2
rm

rM

� �
� 1þ q3f 2
� �

ð43Þ

where re ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2 s : s

q
is the effective stress of the deviatoric stress

tensor s ¼ r� rmI; rm ¼ rkk=3. While, rM is the microscopic yield
stress in the matrix material surrounding voids, i.e. the material be-
tween voids. Throughout this paper, all quantities with subscript M
represent the state of matrix material at micro-scale. In Eq. (43)
q1; q2; q3 are material constants.

For incompressible matrix materials, the rate of void growth
can be found as,

_f ¼ _f g ¼ ð1� f ÞdP
kk ð44Þ

where dp
kk is the trace of plastic rate of deformation.

(2) Gurson–Tvergaard–Needleman (GTN) model
The Gurson–Tvergaard–Needleman (GTN) model (Tvergaard

and Needleman, 1984) is a simulation-based plasticity-damage
model, which takes into account of the effect of rapid void coales-
cence at failure phase. In particular, Tvergaard and Needleman

Fig. 4. Spacial relation between P and triangle facet.

Fig. 5. Meshfree shape function evolution along crack propagation.
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(1984) proposed a function f �ðf Þ that replaces the variable f in Eq.
(43),

f �ðf Þ ¼
f f 6 fc

fc þ 1=q1�fc
ff�fc

ðf � fcÞ fc < f 6 ff

1=q1 f > ff

8><>: ð45Þ

The void growth rate consists of growth of existing voids and nucle-
ation of new voids, i.e.

_f ¼ _f g þ _f n ð46Þ

where _f g is defined in Eq. (44). Considering the plastic strain rate in-
duced nucleation, we have

_f n ¼ AN _ep
M ð47Þ

Here the nucleation strain follows a normal distribution with a
mean value eN and a standard deviation sN (Chu and Needleman,
1980):

AN ¼
fN

sN

ffiffiffiffiffiffiffi
2p
p exp �1

2
ep

M � eN

sN

� �2
" #

ð48Þ

where fN is the volume fraction to nucleate voids.
(3) Shear modified Gurson (SM-Gurson) model
In above two models, the rate of void growth is solely deter-

mined by dilatational plastic strain rate as shown in Eq. (44), which
is the basic assumption of the Gurson model. A major limitation of
the Gurson model, which has become apparent in recent years, is
its inability to capture strain localization and ductile fracture for
shear stress-dominated problems such as plugging failure during
projectile penetration, cropping, or dynamic shear-off. According
to the Gurson model or the GTN model, an increase in f, i.e. the
incremental growth in volume fraction of voids, requires a positive
mean stress. Whereas in the cases of shear-dominated deforma-
tions with zero or negative mean stress, the model predicts no in-
crease in damage if there is no continuous void nucleation. As a
consequence, the model predicts that no damage induced soften-
ing will take place under shear in materials with inherent strain
hardening capacity, and hence neither localization nor material
failure can occur in this case, which is obviously not realistic
(Nahshon and Hutchinson, 2008).

Considering the fact that the damage mechanisms such as void
distortion and inter-void interaction under deviatoric stress state
may also give rise to strain softening and localization, Nahshon
and Hutchinson (2008) modified the damage mechanism of the Gur-
son model by adding the damage effect due to the deviatoric stress,

_f s ¼ kwfxðrÞ s : dp

re
ð49Þ

where

xðrÞ ¼ 1� 27J3

2r3
e

� �2

ð50Þ

with J3 ¼ sj j. Subsequently, the growth rate of void volume fraction
becomes,

_f ¼ _f g þ _f n þ _f s ð51Þ

here _f g and _f n are defined in Eqs. (44) and (47) respectively. The SM-
Gurson model uses the same plastic flow function as the GTN
model.

(4) The Modified Gurson Model (M-Gurson)
It is generally believed that for moderate and high stress triax-

iality (T ¼ rm=re) state, the GTN model can accurately describe
ductile fracture process of metallic materials; and when stress

triaxiality is low, the SM-Gurson model should be used because
the damage contribution due to shear stress become significant
as discussed above. As Nielsen and Tvergaard (2009) argued, the
additional damage contribution from shear stress, i.e. _f s, may have
too strong effect when stress triaxiality is high. To model both the
ductile plug failure and interfacial shear failure simultaneously,
Nielsen and Tvergaard (2010) recently modified the equation of
_f s to make the extra shear contribution dependent on the level of
stress triaxiality, while keeping the other features of the SM-Gur-
son model,

_f s ¼ kwfx0
s : dp

re
ð52Þ

and,

x0 ¼ xðrÞXðTÞ ð53Þ

where xðrÞ is defined in Eq. (50), XðTÞ is a function of stress
triaxiality,

XðTÞ ¼
1 T < T1
T�T2

T1�T2
T1 6 T 6 T2

0 T > T2

8><>: ð54Þ

Eq. (54) sets up an option rule that the SM-Gurson model is used
when T < T1, and the GTN model will be used when T > T2.

4.2. Constitutive update

The plastic flow function in Eq. (43) contains the yield stress of
matrix at micro-scale (rM), macro-scale effective stress re, and
macro-scale mean stress rm. The rate of void volume growth is re-
lated to the rate of deformation and micro-scale yield stress as well.
These features make the constitutive update very complex in 3D ex-
plicit time integration. In this paper, the elastic trial and relaxation
approach of Aravas (1987) is adopted. For interested readers, they
may consult Simonsen and Li (2004), which has provided a detailed
constitutive update equations for GTN model for 2D problems. In the
present work, we basically follows Simonsen and Li (2004) to estab-
lish the formulations for constitutive update of different Gurson
models with the different hardening laws for 3D simulations.

Typically, ductile steels are modeled by power-law hardening.
To simplify the derivation, in this work, an isotropic hardening
modulus hM is chosen as the function of logarithmic plastic strain
ep

M and the true stress rM , and it can result a fairly accurate simu-
lations. However, to obtain more accurate simulation results, the
power-law hardening may have to be implemented with exact
material hardening constants.

hM ¼
dep

M

drM
ð55Þ

The detailed constitutive update is outlined in Appendix A and B.

5. Johnson–Cook model and its constitutive update

The Johnson–Cook model (Johnson and Cook, 1983, 1985), is a
rate-dependent thermo-mechanical constitutive model, which
has been extensively used in simulations of ductile fracture in-
duced by high strain rate loading such as shock waves and high
speed impacts. The thermo-mechanical coupled meshfree Galerkin
formulation are not described in this paper, and interested readers
can refer to Ren and Li (2010) for details.

In the Johnson–Cook model, the effective plastic strain rate is
defined as:
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_�e ¼ _e0 exp
1
C

rM

gð�e; TÞ � 1
� �	 


gð�e; TÞ ¼ ðAþ B�enÞð1� CmÞ; with C ¼ T � T0

Tm � T0

ð56Þ

where _e0 is referential strain rate, and normally it is chosen as
1:0 s�1, n and m are strain hardening and thermal softening param-
eters. T0 and Tm are room and melting temperature respectively.

For thermo-mechanical coupled problem, the total deformation
can be decomposed to elastic, plastic, and thermal parts, as shown
in Eq. (4). In case of isotropic hardening, the plastic strain rate is,

dp ¼ _�en̂ ð57Þ

In adiabatic heating, the rate of deformation induced by thermal ef-
fect is,

dt ¼ cv
qCp

re
_�eI ð58Þ

where c is the coefficient of thermal expansion, v denotes the frac-
tion of plastic work converting to heat, Cp is specific heat, and I de-
notes the second order unit tensor.

The rate form of constitutive equation with thermal effect can
be expressed as,

r
r
¼ C : de ¼ C : ðd� dp � dtÞ ð59Þ

For explicit time integration, the stress and strain fields at time tnþ1

are updated from the state at time tn. Choosing the Jaumann rate as
the objective rate in Eq. (59), the time stress derivative of the Cau-
chy stress can be found as,

_rnþ1 ¼ rn
r
þwn � rn � rn �wT

n ð60Þ

Then the stress state can be updated by,

rnþ1 ¼ rn þ _rnþ1Dt ð61Þ

The crack propagation algorithm in Section 3 needs a damage indi-
cator in order to determine crack growth process. The Gurson mod-
el has the damage parameter f that can be used in the crack growth
algorithm. For the Johnson–Cook model, an accumulative damage
model (Simkins and Li, 2006) is adopted to estimate damage status
of a material point, and hence a meshfree particle,

D ¼
XDe

ef

ef ¼ D1 þ D2 exp D3
rm

rM

� �� �
1þ D4 ln _�e
h i

1þ D5C½ � ð62Þ

where De is the plastic strain increment in one time step, and
D1;D2;D3;D4;D5 are material constants.

6. Numerical simulations

6.1. Calibration with large scale in-plate tearing experiment

Although there has been much effort using finite element meth-
ods and meshfree methods in combination with the Gurson type of
models to simulate ductile fracture in materials and structures, e.g.
Mathur et al. (1996) and Li and Simonsen (2005), it is still a chal-
lenge to use numerical methods to capture and predict ductile frac-
ture or progressive ductile failure in large scale engineering
structures made by real engineering materials. The complexity
and difficulty of simulating ductile structural failures are multi-
tude, and it is affected by actual structural geometry, stiffness,
and dimension. For instance, the crack nucleation and initial prop-
agation in plate and shell structures is a size-dependent process,
and a crack needs to grow to a length of few times greater than

the plate thickness before it can reach to stationary propagation
condition.

To have a meaningful simulation, we closely validate our
meshfree approach with the existing experimental data. In exper-
iments, the standard fracture mechanics test specimens are rela-
tively small, because it is intended to measure the material
fracture toughness or material fatigue strength rather than the
actual fracture event on an actual structure. In material fracture
toughness test, the typical crack length in a specimen is about
from a few millimeters to centimeters, which may not be appro-
priate for the testing of large scale crack propagation in engineer-
ing structures, because the fracture strength of a structure is not
only dependent on material fracture toughness, but also depen-
dent on overall structure stiffness. Simonsen and Tornqvist
(2004) have conducted a fracture strength experiment of real size
engineering structures under in-plane bending and stretching. The
test can faithfully provide measurements for large-scale ductile
fracture strength of a plate structure. The testing data measured
in this experiment contain essential information of the crack
growth, which can be related to structure strength; moreover they
can also be calibrated and compared with the material constitu-
tive model and numerical simulation. The detailed experimental
set-up is shown as Fig. 6(a).

The main testing variables that are measured in the experiment
are,

P: the crosshead load from the testing machine
D: the crosshead displacement from the testing machine
In the meshfree simulation, the clamp system is considered as

rigid, the specimen is discretized by 5073 particles and 25600
quadrature points, and a pre-set crack is prescribed in the initial
configuration. The integration time step is, Dt ¼ 10�7 s, the com-
puting domain is shown in Fig. 6(b), and there are three layers of
particles distributed along thickness direction of the plate, i.e.,
one fiber is composed of three particles. In the experiment, a dis-
placement-controlled loading is imposed and measured as the
crosshead displacement D. To compare with the simulation results,
this displacement-controlled boundary condition must be trans-
lated to a prescribed displacement boundary condition for mesh-
free computation (see Fig. 6(b)). Since the clamp is considered as
rigid, and it will rotate about an axis (the point O in Fig. 6(a)). A
2D Cartesian coordinate system can be constructed with that axis
as origin, and the rigid clamp is represented by a triangle (DABO
with Aðx1; y1Þ; Bðx3; y3Þ) shown as the red triangle in Figs. 6(a)
and 7. From Fig. 6(a), we can find the line segment AB is the side
of plate where essential boundary is imposed. The boundary dis-
placement D, which moves along Y axis, is imposed at point A,
and DABO will rotate to (DA0B0O with A0ðx2; y2Þ;B0ðx4; y4Þ). At origi-
nal position, the length of OA and angle a are defined as:

a ¼ arctan
y1

x1
þ p ð63Þ

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ y2
1

q
ð64Þ

The displacement boundary D can be defined as,

D ¼ y2 � y1 ¼ l sinða� bÞ � l sinðaÞ ð65Þ

where b is the rotated angle:

b ¼ a� p� arcsin
D
l
þ sinðaÞ

� �� �
ð66Þ

A point inside AB can be defined as, Xðx; yÞ, the length of ~OX and an-
gle m are,

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð67Þ

m ¼ arctan
y
x
þ p ð68Þ
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Then the displacement boundary at point X can be calculated as,

Dx ¼ l1 cosðm� bÞ � l1 cos m ð69Þ
Dy ¼ l1 sinðm� bÞ � l1 sin m ð70Þ

From the experimental specimen configuration shown in Fig. 6(a),
one can find that x1 ¼ �900; y1 ¼ �50, x ranges from �170 to
�750, y ¼ �50 with unit mm. From existing literatures, we cannot
find material constants in the Gurson model for Normal Strength

steel. We select material constants and the model parameters based
on these following considerations: first the material constants
E;q;ry for Normal Strength steel (f ¼ 0) are taken from the struc-
tural tensile test from Simonsen and Tornqvist (2004) that are tab-
ulated in Table 1. Second, Nahshon and Xue (2009) reported the
material constants of the SM-Gurson model for steel DH36, which
are also calibrated with experimental data. Third, Nielsen and
Tvergaard (2010) discussed the parameter T1 and T2 for DP600
steel. Based on these studies, we have conducted a series of simula-
tions with different Gurson models to calibrate material constants
for each of them based the experimental data obtained from Simon-
sen and Tornqvist (2004). The final set of material constants used
for various Gurson models are listed in Table 1. By using the mate-
rial constants listed in Table 1, the simulations of the plate tearing
test have been carried out for (1) original Gurson model, (2) GTN
model, (3) SM-Gurson model, (4) M-Gurson model (with a critical
void volume fraction as the fracture criterion), and (5) a GTN model
with a critical effective plastic strain as the fracture criterion.

In the first four models, the crack growth criterion is set as:
Dc ¼ fp ¼ 0:0135, and for the fifth simulation, the effective plastic
shear criteria is set as Dc ¼ ep ¼ 0:35. The experiment provides
the dynamical crack history curve as crosshead loading P against
crosshead displacement D. In these simulations, to get the equiva-
lent loading at point A in Fig. 6(a), we use the moment balance be-
tween the loading force P and the traction force at surface AB about
point O. The numerical and experimental data are compared in
Fig. 8. One may find that the total crosshead displacement is
0:12 m, which is a fracture test under large deformation for plate
structure, in contrast with standard fracture mechanics test exper-
iment, where the total displacement is at millimeter scale with a
much smaller plate thickness for plan stress tests. From Fig. 8(a)
and (b), at elastic phase, i.e, the stress state does not reach to the
plastic yield surface, all different Gurson models give the same
stress-strain relation. Therefore, all numerical curves overlap ex-
actly at early stage as shown in Fig. 8(a). In Fig. 8(b) one may find
the overlapped region between the GTN model (the dark curve)
and SM-Gurson model (the dashed SM-Gurson curve). Once the
deformation reaches the initial yield point, the increasing plastic
deformation will result the increase in void growth rate,i.e. void
volume fractions f, which are different with respect to various
Gurson models. Consequently, the predicted stress–strain curve

Fig. 6. (a) Experimental set-up for large scale fracture testing of plates (From Simonsen and Tornqvist (2004)) and (b) meshfree discretization domain.

Table 1
The material constants for Normal Strength steel.

Parameter Value Definition

E 200 GPa Young’s modulus
m 0.3 Poisson’s ratio
q 7800 kg m�3 Mass density

r0
M

270 MPa Initial yield stress

hM 833 MPa Hardening modulus
q1 2.5 Gurson parameter1
q2 1.0 Gurson parameter2
q3 3.25 Gurson parameter3
f0 0.0025 Initial void volume fraction
fN 0.02 Void nucleation parameter
eN 0.55 Void nucleation parameter
sN 0.2 Void nucleation parameter
fc 0.021 Void volume coalescence
ff 0.2109 Void volume at failure
kw 1.0 The coefficient of shear
T1 0.2 Low Stress triaxiality
T2 0.7 High Stress triaxiality

Fig. 7. Illustration of boundary condition.
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(relation) starts to differ. Original Gurson model do not consider
the rate of void nucleation, _f is smallest, therefore the material
shows higher stiffness than experimental data. As mentioned in
the pervious section, for SM-Gurson model, the shear stress contri-
bution to damage may be too strong when material is at mediate
and high stress triaxiality state. Since the experiment is basically
a Model-I fracture test, therefore, in this case the SM-Gurson model
predicts a much softer material response. Theoretically, for the
Model I fracture problem, GTN model is the most appropriate
material model, and therefore one may find that the numerical re-
sults of GTN model fits the experimental results best. The M-Gur-
son model makes an adjustment in the shear contribution when
stress triaxiality is high, accordingly Fig. 8 shows that it compares
with experimental data well. Based on Fig. 8, we believe that for
mixture fracture model problem the M-Gurson model may per-
form better.

Moreover, one may find that in contrast with the smooth quasi-
static experimental curve, there are distinct fluctuations in Fig. 8(a)

and (b), especially at the later stage of the test. The reason for such
load-deflection curve fluctuation may be due to both dynamic ef-
fect as well as the numerical crack growth algorithm. The numer-
ical simulations are conducted as a dynamic process with constant
velocity (10 m/s) at crosshead as shown in Fig. 6(a). During the
simulation, the effect of dynamic stress fields may lead to fluctua-
tion on measured crosshead loading force. At the later stage of sim-
ulation, when the crack tip approaches to the boundary of
specimen, the stress fields become complex with the reflection of
stress wave, consequently it will result to higher fluctuations of
the measured crosshead loading force. Moreover, in numerical
simulation, the crack advances a fixed spatial spacing in one or sev-
eral time steps, which is a discontinuous growth pattern, and this
may attribute the fluctuation of load-deflection curve. Despite the
dynamic effect or other numerical effects of the simulations, from
Fig. 8(a) and (b), one can find that the overall trend of the
numerical results fit well with the experimental data. In Fig. 9,
we juxtapose the experimental crack morphology with that of

Fig. 8. Comparison of dynamic fracture history with experiment and simulation. (a) the comparison of experiment with various Gurson models; (b) the comparison of
experiment with GTN and SM-Gurson.

Fig. 9. Final fracture morphology of experimental (Simonsen and Tornqvist, 2004) and numerical simulation.
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simulated crack. Again one may find that the simulation result
compare well with the experimental result.

In the simulation of through-thickness crack growth, the stress
distribution in transversal surface also affects the process of crack
evolution. Therefore, there must be sufficient quadrature points
along the thick direction of the plate in meshfree discretization.
In this work each background element is integrated with
2� 2� 2 quadrature points. Considering a zone between two
fibers (the yellow circle zone in Fig. 10), if one fiber consists of 3

particles, there are 4 layers quadrature points along the thickness
direction. Zooming into the tip of pre-set crack, one may find the
detailed deformation morphology nearby the crack tip, and it is
clear that plastic tension instability or necking phenomenon occurs
at the crack tip, see Fig. 10, which is similar to the experimental
observation shown in Fig. 9. Although more particles in the
thickness direction may raise the computation accuracy, computa-
tional efficiency will then be affected as well in terms of slow
computational speed and increasing computational cost. For all

Fig. 10. Necking phenomenon at the pre-crack tip: black points are meshfree particles, and red points are quadrature points. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Time sequence of the tearing test based on the M-Gurson model.
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simulations reported in this paper, each fiber contains three
particles.

The final fracture configurations of the specimen in both exper-
imental and numerical simulations are juxtaposed in Fig. 9. One
may find that they are compared well. In Fig. 9, the color contour
on numerical specimen is the effective plastic strain, and one can
find that high plastic strain distribution remains on the crack sur-
face, which is the typical feature of ductile fracture.

In Fig. 11, we display a time sequence of a tearing test based on
M-Gurson model. To compare the differences among the various
Gurson’s models, in Fig. 12, we juxtapose the numerical results
(at t ¼ 14 ms) for three different Gurson’s models, e.g. GTN model,
the M-Gurson model, and the SM-Gurson model, and we compare
them with the effective plastic strain distribution. One may find
that (1) under the same loading condition, the SM-Gurson model
predicts the most intense plastic strain around crack surfaces,
and the GTN model predicts the least plastic strain. On the other
hand, GTN model predicts the longest crack growth, the M-Gurson
model predicts almost the same amount crack growth as GTN
model does, whereas the SM-Gurson model predicts a much short-
er crack growth than the previous two models.

It is important to note that not only we use this test to deter-
mine constitutive parameters, not also to determine the threshold
damage value Dc for onset fracture in the plate structure, which

ensures that the postulated fracture criterion is supported by
experiments.

6.2. Simulation I: crack propagation in a stiffened plate

The previous simulation calibrates material constants of the M-
Gurson model for Normal Strength steel with in-plate tear experi-
ment. However, realistic fracture phenomena in industry are in-
duced by impact/contact, such as ship grounding (Simonsen,
1997). And the plate structure is normally stiffened to increase
both stiffness and overall strength. The simulation of a plate with
two flat bar stiffeners grounding with a rigid cone has been carried
out in this work. This simulation is a simplified version of ship
grounding problem discussed by Simonsen (1997), and it can
investigate the abilities of the M-Gurson model and the proposed
3D parametric visibility condition algorithm in the realistic con-
tact/damage engineering problem. The specimen is made of a
5 mm thickness plate, and there are two different configurations
of the cone-shape rock/plate interaction as shown in Fig. 13(a)
and (b). In Simulation I, we first consider the configuration of
cone-shape rock/plate shown in Fig. 13(a). Here the rigid cone im-
pacts the plate structure with constant velocity (40 m/s,20 m/s),
the two edges of the plate that are perpendicular to the impacted
edge are prescribed as fixed displacement boundary. There are

Fig. 12. Plastic strain distribution for different Gurson models: (a) GTN model, (b) M-Gurson model, and (c) SM-Gurson model.

Fig. 13. The configuration of simulations: (a) Simulation I, and (b) Simulation II.
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25755 nodes and 134400 quadrature points in meshfree simula-
tion, and there are total 3 layers along thickness dimension, i.e.,
one fiber is composed of three particles. The stiffened plate is Nor-
mal Strength steel with material constants listed in Table 1. This
paper does not discuss the 3D contact algorithm, which is a 3D
extension from the 2D contact algorithm by Ren and Li (2010).

The time sequences of the dynamic fracture process are dis-
played in Fig. 14 with effective stress as background color contour.
From these time sequence plots, one can find that a high stress
zone is moving with contact region. With the propagation of crack,
the stress at the earlier crack surface is released. This phenomenon
illustrates that free boundary condition is automatically formed at

Fig. 14. The fracture history with effective stress as background contour.

Fig. 15. The detailed deformation morphology nearby crack surface.
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crack surface, which is the crucial point in simulation of crack
propagation. And it indicates the perfect performance of proposed
3D crack propagation algorithm. Because of strengthening pro-
vided by the flat bar stiffeners under the plate, we can find that
most of deformation is limited in a small region. Fig. 15 shows
the detailed fracture morphology with effective plastic strain back-
ground and one can find dramatic plastic strain distribution in the
region between stiffeners, that means most of the impact energy is
absorbed inside this region, hence the stiffeners can enhance the
strength of the plate structure.

From Fig. 14, one can find high stress spots at crack surface,
where the high stress status is not released with time. Zoom in
crack surface, the detailed deformation morphology are shown in
Fig. 15(b) and (c) with effective stress and effective plastic strain
as background color respectively. From Fig. 15, one can find
distinct flexural deformation nearby crack surface, the high stress
zone is located at where large flexural bending deformation occurs.
In the smooth deformed part, the stress is released whereas the
effective plastic strain is still high in this region. The flexural
deformation phenomenon induced by fracture process, which has
been difficult to capture with FEM, has effectively captured by
the meshfree simulation.

6.3. Simulation II: crack propagation across stiffeners

Simulation I presents numerical results when the crack propa-
gates in the plate area between two stiffeners. However the realis-
tic fracture process normally will go across stiffeners such as ship
ground (Simonsen, 1997), which makes crack propagation process
more complex. This simulation implements a simulation of crack
propagation across stiffeners. The specimen configuration and
numerical model are the same as Simulation I, except that the
impact loading is imposed at the lateral side as shown in
Fig. 13(b). The two edges of the plate that are perpendicular to
the impacted edge are prescribed as the fixed displacement bound-
ary. The time sequences of dynamic fracture process are illustrated
in Fig. 16 with effective plastic strain contour as background color.
With the impact of rigid cone object, the microscopic voids starts
to grow, and once the increasing void volume fraction reaches
the threshold, crack is set to grow and to propagate as shown in
Fig. 16(a). The stiffener can enhance the fracture strength of struc-
ture. To observe this, one can find that the deformation of the plate
increase significantly when the rigid cone object passes through
the stiffener as shown in Fig. 16(b). After the crack cuts through
the stiffener, the extra restriction from the stiffener still remains

Fig. 16. Fracture history with the effective strain as background contour.
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against the crack propagation, and one can find that the stiffener
and the plate keep deforming while the rigid cone cuts through
the structure as shown in Fig. 16(c). When the crack tip is far away
from the stiffener, the strengthen enhancement due to stiffener
vanishes, and the crack propagates the same way as that in Exam-
ple I as shown in Fig. 16(d). The detailed damage morphology near
a stiffner is shown in Fig. 17(a), where one can find that the plastic
strain is very high not only on the stiffener but also on the plate,
which means that this zone can absorb large amount of impact en-
ergy. The complex flexure deformation pattern has been captured
by the meshfree simulation. The impact force on the plate during
the cutting motion of the cone is recorded and is shown in
Fig. 18, where one can find the stiffener will induce higher contact
force when the crack goes through it, and this effect will not disap-
pear immediately until the crack tip is far away from stiffener, it
reveals that the stiffener can increase the strength of plate
structure significantly. Comparing Fig. 17(b) with (a), one may find
that the stress is relaxed along the opening crack surface, which
indicates that the 3D visibility condition works, because it does
generate a traction-free boundary.

Fig. 19. Pressurized thin cylinder problem.

Fig. 17. (a) The detail fracture morphology with background of effective strain, and (b) the fracture morphology with background of effective stress.

Fig. 18. The contact force history.
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The Gurson models adopted in the above simulations are
known having mesh-dependency to fracture process. However,
the imposed boundary and loading conditions of these examples
force the crack path going straight, therefore the simulated crack
path result seems to be insensitive to the particle density.

6.4. Simulation III: crack propagation in thin cylinder with Johnson–
Cook model

Simulation I and II have demonstrated how to use the proposed
method to simulate ductile crack propagation in flat plate struc-
tures. In this example, we employ the same methodology to simu-
late ductile crack propagation in a cylindrical shell structure as
shown in Fig. 19, in order to validate the proposed 3D crack growth
algorithm for shell structures.

The thin-walled shell structure is a capped cylinder that has
0.68 m in axial length, 0.226 m of mean radius, and a thickness
of 0.04 m. In order to initiate fracture, a prescribed crack with
length 0.04 m is embedded at the middle cylindrical shell shown
as the red line in Fig. 19(a). As described above, the pre-crack is
a small slit that is through the thickness of the shell. To drive crack
growth, a constant internal pressure (3:2� 108Pa) is exerted at the
inner surface of the cylinder. The whole structure is discretized by
uniformly distributed 3468 particles and 18464 Gauss points. As
shown in Fig. 19(b), there are three layers of particles along thick-
ness direction of cylinder, i.e., one fiber is composed of three parti-
cles in this simulation. The cylinder is made of a low alloy steel
modeled by using the Johnson-Cook model. The material constants
of the Johnson–Cook model is taken from Batra and Kim (1992),
which are listed in Table 2. In the ductile fracture simulation, we
set the critical damage value at Dc ¼ 0:1, at which the macro-crack
is set to grow.

The time sequence of this simulation is displayed in Fig. 20
with effective stress contour as the color background. In this sim-
ulation, an internal pressure is distributed at the inner surface of
the thin cylinder, therefore the cylinder keeps expanding.
Fig. 20(a) shows the stress state before the cylinder bursted. In
Fig. 20(b), the preset crack starts to propagate. Fig. 20(c) and
(d) illustrate the crack propagation process. At this time, the sep-
aration of crack surface is very small, to show crack path clearly,
the crack path is marked with black dots. With the expansion of
cylinder, the separation of crack surface increases as shown in

Fig. 20(e) and (f). During this process, the internal pressure main-
tains a constant value at the inner surface of the cylinder, which
may not be realistic; nevertheless we still find stress releasing
along crack surface. The Johnson–Cook model is a thermo-
mechanical coupling constitutive model, which takes into account
the local temperature rise due to the conversion of plastic work
into heat. The temperature and effective plastic strain distribution
are shown in Fig. 21. One can find that the local temperature
increases at the high plastic zone. From Figs. 21 and 20(b), one
can find the crack propagates along about a 45� degree angle
from the circumference (hoop) direction at the beginning, it is an-
other indication of a shear dominated fracture. One may find that
the crack surface shows zig–zag pattern, and this is the main fea-
ture of ductile fracture as well. The numerical results shows that
the proposed methods can simulate crack propagation in cylindric
surface effectively.

This example is significant in two aspects. First, the Johnson–
Cook model is not only rate-dependent but also has thermo-
mechanical coupling, and its constitutive parameters will bring
the internal length scale into the phenomenological plasticity
model. Therefore, mathematically the ductile fracture problem in
this example is well-posed, and the same is true in solution of
strain localization. For the computational standpoint, the simula-
tion solution of this example is not mesh-dependent, or particle
density dependent; as long as one can resolve the intrinsic length
scale, the numerical solution will converge to a fixed solution or
limit. This is in sharp contrast with the mesh-dependent or
mesh-sensitive nature of the various Gurson models discussed in
previous sections. Therefore, it is meaningful to demonstrate the
capability and the validity of the proposed method to deal with a
general well-posed ductile fracture problem.

7. Discussions

The simulation of ductile fracture in 3D engineering structures
is still an ongoing researching subject. In this paper we have pre-
sented analytical formulas, constitutive modeling, and computa-
tional algorithm to predict crack propagation in large scale plate
structures. The numerical results illustrate that the proposed
method can successfully simulate crack growth in plate structures
undergoing finite deformation and large plastic yielding.

The key technical ingredient in meshfree fracture simulation is
how to describe evolving crack surface in computation domain. In
this paper, by considering crack propagation in plate structure, we
present a detailed crack surface approximation in plate and shell
structures, in which the crack surface is represented by an
evolving, triangle-piece-wise surface mesh based on the crack
growth history. The particle split algorithm is discussed as well,
which assures the conservation of mass, momentum and energy
during the numerical crack growth. A 3D parametric visibility con-
dition algorithm is proposed to update the meshfree interpolation
field. It adjusts the local connectivity map by testing the intersec-
tion condition between crack surface triangle facets and line
segment between two particles. Any particle line connection that
intersects with triangle facet will results the cut-off from the local
connectivity map for specified particles. To implement the rate-
dependent constitutive law with suitable damage characterization
and crack growth criterion is another challenge for 3D ductile frac-
ture simulations. We briefly touched upon the subject by including
a simulation example based the rate-dependent Johnson–Cook
model.

In this work, the constitutive update formulas for finite inelastic
deformation with explicit integration are derived for various Gur-
son models and the Johnson–Cook model. Based on in-plane
mode-I fracture experiment, the material parameters for various

Table 2
Material constants of Johnson-cook model for low alloy steel. *The parameters of the
Johnson-cook damage model is from Borvik et al. (2001) for Weldox 460E steel.

Parameter Value Definition

E 200 GPa Young’s modulus
m 0.3 Poisson’s ratio
q 7830 kg m�3 mass density
A 455 MPa Yield stress
B 237 MPa Strain hardening
C 0.006
n 0.37 Strain hardening index
_e0 1000 s�1 Reference strain rate
m 1.0 Temperature softening
Cp 448 J kg�1 K�1 Specific heat

a 11:2� 10�6 K�1 Thermal expansion coefficient

v 0.9 Fraction of plastic work to heat
j 38 Wm�1 K Thermal conductivity

T0 300 K Room temperature
Tm 1800 K Melting temperature
D�1 0.0705 Damage parameter
D2 1.732 Damage parameter
D3 �0.54 Damage parameter
D4 �0.015 Damage parameter
D5 0.0 Damage parameter
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Gurson-type models are calibrated with experimental data, and
their performance are studied and compared. Finally, simulations
are carried out to validate the proposed crack growth algorithm
for a stiffened plate structures and thin cylindrical shell structures.
The results indicate that the proposed method can effectively

predict and capture dynamic fracture process in engineering
structures.

Although the numerical simulation has shown that the pro-
posed method works well, there are still many work remained.
First, the proposed model uses 3D RKPM meshfree approximation

Fig. 20. Time sequence of crack propagation in thin cylinder with effective stress back ground.
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to simulate ductile fracture in shell structures. To make it more
efficient and economical in computations, one may need to con-
struct the meshfree shape function for shell structures e.g. Rabczuk
and Areias (2000). Second, in this work we only discuss how to
grow through thickness cracks. In order to simulate arbitrary
three-dimensional crack growth, which is especially important
for ductile fracture, we have to develop a general 3D crack surface
approximation including a full 3D parametric visibility condition
algorithm that can adapt to arbitrary 3D crack surface geometry
to simulate arbitrary crack propagation in three-dimensional
solids.
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Appendix A. Stress update

A rate form constitutive equation is used in constitutive update,

r
r
¼ C : de ¼ C : ðd� dpÞ ¼ re � C : dp ð71Þ

where C is material constant tensor:

Cijkl ¼ 2Gdikdjl � ðK � 2G=3Þdijdkl ð72Þ

G and K are engineering shear and bulk modules.
To solve the plastic flow function at time tnþ1, an elastic trial

stress is constructed that is accomplished by using the Hughes–
Winget formula (Hughes and Winget, 1980) to take into account
the effect of finite rotation,

re
nþ1 ¼ Q nþ1rnQ T

nþ1 þ DtC : dnþ1 ð73Þ

Q nþ1 ¼ Iþ ðI� 0:5wnþ1Þ�1wnþ1 ð74Þ

Cauchy stress tensor r can be decomposed from the definitions of
mean stress and effective stress:

r ¼ rmIþ 2
3
ren̂ ð75Þ

where

n̂ ¼ 3
2re

s ð76Þ

The plastic flow rule gives,

dp ¼ _k
@U
@r
¼ _k

1
3
@U
@rm

Iþ @U
@re

n̂
	 


ð77Þ

Define:

Dm ¼ _k
@U
@rm

ð78Þ

De ¼ _k
@U
@re

ð79Þ

The plastic part rate of deformation can be decomposed as:

dp ¼ 1
3

DmIþ Den̂ ð80Þ

Substituting Eq. (80) back into Eq. (74), the stress relaxation from
the trial stress is given by:

rnþ1 ¼ re
nþ1 � KDtDmI� 2GDtDen̂nþ1 ð81Þ

The mean and effective components of Eq. (75) are:

rm ¼ re
m � DtKDm ð82Þ

re ¼ re
e � DtKDe ð83Þ

The time integration schedule assume constant Dm and De dur-
ing a time step, which is consistent with the global, explicit inte-
gration method.

Eq. (81) shows that the relaxation in the deviatoric stress space
is along n̂nþ1, which can be determined from the trial stress tensor:

n̂nþ1 ¼
3

2re
e

se ð84Þ

where re
e and se are effective stress, and deviatoric stress from re

nþ1.
Thereby the stress update Eq. (81)is determined by two unknown
variables Dm and De.

The plastic flow, Eq. (43), are governed by the microscopic yield
stress rM of the matrix material. The matrix material properties in-
clude Young’s modulus E, its initial yield stress is r0

M , and material
hardening law ep

MðrMÞ.
The condition that macroscopic plastic work equates to the en-

ergy dissipated in the matrix material during plastic deformation
may be expressed as follows,

ð1� f ÞrM _ep
M ¼ r : dp ð85Þ

Fig. 21. The effective plastic strain and temperature distribution morphology.
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From the above equation, we can obtain the plastic strain rate in
matrix material,

_ep
M ¼

r : dp

ð1� f ÞrM
¼ rmDm þ 1:5reDe

ð1� f ÞrM
ð86Þ

The plastic flow function shows that the two internal variables ep
M

and f determine the damage state of the material. Based on Eqs.
(44), (46), (51) and (86), the time integration of plastic strain can
be found as,

ep
M;nþ1 ¼ ep

M;n þ Dt _ep
M ð87Þ

fnþ1 ¼ fn þ Dt _f ð88Þ

The definitions of _ep
M and _f show that they are related to two un-

known variables: Dm and De as well as the stress update in Eq. (81).
In this work, we use the central difference method in explicit

time integration. Given stress state rn at time step n, denote the
time step as Dt, the rate of deformation D can be calculated by
using Eq. (4). To determine the stress state rnþ1 at time step
nþ 1, Eq. (81) indicates that the two unknown Dm and De must
be solved simultaneously.

Here Dm and De must satisfy the self-relation in Eqs. (78) and
(79), and the plastic flow function Eq. (43):

f1ðDm;DeÞ ¼ Dm
@U
@re
þ De

@U
@rm

¼ 0 ð89Þ

f1ðDm;DeÞ ¼ UðDm;DeÞ ¼ 0 ð90Þ

To solve above equations, an iterative Newton method is used, the
roots (Dm and De) are determined in a predict-correct iteration by
improving the initial, predicted estimate (Dk

m and Dk
e):

Dkþ1
m ¼ Dk

m þ DDk
m ð91Þ

Dkþ1
e ¼ Dk

e þ DDk
e ð92Þ

where k is iterative counter. The correction (DDk
m;DDk

e) is calculated
by solving the following equations of the first-order Taylor expan-
sion of f1 and f2,

f kþ1
1 ¼ f k

1 þ
@f k

1

@Dm
DDk

m þ
@f k

1

@De
DDk

e ¼ 0 ð93Þ

f kþ1
2 ¼ f k

2 þ
@f k

2

@Dm
DDk

m þ
@f k

2

@De
DDk

e ¼ 0 ð94Þ

Appendix B. Derivatives of damage parameters

For the plastic-damage flow rule, the original Gurson model has,

@f �ðf Þ
@f

¼ 1 ð95Þ

whereas for other Gurson models have,

@f �ðf Þ
@f

¼
1 f 6 fc
1=q1�fc

ff�fc
f > fc

(
ð96Þ

To be consistent with the expression in Simonsen and Li (2004)
(Appendices A and B), we first define the following notations,

H1 ¼ ep
M

H2 ¼ f

h1 ¼ _ep
M

h2 ¼ _f

ð97Þ

Different Gurson models use different formulas to calculate _f , con-
sequently the derivations of h2 are different as well.

For the original Gurson model, GTN model and SM-Gurson
model, the derivatives of h2 are:

@h2

@H1
¼ AN

@h1

@H1
� ðH1 � eNÞh1

s2
N

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
@h2

@H2
¼ g�Dm þ AN

@h1

@H2

zfflfflfflffl}|fflfflfflffl{
þkwxDe

@h2

@rm
¼ AN

@h1

@rm

zfflfflfflffl}|fflfflfflffl{
@h2

@re
¼ AN

@h1

@re

zfflfflffl}|fflfflffl{
@h2

@Dm
¼ g1� f þ AN

@h1

@Dm

zfflfflfflffl}|fflfflfflffl{
@h2

@De
¼ AN

@h1

@De

zfflfflffl}|fflfflffl{
þkwfx

ð98Þ

Here on the left side of Eq. (98), the terms with over scripteindicate
that these terms are present in the original Gurson model, GTN
model and SM-Gurson model; similarly, the terms with over-scriptz}|{means that these terms are present in GTN model and SM-Gur-
son model, and the terms with overline only present in SM-Gurson
model. For example, there is no term associated with the original
Gurson model for the derivatives, @h2

@H1
, @h2
@rm

, @h2
@re

, and @h2
@De

, these deriva-
tive of h2 equals zero for original Gurson model.

For the M-Gurson model, _f s is given in Eq. (52), and the deriva-
tives of h2 are given as follows,

@h2

@H1
¼AN

@h1

@H1
�ðH1�eNÞh1

s2
N

� �
;
@h2

@H2
¼�DmþAN

@h1

@H2
þkwXðTÞx0De

@h2

@rm
¼

AN
@h1
@rm

T < T1

AN
@h1
@rm
þ 1

reðT1�T2Þ
kwfx0De T16 T6 T2

AN
@h1
@rm

T > T2

8>><>>:
@h2

@re
¼

AN
@h1
@re

T < T1

AN
@h1
@re
þ rm

r2
e ðT1�T2Þ

kwfx0De T16 T 6 T2

AN
@h1
@re

T > T2

8>>><>>>:
@h2

@Dm
¼1� f þAN

@h1

@Dm

@h2

@De
¼AN

@h1

@De
þkwfXðTÞx0 ð99Þ

The other variable derivatives in Eq. (52) can be found in Simonsen
and Li (2004).
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