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In this paper, we present an atomistic-based interphase zone model (AIZM), discuss its physical founda-
tion, and apply it to simulate fractures at small scales. The main technical ingredients of the atomistic-
based multiscale finite element method are: (1) a colloidal crystal model to describe material interface
degradation including slip planes, grain boundaries, cracks, and inhomogeneities; (2) implementation
of the reduced integration and hour-glass model control technique to avoid locking inside the interphase
element, and (3) introduction of a novel concept of ‘‘element stacking fault energy’’, which can be utilized
in simulations to distinguish ductile and brittle failures at small scales. In particular, AIZM provides an
interface description that is consistent with the bulk material properties, and it can capture microstruc-
ture-based mixed-mode interfacial fracture automatically. The method may provide a mesoscale solution
for polycrystalline solids by bridging the gap between fine scale molecular dynamics and macroscale
continum dynamics.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction oped, notably the multiscale analysis performed by Horstemeyer
Fracture is intrinsically a multiscale phenomenon. The phenom-
enological fracture theory is based on the hypothesis of surface
separation or decohesion, which has three independent modes,
e.g. Mode-I, II, and III (see Fig. 1 (a)). However, in engineering appli-
cations, one often encounter combinations of multiple modes at a
single crack site, which we call as the mixed mode fracture. Even
though the void growth at mesoscale has been identified as a
source for some ductile fractures, cleavage type of surface separa-
tion is still regarded as the universal kinematic cracking mecha-
nism when we consider macroscopic fracture. At atomic scale,
material failure is characterized as individual atomistic bond
breaking, switching (sliding), and interaction transition, e.g. cova-
lent bond becomes colloidal interaction. Hence, cleavage fracture
is hardly the only failure mode at small scale. As a matter of fact,
one may encounter complex and massive dislocation motions, crit-
ical void growth, vacancy formation, grain boundary evolution,
localized zigzag surface separation or detachment, intervoid liga-
ment and complex microstructure network, etc. (see [45]). Some
of these microscale fracture features may be seen from the result
of a simple atomistic simulation shown in Fig. 1(b).

How to relate fracture on these two very different scales and to
predict macroscale fracture based on microscale or atomistic scale
information is the challenge of contemporary multiscale material
science. Recently, several multiscale methods have been devel-
ll rights reserved.
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et al. [17], the bridging scale method [34], the con-current elec-
tron-to-finite element method [25], and the latest multiscale field
theory [8,9,21]. Within the realm of continuum mechanics, there
have been some successful methods in prediction of macroscale
fracture, one of which is the cohesive zone model (CZM) e.g.
[10,27,47,49]. It has achieved much success and popularity in past
two decades. However, the conventional cohesive zone model has
some limitations:

1. The traction-separation cohesive law adopted is empirical in
CZM, and they may be restricted to the condition of small-scale
yielding [2,12]. In other words, the conventional cohesive zone
model only is suitable for simulations of brittle fractures or
quasi-brittle fractures at macroscale.

2. For conventional cohesive zone model to resolve the physical
length scale, the size of finite element has to be smaller than
the physical cohesive zone length scale i.e. ‘fem 6 ‘czm. Fail to
satisfy such requirement has been the source of mesh-sensitiv-
ity of CZM [13].

3. In CZM, the interface cohesive relation is also size-independent.
When the defect size becomes very small, say below sub-
micron scale, the empirical cohesive law may reach to its limit,
because small-scale plasticity is highly size-dependent.

4. In conventional cohesive zone model, the bulk and interface
constitutive relations are un-related, therefore in practical engi-
neering applications, it is often difficult to determine the cohe-
sive zone parameter such that the numerical simulation can fit
well with experimental results.
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Fig. 1. (a) Macroscale cleavage fracture mode and (b) atomistic scale fracture failure.
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5. In the cohesive zone model, the macroscale definition of
fracture is adopted i.e. fracture is defined as cleavage of sur-
face separation, and the empirical cohesive law either
corresponds to mode-I fracture or to shear mode fracture (mode
II or III). A major problem of such approach is that cohesive
potentials for different crack modes are difficult to be
related, which has been the predicament of requiring an
independent criterion for mixed-mode fracture. In crystalline
solids, ideally, there should be only one intrinsic fracture
criterion that ought be an essential part of bulk material
constitutive relation.

6. In the cohesive zone model, there are two inter-element
approaches: (a) the ubiquitous interface approach, in which
the boundaries of all inter-elements are taken to be cohesive
surface [49], and (b) crack tip approach, in which the cohesive
zone is only placed in front of the crack tip [31] (see Fig. 2). Both
approaches have their drawbacks: the former alters realistic
wave propagation speed, and latter does not have time continu-
ity in cohesive zone formation. Moreover in order to minimize
the effect of cohesive zone on bulk elastic stiffness, the element
size should be larger than the length scale of the cohesive zone,
which conflicts with the requirement that ‘fem 6 ‘czm in order to
capture size effect of fracture.

To fundamentally resolve all these issues, we need to develop a
multiscale CZM in materials science. Recently, there have been dis-
cussions in the literature that the cohesive zone model may be sal-
vaged by deriving the cohesive potential from first principle, which
has been reflected in [6,24,30]. In [6] the authors have used formal
asymptotic and re-normalization group techniques to obtain a
coarse-grain or effective cohesive potential for interfacial cohesive
Fig. 2. Interelement set-up for the conventional cohesive zone model: (a) the
ubiquitous approach, and (b) the crack tip approach.
zone. It may be noted that [6] only provide interface normal trac-
tion/opening displacement potential, and they did not discuss the
shear traction/tangential displacement potential.

To further advance the research on multiscale modeling and
simulation of material inhomogeneity, the present authors have
proposed a multiscale cohesive zone model (MCZM) in [50,33],
which takes a fundamentally different approach on modeling frac-
ture. First instead of viewing the cohesive zone as a virtual inter-
face entity, we consider the cohesive zone as a finite thickness
interphase zone, in which the deformation, stress, and strain fields
are non-uniform. Second, we employ a colloidal crystal analogy
to derive the atomistic potential inside the interphase zone, and
third, we apply the Cauchy–Born rule to find the effective stress
tensor inside the interphase zone.

In this work, we present a systematic study of an atomic-based
interphase zone model that is derived from the early multiscale
cohesive zone model. In this paper, we have not only cleaned the
previous formulation, but also have made the following progress,

1. Provide analysis and justification of the colloidal crystal model
that is used to obtain atomistic potential inside interphase
elements.

2. Use the Hill–Mandel homogenization method to link the atom-
istic potential inside the interphase element with the interface
traction-separation relation.

3. Use the reduced integration and hour-glass model control tech-
niques to avoid distortion related locking inside interphase
elements.

4. Use a novel concept of ‘‘element stacking fault energy’’ to study
ductile and brittle fracture at small scales.

5. Solve mixed mode fracture problems.
6. Use the multi-body embedded atom potential in AIZM

computations.
7. Carry out three-dimensional simulations of fractures at small

scale.

This paper is organized into seven sections: in Section 2 we
shall discuss the kinematics of AIZM model, its Galerkin weak for-
mulation, and its finite element implementation; in Section 3 we
shall construct the multiscale constitutive models for both bulk
elements and interphase elements. In Section 4, we shall discuss
how to integrate Galerkin weak form inside the interphase ele-
ment. In particular, we shall discuss how to avoid distortion in-
duced locking in interphase elements and how to link atomistic
potential inside the interphase element with the traction/separa-
tion relation along the interface. Section 5 is focused on discussion
of element stacking fault energy. In Section 6, six examples of
numerical simulations are presented, and finally we shall conclude
this study in Section 7.



Fig. 4. Illustration of conventional cohesive finite element method.
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2. Atomistic multiscale finite element method

Before proceeding to discussion of the AIZM method, we first
review two relevant concepts: (1) the Cauchy continuum, and (2)
phenomenological cohesive zone model.

2.1. Cauchy continuum

The Cauchy continuum is referred to as a continuum whose
deformation is uniform or homogeneous. In this case, the potential
energy for a crystalline solid may be calculated by atomistic
potential of underline lattice structure based on the so-called
Cauchy–Born rule (see Fig. 3)(b). The so-called Cauchy–Born rule
is referred to the following procedure: If the deformation in a local
region, say in an element, is uniform, the deformation gradient in

the region, Fe ¼
@x
@X
jX2Xe

; e ¼ 1; . . . ;nelem, will be constant. Hence

an arbitrarily deformed bond vector ri in a unit cell of a given
element can be found by mapping the undeformed bond vector
Ri to the deformed vector,

ri ¼ FeRi; i ¼ 1;2; . . . ;nb; ð1Þ

where nb is the total number of bonds in a unit cell. Furthermore, if
the deformation in the eth element is uniform, we can calculate the
elastic strain energy density in the eth element by calculating the
strain energy density of an arbitrary unit cell inside the element,

We ¼
1
Xu

0

Xnb

i¼1

/ðriÞ ¼
1
Xu

0

Xnb

i¼1

/ðFeRiÞ ¼WeðFeÞ; ð2Þ

where ri ¼ jrij. Note that the superscript u indicates the unit cell,
and Xu

0 is the volume of the unit cell in the referential configuration,
/ðriÞ is the atomistic potential, and ri; i ¼ 1;2; . . . ;nb are the current
bond lengths in a unit cell, where the bond vector ri is the distance
vector between the center atom in the unit cell to one of the atoms
located at a vertex of the unit cell.

Therefore the deformed bond length is a function of deforma-
tion gradient of the element that the unit cell belongs to, i.e.
ri ¼ jrij ¼ jFe � Rij ¼ riðFeÞ. Hence, the strain energy density inside
each element is the function of the deformation gradient of that
element, which can be evaluated at any point inside the element.
Consequently, constitutive relations for the bulk medium can be
established. For instance, the second Piola–Kirchhoff stress tensor
can be obtained in following form,

SðCÞ ¼ 1
Xu

0

Xnb

i¼1

/0ðriÞ
@ri

@C
¼ 1

Xu
0

Xnb

i¼1

@/
@ri

Ri � Ri

ri
; ð3Þ

where C ¼ FT
e � Fe is the right Cauchy–Green tensor. Similarly, we

can find the first Piola–Kirchhoff stress tensor and Cauchy stress
tensor in each bulk element as
Fig. 3. (a) Kinematic assumption, a
P¼ FeS¼ 1
Xu

0

Xnb

i¼1

@/
@ri

ri�Ri

ri
; and r¼ J�1FeSFT

e ¼
1
Xu

Xnb

i¼1

@/
@ri

ri� ri

ri
:

ð4Þ

The above Cauchy–Born elasticity formulation has been used exten-
sively in many multiscale finite element simulations, when local
deformation is considered being uniform.

2.2. Phenomenological cohesive zone model

For the purpose of comparison, we first briefly review the
conventional cohesive finite element method. Consider a solid
subjected to inhomogeneous deformation that is caused by dis-
placement discontinuity as shown in Fig. 4. In engineering applica-
tions, this type of strong discontinuities is the characterization of
fracture or dislocations. Initially as a single connected domain, X0,
the body is broken into two disjointed pieces by a cleavage crack.
In the referential configuration, the fracture surface, or the plane
of division, is denoted as C0, and it divides the body into two halves:
X0 ¼ Xþ0

S
X�0 . After the deformation u, the body arrives at its de-

formed or current configuration, X (see Fig. 4). We use x denoting
the spatial position of a material point X at the time t, i.e.

u : X0 ! X; x ¼ uðXÞ ¼ uþ X:

Two crack surfaces now move to Cþ and C� respectively, and the
two deformed halves are denoted by Xþ and X�. The strong form
of the governing equation of the continuum, i.e. the equation of mo-
tion, can be written as,

DIVPþ q0b ¼ q0 €u in X�0 ; ð5Þ
u ¼ u on @uX0; ð6Þ
P �N ¼ T on @tX0; ð7Þ
Pþ �N þ þ P� �N � ¼ 0 on C�0 ; ð8Þ
nd (b) the Cauchy–Born rule.
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where b is the body force, q0 is the mass density in referential
configuration. In above equations, the symbol DIV is material
divergence operator, i.e. rX; N is the normal vector of surfaces
including the cohesive surface, t is the prescribed traction on
@tX0. It is assumed that the traction is continuous along the
cohesive surface, C0, see Eq. (8). For domain boundaries, we
denote

@uX0 ¼ @uXþ0
[
@uX�0 and @tX0 ¼ @tX

þ
0

[
@tX

�
0 ; ð9Þ

where @uX is the portion of the boundaries where the displace-
ments are prescribed, and @tX is the portion of the boundaries
where the traction is prescribed.

In Eqs. (5)–(8), P is the first Piola–Kirchhoff stress tensor.
Considering the constitutive relation of a hyperelastic material,
one may find the first Piola–Kirchhoff stress by differentiating
the elastic energy density W with respect to deformation
gradient,

P ¼ @W
@F

:

Following the standard procedure, we can then derive the Galerkin
weak formulation for Eqs. (5)–(8):Z

X�0

q0 €u � dudV þ
Z

X�0

P : dFdV þ
Z

X�0

q0b � dudV

¼
Z
@tX

�
0

T � dudSþ
Z

C0

ðP �N Þ � dðuþ �u�ÞdS: ð10Þ

The last term in the above equation is the virtual work done by the
cohesive traction force across the plane of discontinuity. If we de-
note the interface displacement jump as:

D ¼ uþ �u� ð11Þ

then we can re-write the last term as:Z
C0

ðP �N Þ � dðuþ �u�ÞdS ¼
Z

C0

Tcohe � dDdS; ð12Þ

where Tcohe denotes the cohesive traction. However, in the theory of
phenomenological cohesive zone model, the interface cohesive law
is not defined as the projection of the stress, i.e.

Tcohe : – P �N ð13Þ

but it is prescribed by an additional interface cohesive potential
WsðDÞ,

Tcohe :¼ @Ws

@D
: ð14Þ

The empirical cohesive surface potential, WsðDÞ, is an independent
interface energy potential, which is unrelated to the bulk material
property. Moreover the cohesive element between two bulk ele-
ments is in fact a zero-thickness virtual element, which has no vol-
ume or area associated with it. It has been speculated that the
incompatibility between the interface modeling and bulk material
modeling may be one of the sources that makes the conventional
cohesive zone model solution highly mesh-sensitive or mesh-
dependent [13].

Once WsðDÞ is chosen, one can calculate cohesive traction along
the bulk element boundary. Since WsðDÞ is independent from bulk
material properties, one may have to make extra effort to select
parameters of WsðDÞ, in order to make it consistent with constitu-
tive relations in the bulk element. Often times, the parameter
selection is difficult due to the limitation of fixed functional form
of empirical cohesive laws, which do not take into account of com-
plex size effect at small scale.
2.3. Kinematic assumption of AIZM model

In this paper, we present an atomistic-based finite element
interphase zone model—a method that is fundamentally different
from the conventional cohesive zone model in following ways:

1. Bulk elements undergo uniform deformation, and all the non-
uniform deformation is confined inside the interphase ele-
ments, i.e. the red region in Fig. 4(a).

2. Fracture is no longer deemed solely as cleavage surface or inter-
face separation but material failure due to a general atomistic
debonding in a finite volume.

3. The local material strength is not defined as the threshold of the
surface separation but the critical state of the constitutive rela-
tion of bulk materials.

It may be noted that traditionally the material strength is
considered as the critical state mechanical property of bulk mate-
rials, and the use of surface cohesion as the measure of material
strength was made popular only after 1960s.

Since our goal is to predict material behaviors at mesoscale, a
central question is then: what is the essential microstructure of
defects at mesoscale?

For crystalline materials, such microstructure is often associ-
ated with persistent slip bands, grain boundaries, twin boundaries,
stacking faults, etc. Based on this observation, we adopt the follow-
ing kinematic assumptions.

The deformation inside every bulk element is uniform or homoge-
neous, whereas all defect caused non-uniform deformations are
confined inside the interphase element, which is a narrow finite thick-
ness strip that is either along the slip planes, grain boundaries, or twin
boundaries. This kinematic assumption is really a reminiscence of
the kinematic assumption of crystal plasticity [44], which has been
widely accepted and recognized as one of the best meso-mechanics
models for polycrystaline solids. Similar kinematics assumption is
adopted in the Peierls–Nabarro dislocation model [35,29], in which
outside the finite thickness interphase zone, the material is mod-
eled as linear elastic, whereas inside the finite thickness interphase
zone the deformation is highly non-linear. We may note in passing
that a key difference between the proposed AIZM model and con-
ventional CZM is that in AIZM the interphase element is a real, fi-
nite size element, whereas the conventional cohesive zone element
is a virtual, zero-thickness interface entity (see Fig. 5(a)).
2.4. Galerkin variational weak formulation of AIZM

In the following, we present the Galerkin variational weak for-
mulation of the proposed AIZM method. Denote the domain of
interests in the reference configuration as X0. In two-dimensional
space, we can discrete it in a set of disjoined triangle bulk ele-
ments, Xe

b; e ¼ 1;2; . . . nb
elem, and a set of disjoined quadrilateral

interphase element Xi
c; i ¼ 1;2; . . . ;nc

elem, such that

X0 ¼
[nb
elem

e¼1

Xe
b

0
@

1
A[ [nc

elem

i¼1

Xi
c

0
@

1
A: ð15Þ

Note that mathematically or topologically the set of triangle ele-
ments and quadrilateral elements may not be able to form a com-
pact cover of X0, because there could be a tiny hole in the vertex
of the triangle elements, if all the elements are within the same
scale. Nevertheless, Eq. (15) is essentially a physical statement
rather than a mathematical statement. We may interpret the AIZM
mesh as a multiscale mesh, which means that at macroscale the set
of triangle elements forms a mathematical cover of X0, but zooming
in the fine scale one may find an interphase quadrilateral layer



Fig. 5. (a) Comparison between regular CZM and AIZM, and (b) multiscale interpretation of AIZM mesh.
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between two adjacent macroscale triangle elements (Fig. 7(b)).
Moreover, at the vertex of six bulk elements and six interphase
elements, there is actually a six-node hexagonal fifth order finite
element. In most numerical examples reported in this paper, the
contribution of the hexagonal element is negligible, because the
ratio of the thickness of the interphase element, R0, and the
characteristic length of the bulk element, ‘fem, is very small, i.e.
R0=‘fem < 10�2. If, however, R0=‘fem ! Oð1Þ, the contribution from
this term will become significant. This is usually the case when
one tries to scale down AIZM to atomic scale, and we shall study
this case in a separate paper.

With the aid of trail function uh and test function duh, a
Lagrangian type of Galerkin Lagrangian weak formulation may be
expressed as follows,

Pnb
elem

e¼1

Z
Xe

b

q0 €uh � duh dV þ
Z

Xe
b

PðuÞ : dFh dV

( )

þ
Pnc
elem

i¼1

Z
Xi

c

q0 €uh � duh dV þ
Z

Xi
c

PðuÞ : dFh dV

( )

¼
Pnb
elem

e¼1

Z
Xe

0

q0b � duh dV þ
Z
@tX

e
0

T � duh dS

( )
þ
Pnc
elem

i¼1

Z
Xi

c

q0b � duh dV ;

ð16Þ

where b is the body force, Xe
b is the eth bulk element, @tX

e
b is the

interception between the traction boundary and the boundary of
the e-th element, and Xi

c is the ith interphase element. The inter-
phase element does not overlap with traction boundary @tX0. The
interphase element is a narrow quadrilateral strip with side aspect
ratio, R0=‘fem ¼ 10�5 � 10�2. Integration by parts, one may approxi-
Fig. 6. Atomistic-based multiscale
mate the volume integral of the ith interphase element as a pair of
surface integrals,Z

Xi
c

P : dFdV �
Z

Ciþ
c

P �N � dudSþ
Z

Ci�
c

P �N � dudS: ð17Þ

Note that the boundary integrations over the two short sides of
quadrilateral are neglected, and this is because first R0=L0 is very
small, and second they will be canceled by the boundary integrals
from the adjacent interphase elements if we sum the total contribu-
tion from all interphase elements.

Let N
þ ¼ �N � ¼N . We may then write,Z

Xi
c

P : dFdV �
Z

Ciþ
c

P �N � dðuþ �u�ÞdS ¼
Z

Cþc

Ti
c � dDdS: ð18Þ

The difference between Eqs. (18) and (12) is that we evaluate Ti by
directly calculating,

Ti
c :¼ P �N and dD :¼ dðuþ �u�Þ ð19Þ

instead of utilizing empirical interface cohesive potential. In Eq.
(19), P is the 1st Piola–Kirchhoff stress inside the interphase ele-
ment, which is determined by the atomistic enriched constitutive
relation inside interphase elements.

Remark 2.1.

I. In computations, we use the row-sum technique to calculate
the lump mass for each FEM node. Fig. 6 shows a bulk ele-
ment/interphase element unit, in which a FEM node will
receive 1/3 of the mass from the triangle bulk element,
and receive 2� 1=4 of mass of the interphase element from
finite element discretization.



Fig. 7. Modeling of atomistic potential inside the interphase element.

92 S. Li et al. / Comput. Methods Appl. Mech. Engrg. 229–232 (2012) 87–109
the two adjacent interphase elements. Since this is a
Lagrangian method, after the interphase element fails, the
mass of the FEM system remains conserved.

II. It is worth noting the subtle differences between Eqs. (16)
and (10). Because of having a finite-thickness interphase
zone, the AIZM does not need or use the jump operator to
describe discontinuous displacement field, which has been
employed in the conventional cohesive finite element
method and the extended finite element (X-FEM). This
difference will be reflected in the implementation of
Galerkin finite element formulation of the AIZM. In most of
calculations done in this work, we simply integrate the
volume integral by using the reduced integration technique.

2.5. FEM implementations

Consider following FEM interpolation in each element,

uhðXÞ ¼
Xnnode

I¼1

NIðXÞdI: ð20Þ

Following the standard FE discretization procedure, e.g. [5,19], we
have the following discrete equations of motion

M€dþ f intðdÞ ¼ fext
; ð21Þ

where

M ¼ A
nb

elem

e¼1

Z
Be

0

q0NeT Ne dV þ A
nc

elem

i¼1

Z
Bi

0

q0NiT
Ni dV ; ð22Þ

f int ¼ A
nb

elem

e¼1

Z
Be

0

BeT PeðdÞdV þ A
nc

elem

i¼1

Z
Bi

0

BiT
PiðdÞdV ; ð23Þ

fext ¼ A
nb

elem

e¼1

Z
Be

0

NeTq0bdV þ
Z
@t Be

0

NeT Te dS

( )
þ A

nc
elem

i¼1

Z
Bi

0

NiT
q0bdV ; ð24Þ

where A is the element assemble operator, Ne and Ni are element
shape function matrices for bulk elements and interphase elements,
and Be and Bi are element B-matrices for bulk elements and inter-
phase elements respectively.

The explicit time integration based Newmark-b method with
b ¼ 0 [3] is used in the displacement update,

dnþ1 ¼ dn þ vnDtn þ
1
2

anðDtnÞ2; ð25Þ

anþ1 ¼M�1ðfext � f intÞ; ð26Þ

vnþ1 ¼ vn þ
1
2
ðan þ anþ1ÞDtn; ð27Þ

where dn is the displacement field at the time step n, vn is the veloc-
ity field at the time step n, and an is the acceleration field at the time
step n. The subscript n and nþ 1 denote to quantities evaluated at
time tn and tnþ1.

3. Constitutive modeling of AIZM

There are two types of elements in the atomistic-based inter-
phase zone model: the bulk element and the interphase element.
Since the deformation inside the bulk element is assumed to be
homogeneous, it can be simply modeled as a Cauchy continuum,
and its constitutive relation may be obtained by directly applying
the Cauchy–Born rule (see Eqs. (3) and (4)). On the other hand,
the constitutive modeling the interphase zone is more involved.
The interphase zone is employed to model both slip line inside
the single crystal as well as the grain boundaries between different
single crystal grains. Nevertheless, the constitutive modeling of
these two different cases are different. For the interphase zone rep-
resenting existing grain boundary, we employ a colloidal crystal
interphase model; and for the interphase zone inside the single
crystal we adopt an asymptotic colloidal crystal interphase model.

3.1. Colloidal crystal interphase model

To model material damage process at sub-mesoscale or meso-
cale, we propose to treat the interphase as a type of colloidal crys-
tal, or a partially colloidal crystal. The advantage and justification
of modeling the interphase zone as a colloidal crystal are: (1) it re-
flects the presence of vacancy population inside the interphase
zone, and (2) as have been shown in the literature, e.g. [42,43],
the colloidal crystal model can capture some basic features of crys-
talline material failure process such as defect nucleation, and ther-
mal fluctuation.

In this work, the colloidal crystal modeling of material inter-
phase is referred to as the following procedure: We mix a van
der Waals type of intermolecular adhesive force with atomistic
covenant bond force to model the interatomic interaction inside
interphase elements. In colloidal physics, the van der Waals cohe-
sive force along the surface has been traditionally characterized as
the depletion potential in contrast to interatomic potential in the
bulk materials. In this paper, we borrow the phrase depletion poten-
tial from colloidal physics in the sense that this denotes a coarse-
grain molecular potential in the interphase element. In physical
reality, there are still lattice microstructure inside grain bound-
aries, twin or phase boundaries, and stacking faults. However,
the atomistic bonding situation or electron density distribution in-
side those interphases is complex; and there are metallic, ionic, or
even covalent bonding as well as van der Waals interactions inside
physical interphases between different grains, these bonds may
have low cohesive energies because they may be associated with
segregant atoms and large population of vacancy. Therefore a
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colloidal crystal approach is pertinent to characterization of the
cohesion or decohesion mechanism inside the interphase element.

To obtain the depletion potential in a weak interphase zone, we
assume that the interphase element is much softer than the adja-
cent bulk elements, and the intermolecular interaction inside the
interphase zone may be treated as a quasi-Van der Waals interac-
tion that can be linearly superposed. In fact, we may view the bulk
medium as rigid with almost no deformation, so the two bulk ele-
ments adjacent to the compliant interphase zone may be viewed as
two rigid body half spaces (see Fig. 7). If the atomistic potential for
a given bulk medium is available, which can be a pair potential, an
EAM (embedded atom method) type potential [11], or any other
atomistic potentials, we can obtain the depletion potential in the
interphase element by integrating the bulk potential over two bulk
medium half spaces. In general, the interphase depletion potential
may be obtained by following analytical integration (e.g. [20], pp.
156–158),

/deplðrÞ ¼
Z

Half Space
b/bulkðr � r0ÞdV 0; ð28Þ

where b is parameter related to normalized atom density.
Some interphase depletion potentials may even have close form

expressions. For example, if the Lennard-Jones (LJ) potential is cho-
sen as the bulk potential as,

/bulk ¼ 4�
r
r

� �12
� r

r

� �6
� �

ð29Þ

the corresponding interphase depletion potential will be (see [41])

/depl ¼
p�ffiffiffi

2
p 1

45
r0

r

� �9
� 1

3
r0

r

� �3
� �

; ð30Þ

where � is the depth of the potential well, and r is the (finite) dis-
tance at which the bulk atomistic potential is zero. r0 ¼ r21=6 is the
equilibrium bond distance in the bulk material.

If the materials adjacent to the interphase are different,
/1

depl – /2
depl, we assume that the interphase atomistic potential is

the average of depletion potentials in two adjacent half spaces.

/depl ¼
1
2
ð/1

depl þ /2
deplÞ: ð31Þ

If the material in both elements are the same, we have /intp ¼ /depl.
This approach is mainly used to model grain boundary, twin bound-
ary, existing slip band, and interphase of composite materials.
Fig. 8. (a) Two bulk elements sandwich an interphase element, and (b) atomistic forc
It should be noted that there is a fundamental difference be-
tween the approach adopted in conventional cohesive zone model
and the depletion potential approach adopted in this work. In con-
ventional CZM, the cohesive potential is a potential of interface
traction and separation, whereas the depletion potential derived
here is ‘‘a volumetric intermolecular potential’’. Moreover, the
depletion potential proposed in this work is a coarse-grained inter-
phase potential model, which is not the same as the depletion po-
tential in chemical physics.

3.2. Asymptotic colloidal crystal interphase model

For interphase zones inside a single crystal, we take a slight
different approach, which is termed as the asymptotic colloidal
crystal interphase model. In this case, we first consider the inter-
phase element and the bulk element have the same material prop-
erties at the beginning, i.e. initially the atomistic potential inside
the interphase element is exactly the same as the atomistic poten-
tial inside the bulk element. When the internal stress increases to
certain level, we postulate that the material may start to degrade,
and inhomogeneous deformation starts to build up inside the thin
slice of the interphase zone.

In the simulation, we choose the following asymptotic and
mixed atomistic potential inside the interphase zone,

/inptðrÞ ¼
/bulkðrÞ; r < r	;

a/bulkðrÞ þ ð1� aÞ/deplðrÞ; r P r	;

(
ð32Þ

where r	 is a bond distance at which, /0bulkðr	Þ ¼ /0deplðr	Þ (see Fig. 8),
0 6 a 6 1 is a material parameter.

Without loss of generality, we illustrate the proposed constitu-
tive modeling of the interphase element by using the following
two-dimensional example. For illustration purpose, the AIZM mod-
el may be simplified as two triangle bulk elements sandwiching
one quadrilateral interphase element (see Fig. 8 (a)). To demon-
strate how AIZM works, we may simplify the combination of the
two bulk triangle elements/one interphase quadrilateral element
as a one-dimensional model of three-spring in series connection;
the two red springs representing two bulk elements are at top
and bottom, and the blue spring representing the interphase ele-
ment is in the middle of the series spring connection (see Fig. 8(a)).

In Fig. 8(b), we then plot the force–displacement relations in-
side the interphase element with different values of a. At the
e–displacement relation inside interphase elements ð/intp ¼ a/bulk þ ð1� aÞ/deplÞ.
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beginning, when bond distance r < r	, both the bulk element and
the interphase element have the same atomistic potential (the
red line). When r ! r	, the force inside all three springs will reach
to F	. If we continues to stretch the bond length, the interphase ele-
ment will start to unload ða ¼ 0Þ, which follows the blue path,
whereas the bulk elements will also be in an unloading state, but
they will stay in the red path ða ¼ 1:0Þ below the point F	.

Therefore as the material continues to stretch, the bond length
inside the interphase element will increase significantly until it
breaks while the bulk elements remain in a uniform deformation
state, in which the force–displacement relation is almost linear
elastic.

Remark 3.1. First from Fig. 8 one may observe that no matter what
the value of a is, the atomistic potential inside the interphase
element will always start at the same point ðr	; F	Þ, which we label it
as the Microscale yielding limit. Since this point is solely determined
as the interception between the depletion potential and the original
atomistic potential, it may be regarded as a material parameter.
When a ¼ 0, after this point, the interphase element starts moving
on a softening path; when a – 0, the interphase element may
experience some microscale hardening, which resembles the mac-
roscale material behavior. Second the value microscale yielding may
be controlled by the normalized atom density parameter b, which
may be related to the porosity or vacancy density in the interphase
element. Third if a ¼ 1:0, then /intp ¼ /bulk, which is the case that
there is basically no material degradation in the interphase element.
The proposed AIZM method will still work in case with additional
kinematic constraints on interphase elements, and most of the
results that have been presented in this paper are valid in this case, if
we enforce the stability constraints on the interphase element.
Interested readers may consult a recent work that is entirely done by
taking a ¼ 1:0 [15].
3.3. Material strength inside the interphase element

An important technical ingredient of the proposed atomistic-
based multiscale finite element model is how to derive stress–
strain relation based on the depletion potential inside the
interphase element, in which the deformation is inhomogeneous.
One may assume that displacement field inside interphase element
may be decomposed into two different scales,

x ¼ Xþ uðXÞ þ u0ðXÞ ¼ xþ u0;

where u represents the coarse scale displacement field, which is as-
sumed to be determined by finite element interpolation field, and u0

is the fine scale displacement field that the FEM interpolation field
may not be able to capture. Consequently, we have

F ¼ @x
@X
¼ @x
@X
þ @u0

@X
¼ Fþ F0;

where F0 is the fine scale deformation.
The ability of an interphase element to capture nonlinear defor-

mation depends on the order of its interpolation function. In this
paper, we only use the quadrilateral element (2D) and the wedge
element (3D) to model interphase zone. To capture nonlinear
deformation inside the interphase zone such as strain gradient ef-
fect, we have employed high order bubble mode to enrich interpo-
lation displacement field, and we shall report the detailed FEM
implementation in a separate paper. Even though within the inter-
phase element, the deformation is non-uniform, to establish
stress–strain relation inside the interphase zone we assume that
the stress state inside the interphase element only depends on
the local homogeneous displacement field surrounding each quad-
rature point. By doing so, we can apply the Cauchy–Born rule at
each quadrature point inside the interphase element, i.e.
Wqp ¼
1
Xu

0

Xnb

i¼1

/intpðF � RiÞ ¼WqpðFðXÞÞ:

Then the stress at each quadrature point can be obtained as

S ¼ 1
Xu

Xnb

i¼1

@/intp

@ri

Ri � Ri

ri
¼ SðXÞ;

where the spatial dependence on X is due to the fact ri � FðXqpÞ � Ri.
Consider the following FEM interpolation inside the interphase
element,

uðXÞ ¼
Xnc

node

I¼1

NIðXÞdI

and

Fqp ¼
Xnc

node

I¼1

xI �
@NIðXqpÞ
@X

;

where nc
node is the total number of FEM nodes in an interphase ele-

ment, and xI is the element nodal position. In contrast to the bulk
element, the stress field inside the interphase element is non-uni-
form because for quadrilateral elements @NI=@X is not constant.

4. Quadrature in interphase elements and interface traction-
separation relation

Computationally, AIZM model is not a variant of element dele-
tion algorithm, but a natural (automatic) element dislocation and
disintegration algorithm that is controlled by intrinsic material
strength inside the interphase zone. To ensure such element dislo-
cation/disintegration corresponding to real material failure phe-
nomena, one has to make sure that there is no numerical
mishandling. Moreover, we hope to relate such physical process
at microscale with what have been observed at macroscale. In fact,
the proposed AIZM method is similar to the so-called virtual inter-
nal bond (VIB) method [14] in certain aspects. However, without
adopting the interphase zone and using the depletion potential in-
side, we have found that the computational model is both physi-
cally and numerically unstable, which is probably a main
shortcoming of VIB method.

4.1. Reduced integration and hour-glass control for interphase
elements

As mentioned before, the interphase element is constructed as a
narrow strip; for example it may be a slender four-node quadrilat-
eral element (2D), or a thin layer six-node wedge element (3D). For
both elements, they have a finite but very small thickness R0. The
thickness of the interphase element, R0, is a physical parameter
that is related to the characteristic length scale of specific defects
under consideration. Let ‘�fem be the characteristic length of the bulk

element. We choose 10�5j‘�femj 6 R0 6 10�2j‘�femj. The large aspect
ratio of ‘fem=R0 could cause the interphase element exhibits shear
locking during large deformation, which is always the case when
an interphase element fails.

To solve the problem, a reduced integration technique is
adopted to alleviate the element locking caused by severe element
distortion during the element disintegration. On the other hand, it
is well known that the straight-forward reduced integration may
cause spurious hour-glass mode, which may produce spurious
crack morphology such as inter-element penetration. Therefore,
the reduced integration technique may have to be used in combi-
nation with hourglass mode control measure. In the literature,
there are several hour-glass mode control strategies, such as selec-
tive reduced integration (SRI) [4,26].



Fig. 9. Illustration of the reduced integration for quadrilateral interphase element.

Fig. 10. Illustration of the reduced integration for three-dimensional interphase
wedge element: (a) bulk-interphase element sandwich, and (b) quadrature point
distribution on the middle plane of the interphase element.
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A systematic study on how to apply reduced integration/hour-
glass mode control technique to correctly simulate interphase ele-
ment failure is still in progress. Here we report two reduced integra-
tion techniques that may not need hour-glass mode control
measure.

First for 2D quadrilateral interphase element, we have used
two-point reduced integration technique to successfully to avoid
hour-glass mode during fracture simulation. The two-point re-
duced integration scheme is illustrated in Fig. 9. Second, in a sim-
ilarly way, we have used a three-point reduced integration for 3D
6-node wedge shape interphase element, which is sandwiched by
two tetrahedral bulk elements. The three-point integration algo-
rithm is demonstrated in Fig. 9. We placed the three quadrature
points at the middle plane of the wedge element at three locations
where the distance from the center of the triangle equals to the
distance from one of the vertices of the middle triangle. We have
used the three-point reduced integration algorithm in 3D calcula-
tion, and it provides better results than the one-point integration
algorithm or static condensation technique.

4.2. Static condensation and interface cohesive law

In principle, the proposed AIZM is fundamentally different from
the conventional cohesive zone model (CZM) both in physical prin-
ciple as well as computational algorithm. This is because that CZM
is essentially based on a postulate of macroscale fracture mechan-
ics that fracture is a cleavage surface separation with a process zone in
front of the crack tip; whereas in the proposed AIZM model, we do
not adopt such hypothesis any more. However, one may interpret
the AIZM as an atomistic-based multiscale cohesive zone model by
using an equivalent traction/separation law obtained by the static
condensation to convert a volumetric stress/strain relation to a
surface traction/separation relation.
The procedure of ‘‘the static condensation’’ is first calculating
effective deformation gradient inside the interphase element, and
then find the average stress by applying the Cauchy–Born rule to
the effective deformation field, and finally project the average
stress into the boundary between the interphase element and the
bulk element, which will automatically provide an interface
cohesive traction-separation relation.

A popular computational homogenization technique is to repre-
sent the general deformation field as

x � Fc � Xþ u0; ð33Þ

where hFic is a constant two-point tensor that can be determined by
the boundary data along interphase elements,

Fc ¼ 1
jX0j

Z
X0

@x
@X
¼ 1
jX0j

Z
@X0

x�N dS: ð34Þ

Since the deformation inside bulk elements is uniform, it is reason-
able to assume that u0 
 0 along the boundary of bulk elements.
Since the boundary of each interphase zone shares the same
boundary with the adjacent bulk elements, on the boundary of each
interphase element the fine scale fluctuation displacement field
should vanish as well. This fact implies that u0 ¼ 0;8X 2 @tXe;

e ¼ 1;2; . . . ;Nelem which stems from the basic kinematic assumption
of AIZM. Similar assumption was also adopted in Taylor’s crystal
plasticity and the Peierls–Nabarro theory. Hence, the following
weak condition for fine scale displacement,Z
@Xc

u0 �N dS ¼ 0 ð35Þ

should be held automatically. That is: x ¼ x; 8X 2 @X0. Hence we
can determine the affine deformation map, Fc , if we know finite ele-
ment nodal displacement. For example, in the case of plane strain,
for a given FEM nodal point along the boundary of the interphase
element

�x1 ¼ a1 þ Fc
11X1 þ Fc

12X2; ð36Þ
�x2 ¼ a2 þ Fc

21X1 þ Fc
22X2; ð37Þ

�x3 ¼ a3 þ X3; ð38Þ

where Fc
ij are constants.

Consider the plane strain case as an example and fix the rigid
body motion a1 ¼ a2 ¼ a3 ¼ 0. One can easily determine the effec-
tive deformation gradient Fc by using the information of FEM nodal
displacements. For example, we can use the deformations of two
diagonal lines of the interphase zone, which can be expressed by
the FEM nodal displacements,

xþIþ1 � x�I ¼ Fc � ðXþIþ1 � X�I Þ; and xþI � x�Iþ1

¼ Fc � ðXþI � X�Iþ1Þ ð39Þ

to explicitly determine the effective deformation gradient Fc inside
the interphase zone as follows (see Fig. 11):

Fc
11

Fc
12

Fc
21

Fc
22

2
66664

3
77775 ¼

1
ðad� cbÞ

d 0 �b 0
�c 0 a 0
0 d 0 �b

0 �c 0 a

2
6664

3
7775

xþIþ1 � x�I
yþIþ1 � y�I
xþI � x�Iþ1

yþI � y�Iþ1

2
6664

3
7775; ð40Þ

where

a ¼ XþIþ1 � X�I ; b ¼ YþIþ1 � Y�I ; c ¼ XþI � X�Iþ1;d ¼ YþI � Y�Iþ1: ð41Þ

In fact, the above procedure is a multiscale version of the Hill–Man-
del homogenization (see [16,23]). Adopting the assumption,

x � FcXþ u0

and hence the 1st Piola–Kirchhoff stress tensor at any point inside
the interphase element may evaluated as,



Fig. 11. (a) Deformation inside the interphase element, and (b) average deformation in the interphase element.
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P ¼ @W
@F
� @W
@Fc
þ @2W
@Fc@Fc

:
@u0

@X

� �
þO

@2u0

@X2

�����
�����

 !
: ð42Þ

The average 1st Piola–Kirchhoff stress tensor in an interphase ele-
ment may be approximated as

hPi :¼ Pc ¼ 1
jX0j

Z
X0

PdX � @W
@Fc
þ @2W
@Fc@Fc

1
jX0j

Z
X0

@u0

@X
dX

� �
¼ @W
@Fc

ð43Þ

because ofZ
@X0

u0 �N dS ¼ 0:

As the matter of the fact, by the Hill–Mandel condition one can
show that

Pc : dFc ¼ 1
jX0j

Z
X0

P : dFdX ¼ 1
jX0j

Z
X0

PdX
� �

: dFc þ 1
X0

P :
@du0

@X
dX

¼ Pc : dFc þ 1
jX0j

Z
@X0

P �N � du0dS� 1
jX0j

Z
X0

rX � Pð Þ � du0dX

¼ Pc : dFc þ 1
jX0j

Z
@X0

P �N � du0dS: ð44Þ

Since u0 ¼ 0;8X 2 @X0, we have

Pc ¼ Pc ¼ @W
@Fc

: ð45Þ

This then provides a means and justification to apply the Cauchy–
Born rule to the mean field of interfacial interphase zone. That is:
Fig. 12. The cohesive laws of traction and separation: (a) normal traction vs. mode-
the average lattice vector in a deformed interphase zone may be
calculated as follows:

ri ¼ Fc � Ri; i ¼ 1;2; . . . ;nc: ð46Þ

Subsequently, we can calculate the averaged 1st Piola–Kirchhoff
stress tensor in each interphase zone as

Pc ¼ @W

@Fc
¼ 1

Xc
0

Xnc

i¼1

@/depl

@�ri

ri � Ri

�ri
: ð47Þ

In the proposed AIZM, we are in fact making two coarse graining
models: one for the bulk medium and another for the material
interphases or defects. Inside the bulk element, there is no fine scale
deformation, and the coarse scale deformation is uniform; whereas
inside the interphase element deformation at both coarse scale and
fine scale is not uniform. After obtaining the stress inside the inter-
phase element, we can readily find cohesive traction along the
boundary of interphase zone, which is the same boundary of the
adjacent bulk elements with the opposite out normals,

Tcohe ¼ PcðFcÞ �N ; ð48Þ

where N is the out-normal of adjacent bulk FE elements. As shown
in Eq. (41), one may express the average deformation gradient as a
function of the separation of two FEM boundaries, this implies that

Fc ¼ FcðDÞ ! Tcohe ¼ PcðFcðDÞ �N :

We have then found the relationships between the cohesive trac-
tion and corresponding opening displacements of the interphase
zone. In Fig. 12, we plot the both the normal traction-separation
and the tangential traction-separation cohesive law with respect
to LJ potential.
I surface separation, and (b) tangential traction vs. mode-II surface separation.
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Remark 4.1. The above effective deformation gradient and static
condensation approach is just an interpretation or an analysis of
the proposed AIZM method. However, one can indeed implement
AIZM based on this cohesive surface interaction interpretation,
which is in fact equivalent to a one-point reduced integration
approach on the bulk interphase element. In some cases, we have
observe the effect of spurious hour-glass mode along the crack
path. In general, the two-point reduced integration algorithm
behaves better.
5. Element (mesh) fault energies

In metallic materials, a stacking fault is one or more interrup-
tion atomic planes in the stacking sequence of the crystal structure.
These interruption planes, or an interruption zone, carry a certain
stacking fault energy, cs, which is referred to the energy stored be-
tween two interrupted layers of a stacking crystal plane sequence.
The stacking-fault energy is a material property that can be used to
characterize defect evolution such as dislocation motions.

Following a Peierls type of analysis, Rice and coworkers [38–40]
have developed a simple criterion for determining the intrinsic
ductile versus brittle behavior of materials. Rice proposed that a
simple rule to measure the brittle versus ductile behavior of
materials is the ratio of two planar fault energies, cs=cus, which
determines the competition between dislocation emission from a
crack tip and crack cleavage. Dislocation nucleation is character-
ized by the unstable stacking fault energy cus, which corresponds
to the lowest energy barrier encountered in sliding one half of a
crystal relative to another along a slip plane.

In AIZM, one may view the interphase element as an artificial
fault between two perfect bulk elements, and it may represent a
coarse-grained model for a stack of defect surface layers when
the atomistic potential inside the interphase element switching
from the bulk potential to the depletion potential.

In the following as an analogous to stacking fault energy, we
study the artificial fault energy between two bulk elements. Let
the local coordinate X1 parallel to the element mesh boundary con-
sidered. Hence we may denote �u as the relative effective horizonal
(tangential) opening displacement, and �v as the relative effective
vertical (normal) opening displacement of the interphase zone.
Therefore, one may find that the traction along the element bound-
ary is an explicit function of the effective deformation gradient in-
side the interphase zone. For LJ-potential, the effective deformation
gradient inside the interphase element for the cases of pure Mode-I
and pure Mode-II are given separately as follows,

Fn ¼
1; 0 0
0; 1þ �v=R0 0
0; 0; 1

2
4

3
5 and Ft ¼

1; �u=R0; 0
0; 1; 0
0; 0; 1

2
4

3
5; ð49Þ
Fig. 13. Interphase zones under no
where R0 is the thickness of the interphase element. Substituting
the relations in Eq. (49) into (48), one can find the relationship be-
tween the element traction and the relative separation (opening
displacements) of the interphase zone.

In Fig. 12, the cohesive relations of both normal traction/normal
opening displacement (Mode-I) and tangential traction/shear
opening displacement (Mode-II) are displayed, which are calcu-
lated based on Eqs. (48) and (49).

A major advantage of AIZM is that it can easily provide cohesive
traction along the bulk element boundary for both normal and tan-
gential traction from a same expression Eq. (48), whereas in con-
ventional cohesive FEM approach, these two traction are given
separately, and they are not related to lattice structure or atomistic
potential.

In general, the longitudinal direction of the soft interphase zone
may be viewed as a fault, or more precisely an element (mesh) fault,
because we assume that total deformation field at macroscale is
piece-wise constant. In this context, this kinematic assumption is
not just a convenience for finite element discretization, but a phys-
ical modeling to mimic the defect distribution, which is very similar
to the kinematics of crystal plasticity, e.g. [44]. The ability to evalu-
ate the element fault energy will help us design multiscale simula-
tions that have predictive power. In this section, we shall focus on
analysis and calculation element fault energies.

From materials science perspective, the fault energy should be
determined by bulk material properties, such as fault formation,
orientation, as well as configuration. The mesh fault energy
discussed in this paper is subjected to additional constraints
because of chosen finite element discretization. In the AIZM
model, these factors are reflected by the depletion potential, mesh
orientation, lattice orientations in both bulk element as well as in
the interphase element. As a matter of fact, the phenomenological
cohesive tangential law proposed by Xu and Needleman [49] is in a
way of mimicking the shape of stacking fault energy (see also [13]).
In general, the tangential interfacial cohesive potential should be
related to stacking fault energy, or antiphase boundary energy, or
other interfacial cohesive potential energies, all of which are
physical quantities that may be directly calculated by using first
principle based methods. Therefore, it makes sense only if we
can successfully build an AIZM model to relate the mesoscale
interface potential to microscale atomistic potential.

Indeed, both the lattice orientation in the interphase zone and
the FE mesh are very important factors in the element fault energy
calculations. In this first study, we shall examine some simple
cases under plane strain condition. Consider that the crystalline so-
lid is a single crystal that has hexagonal symmetry. Hence the lat-
tice orientation in each bulk element will be the same. Let the finite
element mesh boundary coincides with the possible slip line direc-
rmal and tangential traction.
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tions, so that in the slip line strip the original lattice may be ro-
tated, distorted, or remaining the same. In the case discussed in
this paper we assume that the symmetry inside the interphase
zone remains hexagonal, but it may be rigidly rotated to a fixed an-
gle. We consider two cases: (I) one pair of the hexagonal axes are
parallel to the element boundary, and (II) one pair of the hexagonal
axes are perpendicular to the element boundaries. We now calcu-
Fig. 14. Comparison of surface energy and stacking fault energy with respect to different
surface energy, and (a3)–(b3) cus vs. 2cs inside the interphase element: solid line-stacki
late the interphase zone potential energies, or the mesh stacking
fault energies, in terms of both interface normal opening (mode-
I) and the tangential opening (model-II).

Since the deformation gradient is only the function of interface
opening displacement, the bulk atomistic potential may directly be
linked to the coarse-grain traction/displacement potential, and this
is how:
mesh fault orientations: (a1)–(b1) unstable stacking fault energy, (a2)–(b2) cohesive
ng fault energies, dash line-surface energies.
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Wnð�vÞ ¼ bc

X6

i¼1

/deplðrið�vÞÞ; and Wtð�uÞ ¼ bc

X6

i¼1

/deplðrið�uÞÞ; ð50Þ

in which ri ¼ Fnð�vÞ � Ri or ri ¼ Ftð�uÞ � Ri, and bc is the atom density in
the interphase zone.

Substituting Eq. (49) into (50) and considering the relative
interphase zone opening displacements as the effective displace-
ments inside the interphase zone, we can find the surface energy
and stacking fault energy in terms of the effective displacements.
However, the calculation of element fault energy depends on the
lattice structure inside the interphase zone. Here we are consider-
ing two cases of different lattice orientations of hexagonal lattices:
For Case I,

Ri ¼ a cos
ði� 1Þp

3

� �
; sin

ði� 1Þp
3

� �� 	
; i ¼ 1;2; . . . ;6 ð51Þ

and for Case II

Ri ¼ a cos
p
6
þ ði� 1Þp

3

� �
; sin

p
6
þ ði� 1Þp

3

� �� 	
; i ¼ 1;2; . . . ;6:

ð52Þ

Two interphase zone element benchmark tests have been con-
ducted, which are illustrated in Fig. 13, and the corresponding ele-
ment or mesh staking fault energies are depicted in Fig. 14. One
may find that in Case I, the unstable stacking fault energy
(cus ¼ 3:25) is smaller than the corresponding surface energy
(2cs ¼ 6:85), the ratio between the two is

aI ¼
cus

2cs
¼ 0:47 < 1; ð53Þ

whereas in the second case, the unstable stacking fault energy
ðcus ¼ 843:27Þ, which is much larger (in Fig. 14 we scale the original
value by a factor of 40 for better visualization purpose) than that of
the cohesive surface energy ð2cs ¼ 10:02Þ, the ratio between the
two is

aII ¼
cus

2cs
¼ 84:16� 1: ð54Þ

Based on this analysis, we may expect the ductile fracture for Case I,
because the unstable stacking fault energy is smaller than the
surface energy, and the lattice sliding is more susceptible than
the lattice cleavage opening along the allowable kinematic failure
mode—that is element boundary; whereas in Case II the peak
value of unstable stacking energy is about 84 times larger than that
of the surface energy, the lattice is more susceptible to cleavage
opening than sliding along the allowable element boundary.
Fig. 15. Mixed-mode interphase potential: (a) based the Lennard-Jones pot
Therefore we would expect brittle fracture for Case II. In the next
section, we shall use the both lattice orientations and corresponding
mesh fault set-up to simulate crack propagations, compare the re-
sults between them, and verify the above analytical predictions.

In fact, one may also consider applying AIZM to polycrystalline
solids. In the case of polycrystal solids, the lattice orientation inside
the interphase zone may be affected by the adjacent single crystal
elements in both sides, which may have different lattice orienta-
tions. An in-depth study on applying AIZM to polycrystal solids
can be found in [33]. Above analysis has shown that the element
stacking fault energies not only depend on the bulk lattice orienta-
tion, but also depend on the microstructure of the interphase. The
above example has demonstrated two points: first it is shown that
by altering the interphase microstructure one may be able to use
AIZM to simulate a specific stacking fault energy (SFE) of a given
material; and second it may also hint the fact that the interphase
energy is strongly dependent on interphase microstructure. Be
more specific, we have basically shown that the interphase energy
is a functional of orientational quantity with a tensorial field,
which may play significant role in material failure as shall be dis-
cussed in next section.

We note in passing that (1) all interphase elements constructed
can be made as part of the lattice slip planes or grain boundaries,
i.e. orientation of all interphase zones can be chosen along certain
atomic planes, so they are physical entities; and (2) even though
most of the calculations shown in this paper are based on pair po-
tential, the underline principle can be applied for any other atom-
istic potentials of different atomistic bonds, for example the EAM
potential for metallic bonding.

Similarly, the effective deformation gradient in each interphase
element can be also updated. For the case of plane strain, it is up-
dated based on the following equations,
Fc
11ðtnÞ

Fc
12ðtnÞ

Fc
21ðtnÞ

Fc
22ðtnÞ

2
66664

3
77775¼

1
0
0
1

2
6664
3
7775þ 1

2LR0

d 0 �b 0
�c 0 a 0
0 d 0 �b

0 �c 0 a

2
6664

3
7775

uþIþ1ðtnÞ�u�I ðtnÞ
vþIþ1ðtnÞ�v�I ðtnÞ
uþI ðtnÞ�u�Iþ1ðtnÞ
vþI ðtnÞ�v�Iþ1ðtnÞ

2
6664

3
7775;

ð55Þ
where ðu�I ðtnÞ;v�I ðtnÞÞ ¼ d�I ðtnÞ, and the meaning of the superscripts
� is referred to Fig. 11 for their definitions; L is side length of the
adjacent bulk elements, and R0 is the thickness of the interphase
element. The constants, a, b, c, d, are defined in Eq. (41). The stress
inside the interphase zone can then be updated by using Eq. (47).
ential, and (b) based on the embedded atom method (EAM) potential.
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5.1. Mixed-mode interface potential

One of advantages of AIZM over conventional CZM is that it fur-
nishes a coarse-grained mixed interface potential automatically.
Let

W ¼ 1
Xu

0

Xn

i¼1

/intpðriÞ; ri ¼ FcðDÞ � Ri:

Consider a mixed mode displacement load sequence parameterized
by a loading angle h, which is the angle between the load displace-
ment direction and the normal direction of the interface. The load
sequence can be represented by the effective deformation gradient
inside the interphase element, which is related to the interface dis-
placement separation vector ð�u; �vÞ. For a plane strain problem, it
may be written as follows,

½FiI� ¼
1 �u=R0 0
0 1þ �v=R0 0
0 0 1

2
64

3
75; �u ¼ D0 sin h; �v ¼ D0 cos h:

In the following figure, we plot the interface traction-separation po-
tential versus the surface separation, D0, The above mixed-mode
cohesive interface potential is plotted by using the interface
atomistic potential /intp; ða ¼ 1Þ. In Fig. 15, the interface cohesive
potential is plotted with respect to h ¼ 0; p=6; p=3; and p=2. In
the case (a), the Lennard-Jones potential is used in the calculation,
and in case (b) the Sutton–Chen potential—an embedded atom
potential is used in the calculation of interface cohesive traction/
separation potential. The exact expression of the EAM potential will
be given in Section 6.

One may observe a mixed-mode transition of interface cohesive
potential and its dependence on loading angle h. This shows advan-
tages over the ad hoc mixed mode cohesive zone models, e.g. [36].

6. Simulation examples

In this section, we present six numerical examples that have
been carried out by using the proposed atomistic-based interphase
zone finite element method.
Fig. 16. (a) The simulation geometry with lattice orientation

Fig. 17. Time sequence o
6.1. Example I: validation of AIZM method by MD simulations

To validate the proposed AIZM method, we have applied it to
simulate a special dynamic fracture problem that has been thor-
oughly studied in the literature [7,48]. The computation results
of AIZM method are compared with that of the MD simulation
conducted by Buehler et al. [7]. The exact problem statement is
shown in Fig. 16, in which a 2D plate with dimension
ðLX � LY ¼ 8625� 3450 with LX=LY ¼ 2:5Þ is under dynamically
prescribed uniaxial tension load. There is a pre-crack at the left
side of the plate, and the pre-crack tip is located at ðLC ¼ LX=5 ¼
1725Þ. Under the dynamic loading, the crack propagates along
the horizontal direction (the x direction) in the middle of the plate.
For the purpose of comparison, all quantities in these simulations
are in reduced units. The specimen size in reduced units is about
micrometer in physical dimensions. The interfacial lattice is the
hexagonal lattice with the equilibrium bond distance r1 ¼ 21=6,
and the crystal orientation is shown in Fig. 16 (a). The lattice orien-
tation inside the interphase zone is chosen the same as that of the
bulk elements. To avoid crack branching, a weak fracture layer is
introduced (see Fig. 16(a)) by assuming that the cohesive strength
in the rest of the slab are much stronger than the cohesive strength
in the weak layer. We use exactly the same biharmonic interatomic
potential used by Buehler et al. [7], which is composed of two
spring constants k1 ¼ 36=21=3 � 28:57 and k2 ¼ 2k1, and it is
linearized from the Lennard-Jones (LJ) potential (see Eq. (29)):

/ðrÞ ¼
1
2 k1ðr � r1Þ2; if r < ron;

a2 þ 1
2 k2ðr � r2Þ2; if r P ron;

(
ð56Þ

where a2 ¼ 1
2 k1ðron � r1Þ2 � 1

2 k2ðron � r2Þ2 and r2 ¼ 1
2 ðron þ r1Þ with

ron ¼ r1ð1þ eonÞ. The parameter ron governs the onset strain ðeonÞ
of the hyperelastic effects.

All the material constants are chosen exactly the same as in
Buehler et al.’s simulations. In the simulation reported in this pa-
per, there are 16,000 bulk elements used with the characteristic
dimension of 20–30 nm, and there are 23,860 interphase elements
used with the thickness of five atomic spacings. In the original MD
computation carried out by Buehler et al. [7], there are more than
50 million atoms in the simulation.
and the weak layer, and (b) comparison of crack speeds.

f crack propagation.
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Constant strain rate ð _e ¼ 1:16� 10�5Þ is applied over the load-
ing period to strain the system. A time sequence of the crack prop-
agation process along the weak layer is shown in Fig. 17. We
compute the crack propagation speeds by using AIZM method with
different onset strains, and then we compare our numerical results
with the crack speeds obtained from the MD simulations using the
same potential and the same material constants [7]. The compari-
son between the results of AIZM method and that of the MD sim-
ulation is shown in Fig. 16(b). In Fig. 16(b), one may find that for
intermediate value of the onset strains the results obtained by
using AIZM method agrees well with the results obtained by using
molecular dynamics.

6.2. Example II: ductile fracture vs. brittle fracture

In this example, we apply AIZM model to simulate crack prop-
agations at macroscale. We assume that the testing material is a
single crystal with hexagonal symmetry. In the simulations, all
triangle elements are chosen as equilateral triangles that align
Fig. 18. Stress distribution for crack propagations
their boundary along the directions of the hexagonal lattice in
the bulk element. In interphase elements, we choose two sets of
hexagonal lattices: (1) the one with the same orientation as in
the bulk element, and (2) the hexagonal lattice that rotates an an-
gle of p=6 with respect to the lattice orientation in the bulk ele-
ment. The two lattice structures are shown in Fig. 18 (a) and (b).
The LJ potential is used in bulk elements, and the depletion poten-
tial in Eq. (30) is used as the atomistic potential inside the inter-
phase zone. We set � ¼ 1 and r ¼ 1 for the bulk and interphase
atomistic potentials (see Eqs. (29) and (30)).

In the simulation, the test specimen is a 2D plate with dimension
(2 mm � 2 mm) that is subjected to unilateral tension in Y-axis (see
Fig. 18), there is a pre-crack at the left side of the plate. There are
total 9520 interphase elements and 6400 triangular bulk elements.
The time step is chosen as Dt ¼ 1� 10�10 s. The process of the crack
growth is displayed in Figs. 18(a1)–(a7) and 18(b1)–(b7) for both
cases. The mesh stacking fault energies for both cases have been
calculated in the previous section. Since in Case I, the unstable ele-
ment fault energy is smaller than the element surface energy, it
vs. different interphase lattice orientations.
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exhibits a typical ductile fracture pattern so that the crack path is
almost along the direction of element boundary where the shear
stress is maximum. Whereas in Case II, the mesh stacking fault en-
ergy is much larger than the cohesive surface energy, it exhibits the
typical brittle failure pattern with the crack grows along the hori-
zontal line that is aligned with the initial pre-notch direction, or
the crack direction is along with the element boundary where the
normal stress is maximum. However, void formation at the crack
tip can also be observed in some simulations with different param-
eters, which may need in-depth study.

6.3. Example III: simulations of high-speed impact and spall fracture

To illustrate the versatility of AIZM, we have carried out numer-
ical computations to simulate high-speed impact induced spall
fractures, which is a very difficult problem that has been elusive
to many existing numerical methods [1]. The simulation problem
is a rigid projectile impacting a deformable plate. The projectile
is a (1.02 mm � 0.09 mm) rigid block with impact velocity
v ¼ 100 m=s, the target is a (1 mm � 0.4 mm) block with free
boundary. In this simulation, there are totally 23,860 interphase
elements and 16,000 triangular bulk elements in the target. The
atomistic potentials and lattice orientations for both the bulk ele-
ment as well as the interphase element are exactly the same as
in Example III (a).

In this example, the time step is chosen as Dt ¼ 1� 10�10 s.
Contact problems are characterized by impenetrability conditions
that needs to be enforced during computation. We adopted the ex-
act enforcement of the impenetrability condition in a single time
step (see [18]). The simulation results are shown in Fig. 19. The
Fig. 19. The snapshot of stress distribution of a spall fracture due to impact: (a) t = 0.
wave propagation from the contact point to the opposite boundary
has been observed. The phenomenon of spall fracture under im-
pacts has been captured (see Fig. 19).

6.4. Example IV: fracture in poly-crystalline material

In this example, we apply AIZM method to simulate fracture in
polycrystaline solids. We consider a (1 mm � 1 mm) polycrystal-
line block that is subjected to unilateral tension as shown in
Fig. 20. There are 121 grains and 2376 bulk elements in the model.
A horizonal pre-crack is set boarding with several grain
boundaries.

In AIZM calculation, each grain is randomly assigned a lattice
orientation. The lattice orientation along grain boundaries may
be assigned according to various considerations and assumptions.
For simplicity and demonstration purpose, the lattice orientation
in each grain boundary, b is taken as the average of orientations
of the two adjacent grains a1;a2, i.e.

b ¼ 1
2
ða1 þ a2Þ ð57Þ

as shown in Fig. 21. For the first case, in both the grain and the grain
boundary the depletion potentials of the interphase zone have same
energy depth, i.e.,

�i
depl ¼ �b

depl: ð58Þ

Form Fig. 22(a), it can be seen that crack propagation can go
through grains. However, if the cohesive strength in interphase ele-
ments inside a grain is set to be much stronger than that of the grain
boundary, e.g.
15 ls; (b) t = 0.35 ls; (c) t = 0.6 ls; (d) t = 0.7 ls; (e) t = 0.85 ls; and (f) t = 1.0 ls.



Fig. 20. A polycrystal plate with a notch under dynamic loading.

Fig. 21. How to determine crystal orientation inside the grain boundary.

Fig. 22. The snapshot of stress distribution of fractures in a polycrystalline solid: (a) transgranular fracture, and (b) intergranular fracture.
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�i
depl ¼ 5�b

depl: ð59Þ

The crack path will only follow grain boundaries as in Fig. 22(b). The
computation details of this example can be found in [33]. In this
example, the LJ-potential is used in bulk element, and the corre-
sponding depletion potential (30) is used in the interphase element.

6.5. Example V: three-dimensional fracture

One of the strengths of the atomistic-based interphase zone
model is its computational flexibility and robustness in three-
dimensional simulation of fractures, which has been a challenge
for many other numerical methods.

Here we first present an illustrative example of AIZM simula-
tion of three-dimensional crack propagation. The example consid-
ered is a single crystal specimen with FCC structure. Since the
deformation in the bulk element is assumed to be uniform, we
use the tetrahedron element for bulk elements, and we use a six-
node wedge element for interphase elements as shown in
Fig. 23(a) and (b). Similar to two-dimensional cases, each inter-
phase element is sandwiched by two bulk elements. The main
technical gradients of 3D calculations remain the same as that of



Fig. 23. Three-dimensional AIZM model: bulk element + interphase element, and interphase element nodal numbering.
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2D calculations, except that the reduced integration technique and
how to evaluate average deformation gradient inside the inter-
phase zone are different from 2D cases. The reduced integration
of 3D wedge shape interphase element has been demonstrated in
Fig. 10.

In the following, we briefly outline an equivalent cohesive zone
approach, which is also equivalent to a one-point integration
approach.

We first determine the average deformation gradient in the
interphase element. To do so, one may choose an arbitrary set of
three non-planar lines across the interphase zone to find the effec-
tive deformation gradient.

Based on the choice of Fig. 23 (b), we can define the following
vectors,

Dxi ¼
xþIIIi � x�Ii
xþIVi � x�IIi
xþIi � x�IIIi

2
64

3
75 and Fi ¼

Fi1

Fi2

Fi3

2
64

3
75; i ¼ 1;2;3: ð60Þ

where Dxi; i ¼ 1;2;3 are position vectors of three non-planar line
segments chosen to determine effective deformation gradient F,
and Fi; i ¼ 1;2;3 are just the row vector of effective deformation gra-
dient inside the interphase zone. By the Hill–Mandel lemma, it is not
difficult to see that xi and Fi are related by the following relation,

xi ¼ F � Xi; i ¼ 1;2;3;

where Xi are un-deformed line segments in the referential configu-
ration. Hence, we can derive the following algebraic equations

Dx1

Dx2

Dx3

2
64

3
75 ¼

½DX� 0 0
0 ½DX� 0
0 0 ½DX�

2
64

3
75 F1

F2

F3

2
64

3
75; ð61Þ

where the matrix ½DX� is defined as

½DX� ¼
XþIII1 � X�I1; XþIII2 � X�I2; XþIII3 � X�I3
XþIV1 � X�II1; XþIV2 � X�II2; XþIV3 � X�II3
XþI1 � X�III1; XþI2 � X�III2; XþI3 � X�III3

2
64

3
75:

In fact, Eq. (61) is equivalent to the following three sets of
equations,
½Dxi� ¼ ½DX�½Fi�; i ¼ 1;2;3;

which are easy to solve in computations. One can see from
Fig. 24(b) that there are twelve nearest neighbor atoms in a FCC
Wigner–Seitz cell,

R1 ¼ aðcosðp=4Þ;0; sinðp=4ÞÞ;
R2 ¼ að� cosðp=4Þ;0; sinðp=4ÞÞ;
R3 ¼ að� cosðp=4Þ;0;� sinðp=4ÞÞ;
R4 ¼ aðcosðp=4Þ;0;� sinðp=4ÞÞ;
R5 ¼ aðcosðp=4Þ; sinðp=4Þ;0Þ;
R6 ¼ að� cosðp=4Þ; sinðp=4Þ;0Þ;
R7 ¼ að� cosðp=4Þ;� sinðp=4Þ;0Þ;
R8 ¼ að0; cosðp=4Þ;� sinðp=4ÞÞ;
R9 ¼ að0; cosðp=4Þ; sinðp=4ÞÞ;
R10 ¼ að0;� cosðp=4Þ; sinðp=4ÞÞ;
R11 ¼ að0;� cosðp=4Þ;� sinðp=4ÞÞ;
R12 ¼ að0; cosðp=4Þ;� sinðp=4ÞÞ:

Hence, the effective stress inside an interphase element may be cal-
culated as

P ¼ @W
@Fc
¼ 1

Xc
0

X12

i¼1

@/intp

@�ri

ri � Ri

�ri
: ð62Þ

We have conducted a numerical experiment on ductile fracture, in
which a thin plate with notch is subjected to uniaxial tension. The
lattice structures in both the bulk element and the interphase zone
are FCC lattice. The pre-notched plate is shown in Fig. 24. The plate
is 1 mm � 1 mm in size. There are total of 2400 bulk tetrahedron
elements and 4300 interphase wedge elements used in computa-
tion. The standard Lennard-Jones potential is used in the bulk ele-
ment, and the depletion potential in Eq. (30) is used as the
interphase potential inside the interphase zone. A prescribed dis-
placement (velocity) boundary condition is imposed at the both lat-
eral sides of the plate. A time sequence of fracture is displayed in
Fig. 25. From Fig. 25, clearly one may find the ductile fracture pat-
terns with three-dimensional features, such as crack bifurcation
along {111} and {110} planes. In three-dimensional calculation,



Fig. 24. A three-dimensional pre-notched plate with FCC crystals.
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for the purpose of illustration, we again used the LJ-potential in bulk
elements, and the depletion potential (30) is used inside the inter-
phase zone. In the following example, we show how to use the
embedded atom method in a three-dimensional AIZM calculation.

6.6. Example VI: simulation of projectile fragmentation via AIZM

In this example, we simulate the fragment of a projectile made
by aluminum alloy power during high speed impact and penetra-
tion of thin aluminum plate.

We choose the multi-body Sutton–Chen (SC) potential [32] as
the bulk material’s atomistic potential, which is a special embed-
ded atom method (EAM) potential designed for aluminum metals.
For an chosen atom i in the bulk element,

/bulkðrÞ ¼ �
1
2

X
j–i

a
rij

� �n

� c
ffiffiffiffiffi
qi
p

( )
; ð63Þ

where qi is the electron density at the site of atom i,

qiðrÞ ¼
X
i–j

a
rij

� �m

and �; c; a; m; n are material constants obtained by fitting the
atomistic potential (Eq. (63)) with the results obtained from ab ini-
tio calculation based on a stable bulk configuration. In EAM poten-
tial there are two distinct contributions: the pair potential part and
embedding electron density part.

Inside interphase elements, we use the general interphase po-
tential expression,

/intpðrÞ ¼ a/bulkðrÞ þ ð1� aÞ/deplðrÞ: ð64Þ

However, in our approach, the depletion potential is chosen as the
coarse-grain potential of the pair potential part in the EAM poten-
tial, i.e.

/deplðrÞ ¼
�

2Xu
0

P
j–i

Z
half -space

a
‘

� �n

dV ; with dV ¼ p‘r2 dz;

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� rijÞ2

q
¼ �pa3

Xu
0ðn� 2Þðn� 3Þ

P
j–i

a
rij

� �n�3

: ð65Þ

The parameter for the Sutton–Chen potential for Al are:
� ¼ 3:31477� 10�2 eV; c ¼ 16:399; a ¼ 4:05 Å; m ¼ 6; n ¼ 7. For
the interphase potential we choose the parameter a ¼ 0:48 in Eq.
(64).

The justification of the above approach is based on the argu-
ment that significant concentration of vacancy inside a damaged
interphase element will greatly affect electron density distribu-
tion. Therefore, we neglect its contribution in the colloidal
crystal approximation. Based on the proposed AIZM model, a dy-
namic simulation of penetration/fragmentation of a polycrystal-
line aluminum cylinder through an aluminum plate is carried
out in this example. The polycrystalline aluminum projectile is
1 mm in diameter and 3 mm in total length, and it impacts a
square aluminum plate that has the dimension 5 mm � 5 mm �
0.2 mm (width � length � thickness). The initial velocity of the
projectile is: 4000 m/s, shown as Fig. 15. The shock wave in-
duced by impact force propagates in both projectile as well as
the target plate, which causes dynamic fracture phenomena in
both bodies.

In this simulation, the bulk grains are represented by the
tetrahedral element with various volumes and lattice orientations.
Between grains, there is a wedge shaped interphase element that
represents the grain boundary. The computational domain is
discretized by 64,608 bulk elements and 124,820 interphase ele-
ments. The problem set-up and the finite element mesh are shown
in Fig. 26. From Fig. 27, one can observe the progressive fragmen-
tation of a high-speed projectile during and after penetrating the
thin aluminum plate. Based on the authors’ best knowledge, this
is the first successful simulation of this problem by any numerical
methods, including CZM, reported in the literature.

In this paper, we only briefly present a few preliminary results
of AIZM simulation on high speed impact and fragmentation
problems. An detailed report on how to use AIZM to simulate
three-dimensional spall fracture and various fragmentation
problems will be discussed in a separated paper [37].
7. Discussion

In this paper, we have reported a systematic study on the atom-
istic-based interphase zone model, and we have formulated and
implemented a multiscale finite element formulation of AIZM.
The proposed AIZM method is a single-physics coarse grained
model that may be able to describe physics of solids in a broad spa-
tial scales, from a hundred nanometers to mm scale. As shown in
this paper, this method is capable of simulating strong discontinu-
ities across a solid at nanoscale, such as micro-cracks and disloca-
tions at small scales. Compared to conventional cohesive finite
element method, the proposed AIZM model employs basic princi-
ples of colloidal physics and surface chemistry to determine the
interface cohesive force, and it is exploiting the underneath atom-
istic structure to construct surface or interface cohesive relations.



Fig. 25. Three-dimensional simulations of ductile fracture.
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To do so, we first extend the Cauchy–Born rule to the effective
deformation field of an interphase zone subject non-uniform defor-
mation; and then we propose a novel concept of element (mesh)
stacking fault energy that provides clear guidelines to simulate
both ductile and brittle fractures.

The preliminary numerical results have shown that the pro-
posed multiscale cohesive zone model may yield more accurate re-
sults than the conventional cohesive zone approach. In specific,
this is because first we adopt an atomistically informed constitu-
Fig. 26. AIZM mesh for aluminum projectile
tive relation; second both the normal and tangential cohesive sur-
face potentials are derived from a single bulk depletion potential,
and therefore they are consistent with each other, and in fact AIZM
is applicable for arbitrary loading conditions without additional
mix-mode fracture criterion, and third in the proposed AIZM meth-
od the bulk material properties and the material properties inside
the interphase element are made consistent with each other,
because the depletion potential is derived from the bulk atomistic
potential.
/target system with an EAM potential.



Fig. 27. Three-dimensional AIZM simulation of fragmentation of an aluminum projectile.
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The justification for use of a finite thickness interphase zone
and for use of the Cauchy–Born rule to the mean field in the inter-
phase zone are based on the hypothesis that most defects are mul-
tiscale entities, so should be the interphase zone. Taking the crack
as an example, except at initial stage of atomistic scale fracture,
crack growth may be purely a cleavage surface separation; once
the initial crack growth starts, it may grow into a depleted material
zone, which involves with convolutions of many other types of de-
fects such as voids, grain boundaries, slip lines, and surface separa-
tions. The microscale cleavage feature will be lost.

To be a truly multiscale method, one would expect a multiscale
method transcendental across the scales. The real questions are:

1. Can AIZM model resolve cohesive length scale?
2. Can AIZM model resolve atomistic resolution?
3. How to choose R0?
First, as mentioned before, the conventional CZM requires that
‘fem < ‘czm, and according to linear elastic theory [28],
‘czmðv ¼ 0Þ ¼ 9p
32

E
1� m2

� �
2c
r2

m
;

where E is the Young’s modulus, c is the surface energy, m is the
Poisson’s ratio, and rm is the material strength. For rm � E=10�
E=20! 10—70 lm.

For AIZM modeling, the parameters E, c, and rm can all be
extrapolated from interphase atomistic potential. In fact, AIZM
length scale is the shortest distance between two quadrature
points. If we use one-point integration, AIZM length scale may
become ‘fem, otherwise it is controlled by the spacing of
quadrature points. In fact, one can introduce bubble functions
in the interphase elements, and we may place several quadrature
points in the longitudinal direction of the interface to increase
accuracy of quadrature integration while avoiding shear
locking.

For CZM, when ‘fem < ‘czm, it will have strong interaction be-
tween the cohesive zones [13], and this will not happen in AIZM.



108 S. Li et al. / Comput. Methods Appl. Mech. Engrg. 229–232 (2012) 87–109
This is because AIZM is not a cohesive zone model, and the inter-
phase zone is also a special bulk element, and all the interaction
between the elements are local; even though it may be interpreted
as an atomistic-based cohesive zone model (for one-point integra-
tion case) in the sense of coarse-graining. In passing, we would like
to point out that the multiple reduced integration algorithm al-
ways perform better than the one-point integration algorithm in
general.

The second question and the third question are somewhat re-
lated, because in AIZM, R0 is related to ‘fem. In practice, how to
choose the thickness of the interphase zone depends on the
requirements of the simulation problem itself, and it may range
from a few nano-meters to sub-microns depending the specific
type of defects that one wishes to simulate. Once we determine
R0, we may then determine ‘fem based their ratio in AIZM formula-
tion. Moreover, we have found that when we decrease R0 to atom-
istic scale, we have to increase the ratio R0=‘fem ! Oð1Þ. So far a
nanoscale scale case that we have tested is the case in which R0

equals about 5 atomic spacing. In this case, the hexagonal element
among several interphase zone elements will become essential,
and the detailed fine scale element configuration has to be
carefully meshed with underneath lattice structure, in order to
have a conforming fine scale finite element discretization. This is
the fine scale limit of AIZM, which is more or less like a molecular
dynamics simulation. In the fine scale limit of AIZM, additional
information or constraints may be needed in determining R0 and
R0=‘fem ratio. An in-depth study of microscale limit of AIZM will
be reported in a separate paper. Physically, almost all the defects
have finite thickness, these include grain boundaries, phase
boundaries, persistent slip bands (PSB), twin boundaries, etc., and
they range from a few nanometers to sub-microns—that is the
physical basis for the proposed atomistic-based interphase zone
model.

Finally, one of the main advantages of AIZM is that this model
can be easily incorporated into a con-current multiscale scheme
with the molecular dynamics method by using the bridging scale
approach e.g. [46]. In fact, the con-current coupling between AIZM
model and MD has recently been achieved by the present authors
[22]. A multiscale simulation of a moving screw dislocation has
been carried out there, which allows a dislocation passing through
different scales.

Acknowledgements

This work is supported by a grant from NSF (Grant No. CMMI-
0800744) and a grant from Army Research Office, which are greatly
appreciated.

References

[1] T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, Spall Fracture (Shock Wave and
High Pressure Phenomena), Springer, 2003.

[2] G.I. Barrenblatt, The mathematical theory of equilibrium of cracks in brittle
fracture, Adv. Appl. Mech. 7 (1962) 55–129.

[3] T. Belytschko, An overview of semidiscretization and time integration
procedure, in: T. Belytschko, T.J.R. Hughes (Eds.), Computational Methods for
Transient Analysis, North-Holland, Amsterdam, 1983, pp. 1–65.

[4] T. Belytschko, J.-S. Ong, W.K. Liu, J.M. Kennedy, Hourglass control in linear
and nonlinear problems, Comput. Methods Appl. Mech. Engrg. 43 (1984)
251–276.

[5] T. Belytschko, W.-K. Liu, B. Moran, Nonlinear Finite Elements for Continua and
Structures, Wiley, John & Sons, Chichester, Wset Sussex, England, 2000.

[6] A. Braides, A.J. Lew, M. Ortiz, Effective cohesive behavior of layers of
interatomic planes, Arch. Ration. Mech. Anal. 180 (2006) 151–182.

[7] M.J. Buehler, F.F. Abraham, H. Gao, Hyperelasticity governs dynamic fracture at
a critical length scale, Nature 426 (2003) 141–146.

[8] Y. Chen, J.D. Lee, Atomistic formulation of a multiscale field theory for nano/
micro solids, Philos. Mag. 85 (2005) 4095–4126.

[9] J. Chen, X. Wang, H. Wang, J.D. Lee, Multiscale modeling of dynamic crack
propagation, Engrg. Fract. Mech. 77 (2010) 736–743.
[10] J.D. Clayton, Modeling dynamic plastic and spall fracture in high-density
polycrystalline alloys, Int. J. Solids Struct. 42 (2005) 4613–4640.

[11] M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to
impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443–
6453.

[12] D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8
(1960) 100–104.

[13] M.L. Falk, A. Needleman, J.R. Rice, A critical evaluation of cohesive zone models
of dynamic facture, J. Phys. IV France 11 (2001) 43–50.

[14] H. Gao, P. Klein, Numerical simulation of crack growth in an isotropic solid
with randomized internal cohesive bonds, J. Mech. Phys. Solids 46 (1988) 87–
218.

[15] M. He, S. Li, An embedded atom hyperelastic constitutive model and
multiscale, Comput. Mech. 49 (2012) 337–355.

[16] R. Hill, On constitutive macro-variables for heterogeneous solids at finite
strain, Proc. Roy. Soc. Lond. A 326 (1972) 131–147.

[17] M.F. Horstemeyer, M.I. Baskes, V.C. Prantil, J. Philliber, A multiscale analysis of
fixed-end simple shear using molecular dynamics, crystal plasticity, and a
macroscopic internal state variable theory, Model. Simul. Mater. Sci. Engrg. 11
(2003) 265–286.

[18] T.J.R. Hughes, R. Talor, J. Sackman, A. Curnier, W. Kamoknukulchai, A finite
element method for a class of contact-impact problem, Comput. Methods
Appl. Mech. Engrg. 8 (1976) 249–276.

[19] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis, Prentice Hall, 1987.

[20] J. Israelachvili, Intermolecular Surface & Forces, second ed., Academic Press,
1992.

[21] J.D. Lee, X. Wang, Y. Chen, Multiscale material modeling and its application to a
dynamic crack propagation problem, Theor. Appl. Fract. Mech. 51 (2009) 33–
40.

[22] S. Li, X. Liu, A. Agrawal, A.C. To, The perfectly matched multiscale simulations
for discrete systems: Extension to multiple dimensions, Phys. Rev. B 74 (2006)
045418.

[23] S. Li, G. Wang, Introduction to Micromechanics and Nanomechanics, World
Scientific Publication Inc., Singapore, 2008.

[24] X. Liu, S. Li, N. Sheng, A cohesive finite element for quasi-continua, Comput.
Mech. 42 (2008) 543–553.

[25] G. Lu, E.B. Tadmor, E. Kaxiras, From electrons to finite elements: a concurrent
multiscale approach for metals, Phys. Rev. B 73 (2006). Article No. 024108.

[26] D.S. Markus, T.J.R. Hughes, Mixed finite element methods Reduced and
selective integration techniques: a unification of concepts, Comput. Methods
Appl. Mech. Engrg. 15 (1978) 63–81.

[27] N. Moës, T. Belytschko, Extended finite element method for cohesive crack
growth, Engrg. Fract. Mech. 69 (2002) 813–833.

[28] J.W. Morrissey, J.R. Rice, Crack front waves, J. Mech. Phys. Solids 46 (1998)
467–487.

[29] F. Nabarro, Mathematical theory of stationary dislocations, Adv. Phys. 1 (1952)
269–394.

[30] O. Nguyen, M. Ortiz, Coarse-graining and renormalization of atomistic binding
relations and universal macroscopic cohesive behavior, J. Mech. Phys. Solids 50
(2002) 1727–1741.

[31] M. Ortiz, A. Pandolfi, Finite-deformation irreversible cohesive elements for
three-dimensional crack-propagation analysis, Int. J. Numer. Methods Engrg.
44 (1999) 1267–1282.

[32] S. Pelaez, P. Garcia-Mochales, P.A. Serena, A comparison between EAM
interatomic potentials for Al and Ni: from bulk systems to nanowires, Phys.
Stat. Sol. (A) 203 (6) (2006) 1248–1253.

[33] J. Qian, S. Li, Application of multiscale cohesive zone model to simulate
fracture in polycrystalline solids, ASME J. Engrg. Mater. Technol. 133 (2011).
No. 011010.

[34] H.S. Park, E.G. Karpov, W.K. Liu, P.A. Klein, The bridging scale for three-
dimensional atomistic/continuum coupling, Philos. Mag. 85 (2005) 79–113.

[35] R. Peierls, The size of a dislocation, Proc. Roy. Soc. Lond. 52 (1940)
34–37.

[36] K. Park, G.H. Paulino, J.R. Roesler, A unified potential-based cohesive model of
mixed-mode fracture, J. Mech. Phys. Solids 57 (2009) 891–908.

[37] B. Ren, S. Li, A three-dimensional atomistic-based interphase finite element
simulation of fragmentation in polycrystalline solids, Int. J. Numer. Methods
Engrg., submitted for publication.

[38] J.R. Rice, R.M. Thomson, Ductile versus brittle behaviour of crystals, Philos.
Mag. 29 (1974) 73–97.

[39] J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on the
Peierls concept, J. Mech. Phys. Solids 40 (1992) 239–271.

[40] J.R. Rice, G.E. Beltz, The activation energy for dislocation nucleation at a crack,
J. Mech. Phys. Solids 42 (1994) 333–360.

[41] R. Sauer, S. Li, A contact mechanics model for quasi-continua, Int. J. Numer.
Methods Engrg. 71 (2007) 931–962.

[42] P. Schall, I. Cohen, D.A. Weitz, F. Spaepen, Visualizing dislocation nucleation by
indenting colloidal crystals, Nature 440 (2006) 319–323.

[43] S. Suresh, Colloid model for atoms, Nat. Mater. 5 (2006) 253–254.
[44] G.I. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938) 307–324.
[45] R. Tian, S. Chan, S. Tang, A.M. Kopacz, J.-S. Wang, H.-J. Jou, L. Siad, L.-E.

Lindgren, G.B. Olson, W.-K. Liu, A multiresolution continuum simulation of the
ductile fracture process, J. Mech. Phys. Solids 58 (2010) 1681–1700.

[46] G.J. Wagner, W.K. Liu, Coupling of atomic and continuum simulations using a
bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274.



S. Li et al. / Comput. Methods Appl. Mech. Engrg. 229–232 (2012) 87–109 109
[47] G.N. Wells, L.J. Sluys, A new method for modelling cohesive crack using finite
elements, Int. J. Numer. Methods Engrg. 50 (2001) 2667–2682.

[48] S. Xiao, W. Yang, A temperature-related homogenization technique and its
implementation in the meshfree particle method for nanoscale simulations,
Int. J. Numer. Methods Engrg. 69 (2007) 2099–2125.
[49] X.-P. Xu, A. Needleman, Numerical simulations of fast crack growth in brittle
solids, J. Mech. Phys. Solids 42 (1994) 1397–1434.

[50] X.W. Zeng, S. Li, A multiscale cohesive zone model and simulations of
fractures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 547–556.


	An atomistic-based interphase zone model for crystalline solids
	1 Introduction
	2 Atomistic multiscale finite element method
	2.1 Cauchy continuum
	2.2 Phenomenological cohesive zone model
	2.3 Kinematic assumption of AIZM model
	2.4 Galerkin variational weak formulation of AIZM
	2.5 FEM implementations

	3 Constitutive modeling of AIZM
	3.1 Colloidal crystal interphase model
	3.2 Asymptotic colloidal crystal interphase model
	3.3 Material strength inside the interphase element

	4 Quadrature in interphase elements and interface traction-separation relation
	4.1 Reduced integration and hour-glass control for interphase elements
	4.2 Static condensation and interface cohesive law

	5 Element (mesh) fault energies
	5.1 Mixed-mode interface potential

	6 Simulation examples
	6.1 Example I: validation of AIZM method by MD simulations
	6.2 Example II: ductile fracture vs. brittle fracture
	6.3 Example III: simulations of high-speed impact and spall fracture
	6.4 Example IV: fracture in poly-crystalline material
	6.5 Example V: three-dimensional fracture
	6.6 Example VI: simulation of projectile fragmentation via AIZM

	7 Discussion
	Acknowledgements
	References


