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Abstract Based on embedded atom method (EAM), an
embedded atom hyperelastic (EAH) constitutive model is
developed. The proposed EAH constitutive model provides a
multiscale formalism to determine mesoscale or macroscale
material behavior by atomistic information. By combining
the EAH with cohesive zone model (CZM), a multiscale
embedded atom cohesive finite element model (EA-cohe-
sive FEM) is developed for simulating failure of materials
at mesoscale and macroscale, e.g. fracture and crack prop-
agation etc. Based on EAH, the EA-cohesive FEM applies
the Cauchy-Born rule to calculate mesoscale or macroscale
material response for bulk elements. Within the cohesive
zone, a generalized Cauchy-Born rule is applied to find the
effective normal and tangential traction-separation cohesive
laws of EAH material. Since the EAM is a realistic
semi-empirical interatomic potential formalism, the EAH
constitutive model and the EA-cohesive FEM are physically
meaningful when it is compared with experimental data. The
proposed EA-cohesive FEM is validated by comparing the
simulation results with the results of large scale molecular
dynamics simulation. Simulation result of dynamic crack
propagation is presented to demonstrate the capacity of EA-
cohesive FEM in capturing the dynamic fracture.
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1 Introduction

Material failures in solids, e.g. fracture and crack propaga-
tion in metals, are typical multiscale phenomena, in which
interactions among different spatial and temporal scales are
dominant and pervasive e.g. see Geubelle et al. [15]. Though
Ab initio methods or first principle based calculations are
desirable, it is hardly practical to use them for a system with
large number of atoms [41], because of both computational
expense and inherent complexity of a large atomistic ensem-
ble system. With obvious efficiency in comparison with Ab
initio calculations, molecular-dynamics (MD) or Monte Carlo
(MC) method makes a compromise in accuracy [37], but a
substantial gain in speed and efficiency. To compensate accu-
racy, the embedded-atom-method [9,10] provides a better
description of interatomic interactions compared with con-
ventional pair potentials [21,22], while retaining computa-
tion efficiency. With the embedded atom method (EAM),
many defect problems e.g. crack, melting, grain boundary
etc. have been successfully investigated in connection with
experimental results [11], and the results of first principle
based calculations [8]. An appropriate EAM model is usually
established based on the database of experimental measure-
ments or first principle based calculations. After the EAM
formalism was developed by Daw and Baskes [9], many
EAM potentials have been constructed with respect to the
specific types of metallic systems. Aiming at describing a
wider range of materials, partial background electron densi-
ties related to angular momentum contributions from (spdf)
electron orbits have been established with respect to the
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directionality of the background electron density in the mod-
ified EAM [4]. To avoid dealing with the complexity and
difficulty of fitting parameters of the modified EAM with
experimental data, effort has been made to apply EAM to
a wide range materials including FCC [33,41], BCC [23,
1], HCP [33]. In particular, by prescribing analytical EAM
potential functions, the EAM potentials for materials with
FCC, BCC and HCP crystal structures are made as popular
as the analytical pairwise potentials.

The state of the art of finite element method has two
approaches to model fracture and crack growth: (1) the
extended finite element method (X-FEM), which uses a
locally enriched interpolation field, e.g. the Heaviside func-
tion, at the crack tip and crack surface to represent strong
discontinuity [31], and (2) the cohesive zone model [40],
which releases and splits the shared FEM nodes between
adjacent elements rendering the capacity of describing dis-
continuity within the existing finite element mesh. The con-
ventional cohesive zone model is based on a mathematical or
mechanical interface formalism that provides a set of empir-
ical cohesive laws without looking into the atomistic origin
of cohesion and decohesion, e.g. [40]. However, some effort
has been made to relate the empirical cohesive relation to
experimental measurement data [39]. Nevertheless, a cur-
rent trend of the cohesive zone model research starts to focus
on how to quantify the cohesive zone behavior at multiple
length scales with respect to the physical origin of the deco-
hesion such as atomistic and molecular interactions, crystal
and grain deformation etc. For example, to investigate the
multiscale hierarchical structure of gecko’s attachment sys-
tem, a multiscale cohesive law is formulated in the work of
Yao and Gao [42]. In fact, it has become a public consensus
now that an ideal approach to form a physics-based cohesive
law is to extrapolate constitutive information from atomistic
microstructures [6,17,28,32].

To simulate atomistic interaction at small scale, a multi-
scale cohesive zone model (MCZM) has been developed [36,
43], in which finite width cohesive elements are embedded
within bulk elements, and material interface cohesive rela-
tions are completely determined by atomistic potentials. To
capture the depletion nature of the cohesive zone, the deple-
tion potential approach in colloidal physics has been adopted
in cohesive elements. However, in this approach, the electron
density-independent pairwise potential has been used, which
suffers from several fatal shortcomings. For instance, it is
not true that the vacancy formation energy is always equal
to the cohesive energy as predicted by the pairwise potential
approach. Moreover if the pairwise potential is adopted to
constitute a Cauchy-Born solid, the induced elastic coeffi-
cients of elastic tensor C for a given orthogonal basis in the
stress space always renders the Cauchy relation C12 = C44,
which may not be physical either [11]. On the other hand,
the EAM formalism mentioned above takes into account the

effects of electron density distribution, which avoids such
drawbacks caused from the density-independent atomistic
potentials.

In order to simulate material failures in solids, which are
intrinsically multiscale phenomena, particular mathematical
models on different scales should be considered to capture
the essence of physical reality. Each mathematical model of
a given scale addresses a physical phenomenon governed by
different physical laws over a specific window of length and
time.Usuallythefollowingscalesaredistinguished:subatomic
scaleorscaleofquantummechanicalmodels(electronicstruc-
tures are introduced and Ab initio is needed); atomistic scale
or scale of molecular dynamics models (timescale is around
10−15 to10−9 sand lengthscale is around0.1–10nm;Molecu-
lar dynamics, Monte Carlo etc. are appropriate); mesoscale or
nanoscale (timescale is around 10−8 to 10−2 s; lengthscale is
around10–1000nm;coarse-graininginformationaboutgroups
of atoms and molecules is dominated); macroscale or scale of
continuum models (timescale is longer than 0.1 s and length-
scale is longer than 1 µm; FEM is appropriate).

In this work, a multiscale EA-cohesive FEM with an
embedded atom hyperelastic (EAH) constitutive model is
presented. In the proposed EA-cohesive FEM, the EAH com-
bines the cohesive zone model (CZM) with the EAM potential
that is parameterized from the results of first principle calcu-
lations and experimental measurements [9,14]. The phrase
multiscale EA-cohesive finite element method that we use in
this paper is referred to the model takes into account physical
features from multiple spatial and temporal scales. More pre-
cisely, it is a mesoscale model that is enriched by the informa-
tion from sub-atomic and atomistic scales. Scale separation
is the fundamental characteristic of all the existing multiscale
methodology. Many problems arising in multiscale analysis
are concerned with the interfacing of different mathematical
models appropriate at different scales (e.g. quantum, molecu-
lar and continuum). Usually we refer those multiscale meth-
ods as the con-current multiscale method, whereas in this
work. the presented EA-cohesive FEM is aimed at simulating
material cohesive behavior on mesoscale or even macroscale
by using information from atomistic scale.

With the aid of the EAM formalism, the shortcomings
associated with density-independent pairwise potentials are
improved, and the EAH constitutive model we proposed is a
more realistic coarse-graining constitutive models. Accord-
ingly, more realistic interface cohesive law can be obtained.
Based on a given crystalline structure, e.g. FCC, BCC, HCP
etc., mesoscale constitutive model can be calculated. This
procedure is essentially a molecular dynamics computation
that is carried out for only one atom for each element. As
a multi-body potential, even for a single atom computation,
an EAM based molecular dynamics has to be performed in a
supercell of many atoms. Usually, such a supercell is formed
by stacking a number of primitive unit cells together [41].
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Straightforward application of Cauchy-Born rule can also
be found in the so-called Quasi-continuum (QC) method
[38], as well as the Virtual Internal Bond model [27]. To link
the mesoscale deformation to the microscale lattice defor-
mation efficiently, a generalized Cauchy-Born rule is shown
to reduce the computational cost [13].

The paper is organized in seven sections. In Sect. 2 the
basic ideas of multiscale cohesive finite element model are
discussed, including the decohesion criterion and essential
kinematics. Section 3 is focused on deriving the governing
equations of multiscale cohesive finite element model and
its Galerkin weak formulation. In Sect. 4 an EAH consti-
tutive model is developed. In Sect. 5 the behavior of the
EAH constitutive model in bulk element and cohesive zone
is discussed. In Sect. 6 numerical examples are presented;
Finally in Sect. 7, the presented work is concluded with a
few remarks.

The following convention of notation is adopted: Roman
and italic letters stand for scalar or scalar fields, and only
bold letters stand for vectorial or tensorial fields or variables.

2 Basic ideas of multiscale cohesive finite element model

The original concept of cohesive zone model may be traced
back to the work of Barenblatt [2]. However, combining the
cohesive zone model with finite element method in engineer-
ing computation was made popular by Xu and Needleman
[40], which was initially intended to avoid cumbersome FEM
re-meshing while simulating fracture by using the finite ele-
ment method.

A general illustration of the conventional cohesive zone
model is shown in Fig. 1. In the conventional cohesive zone
model, a pair of discrete cohesive surfaces, which obey cer-
tain prescribed cohesive law is introduced. The introduction
of the cohesive surfaces allows discontinuity kinematics in
finite element solution. It makes the simulation of fracture
possible, because the crack-like defect can propagate along
the element boundaries under the control by the prescribed
cohesive laws.

Traditionally, the prescribed functional cohesive law must
be validated with experimental observation to establish a
physics-based cohesive zone model. It is necessary, but chal-
lenging, in engineering applications to fit the functional form
of empirical cohesive law with experimental results.
Besides, the empirical cohesive laws are based on the con-
cepts of phenomenological fracture mechanics in which the
fracture is categorized as three cleavage fracture modes. In
fact, even within the realm of phenomenological fracture
mechanics, the conventional cohesive zone model may be
still facing troubles in describing mixed mode fracture. Then,
the idea of investigating the fundamental material structure
offers another possible approach to establish a physics-based

Fig. 1 Schematic illustration of conventional cohesive zone model
with cohesive surfaces and prescribed cohesive law

Fig. 2 Schematic conceptual comparison between atomistic cohesive
(interaction) law and phenomenological linear elasticity model

cohesive model. It is interesting to notice that the very early
cohesive zone model [2] was also motivated by the physics
of atomistic interactions.

2.1 Decohesion criterion

In principle, whether or not it is in first principle or phenome-
nological model, material failure behavior should be consid-
ered as a natural material response that can be described in the
constitutive model. A complete material constitutive relation
should be able to intrinsically or naturally describe material
failure without additional failure criterion. For instance, one
example of such complete constitutive relations is the atom-
istic cohesive law (or atomistic interaction) demonstrated in
Fig. 2.

However, several well-known idealized phenomenologi-
cal constitutive models, e.g. linear elastic relation (Hooke’s
law) or hyperelastic constitutive relation, are not the full-
ranged complete material constitutive models, and they only
model material behavior in a particular deformation range or
stress level. Hence, additional failure criteria (e.g. strength
limit, finite stress threshold etc.) are required in order to sim-
ulate the whole history of material failure, especially the
threshold of failure. In fact, to simulate phenomenological
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fracture within the framework of elasticity, a fracture crite-
rion is crucial (as depicted in Fig. 2). Otherwise, the mate-
rial will never fail no matter how large the stress is, which
is in contrary to material behaviors. On the other hand, as
mentioned above, in the paradigm of cohesive model such
as the atomistic bonding relation, a priori fracture criterion
is no longer needed because the failure criterion is intrinsi-
cally embedded into the cohesive relation, which is capable
of representing the full-ranged material constitutive behavior.
Being consistent with experimental observation, from Fig. 2,
one may find that during the loading process the material
in question can reach the critical cohesive state with finite
strength. With a little disturbance alongside loading direc-
tion in stress space, the material will fracture because the
load resistance capacity drops as the deformation increases.

In general, the mesoscale or macroscale cohesive model
in terms of traction and surface separation is a reflection or
homogenization of atomistic scale cohesive behavior that
originates from atomistic debonding. In other words, the
cohesive nature of atomistic behavior is more fundamental
than the mesoscale or macroscale cohesive model. Therefore,
the atomistic potential can provide a complete description of
cohesive constitutive behavior. This is the source of inspira-
tion of the proposed multiscale EA-cohesive FEM and the
EAH constitutive model.

2.2 Kinematics of the multiscale cohesive zone model

To develop an atomistic informed mesoscale cohesive zone
model, recently Zeng and Li proposed a multiscale cohesive
zone model (MCZM) [43]. In the MCZM, the mesoscale
cohesive relation between the interface traction and the sur-
face separation is derived from the physically realistic atom-
istic potential inside the cohesive zone. Hence the cohesive
zone in MCZM is a finite volume zone with finite thick-
ness. This is fundamentally different with the conventional
cohesive zone model (e.g. that of [40]), where the cohesive
zone is a virtual zone with zero thickness, and the interfa-
cial cohesive relation is an empirical formulation that may
be prescribed by fitting the the experimental data (e.g. [3]).

It may be noted that in engineering applications, empirical
cohesive laws often work well in some cases but do not work
well in some other cases. A main reason for such inconsis-
tency, we believe, is because the interface cohesive law is
unrelated with bulk material properties such as microstruc-
ture anisotropy, damage state (e.g. dislocation density), and
even Young’s modulus and Poisson’s ratio, etc.

In the proposed multiscale EA-cohesive FEM, material
failure is viewed as atomistic debonding at atomistic scale,
which is described naturally by atomistic potential. It jus-
tifies that it is reasonable to describe the cohesive inter-
face separation based on the specific atomistic structure and
associated potentials. The main kinematic assumption of the

EA-cohesive FEM is that the deformation inside each bulk
element is homogeneous, and the unstable nonuniform defor-
mation is confined inside the cohesive zones locally. It implies
that the localization is triggered by the assumed atomistic
debonding within the cohesive zones.

To calculate nonlinear inhomogeneous deformation inside
the cohesive element, the inhomogeneous deformation is
considered as a multiscale quantity. Precisely speaking, we
may decompose the displacement field within the cohesive
element into two scales:

ucoh = ucoh + u′
coh, (1)

where ucoh denotes the global homogeneous or coarse-grain-
ing displacement field of cohesive zone, whereas u′

coh is the
in-homogeneous displacement noise or fine scale displace-
ment fluctuation field of cohesive zone. Thus, the current
deformed configuration of cohesive zone can be represented
as:

xcoh = xcoh + u′
coh = FcohXcoh + u′

coh, (2)

where F and xcoh = Xcoh + ucoh denote homogeneous
coarse-graining deformation gradient and homogenous
coarse-graining material position field respectively.

Without loss of generality, we may consider a two dimen-
sional (2D) cohesive zone. In a 2D domain, the cohesive
surfaces degenerate to line segments. If the triangle element
is used for bulk elements, the finite cohesive zone will have
a quadrilateral shape consisting of four boundary edges. To
find the average the deformation gradient inside the cohe-
sive zone, an affine mapping method was employed in [43].
Since the deformation inside the bulk element is assumed to
be uniform and all the displacement fluctuation or fine scale
displacement is confined inside the cohesive element, one
can show that the average deformation deformation gradient
can be determined by the displacements of the finite element
nodes that are on the boundary of the cohesive element. Using
the finite element nodal position coordinates as parameters
(Fig. 3), the effective deformation gradient of the cohesive
zone Fcoh is given in the component form as follows [43]:
⎧
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where

a = X+
l+1 − X−

l , b = Y +
l+1 − Y −

l ,

c = X+
l − X−

l+1, d = Y +
l − Y −

l+1.

Since inside the cohesive zone the deformation is highly non-
linear, one cannot apply the Cauchy-Born rule to extrapolate
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the meso-scale constitutive relation in the cohesive zone.
However, the deformation gradient that characterizes the
highly nonlinear deformation inside the cohesive zone may
be expanded in a Taylor series with respect to a chosen point
X∗ and

Fcoh(X∗) = Fcoh

such that we may approximate the deformation gradient at
an arbitrary point inside the cohesive element as

Fcoh(X) = Fcoh + ∂F
∂X

∣
∣
∣
X∗ ·(X − X∗)

+ 1

2!
∂2F
∂X2

∣
∣
∣
X∗ : (X − X∗)⊗ (X − X∗)+ · · · (4)

One may note that in fact the quadrilateral element has ability
to accommodate one strain gradient components, and how-
ever to completely take into account the effects of the strain
gradient term one needs the higher order quadrilateral ele-
ments. The study of the strain gradient based MCZM will be
discussed in a separated paper.

To focus on the multiscale EA-cohesive FEM in this work,
we consider using the mean field approximation on deforma-
tion gradient, e.g. Fcoh(X) ≈ Fcoh . The advantage of such
approximation is that it provides a theoretical ground to apply
the Cauchy-Born rule [13] to the mean or the average defor-
mation field inside the cohesive zone. Nevertheless, this is
an overly simplified approximation that has no restriction
of the cohesive zone’s nonlinear deformation. In computa-
tions, the aspect ratio of the cohesive element is very small
(10−3 to 10−5), which makes the cohesive element begin stiff.
Thus the quadrilateral cohesive element exhibits the so-called
locking phenomenon under geometric distortion. In a sense,
the mean field approach to cohesive element is equivalent
to one point integration, or reduced integration, which helps
relieve locking. However, this may cause hour-glass mode for
cohesive elements. To assure computational results reliable
and to make the calculation physically meaningful, we intro-
duce the following additional restrictions on the deformation
field of the cohesive zone to control the hour glass model (see
Fig. 4). Consider the bulk element as the triangular constant
strain element, and then the point-wise deformation gradient
within the bulk element is also a constant two-point tensor,
or it only contains coarse scale contribution. As illustrated in
Fig. 4, we denote the cohesive zone characteristic vectors as
Rh1, Rh2, R1 and R2 in reference configuration, rh1, rh2, r1

and r2 in current configuration. As edge vectors, only three of
them are independent. To account for the potential separation
inside the bulk domain, the separated bulk bodies (reflected
by the element) along the cohesive surface are denoted as
� and � antithetically. Then the vector mapping within the

bulk elements associated with the separated bodies is given
by:

r1 = F�R1, r2 = F�R2, (5)

where F� and F� are the deformation gradients of the bulk
element ��t and ��t respectively. In order to assure that
the shape of the cohesive zone does not distort severely and
stays convex, the triple products of the characteristic vectors
must satisfy the first motion restriction given by:

[r1, rh1, ê3] > 0 and [r2, rh1, ê3] > 0, (6)

where ê3 is the normailzed basis orthogonal to the 2D plane.
Analogously, to avoid the line segments of the bulk element
penetrating each other even if the cohesive zone has become
concave, the line segmental vectors must satisfy the second
motion restriction given by,

[rα, rh A, ê3]>0 and [rh A, rβ, ê3]>0, α, β, A = 1, 2.

(7)

The first restriction essentially preserves convexity of the
cohesive zone, therefore we term it as the convexity restric-
tion. Likewise, the second restriction is aimed at prevent-
ing bulk element overlapping and penetrating each other, we
thus coin it as the overlapping restriction. These restrictions
provides additional regularization on the deformation of the
cohesive zone when we apply the Cauchy-Born rule to an
effective field, which may be relaxed if strain gradient effect
or even high order strain gradient effects are considered.

3 Governing equations of EA-cohesive FEM
and its Galerkin weak formulation

As depicted in Fig. 5, the structural or material domain is
modeled as a multiscale hierarchical system with EAH micro
structure in a Lagrangian FEM framwork. The whole domain
is discretized by a set of bulk elements (triangular or quad-
rilateral domains in 2D space; tetrahedral, pentahedron or
hexahedral etc. in 3D space) and a distributed network of
cohesive zones is introduced. In this work an identical EAH
material model based on the same embedded atom potential
is implemented to guarantee that both the bulk element and
cohesive zone have the same microstructure and material
properties. The introduced cohesive zones in the proposed
model are not pre-damaged zones or pre-weaken interfaces.
In other words, the union set of the bulk regions and cohe-
sive zones performs exactly the same with the whole domain
under elastic loading before the critical cohesive state. When
the specimen is loaded, the area with higher stress level will
reach to the critical cohesive limit earlier than the area with
lower stress level. According to the equilibrium requirement,
the stress will be redistributed when parts of the specimen
domain unload forward on the softening path (e.g. fracture or
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Fig. 3 Effective deformation
mapping Fcoh inside the
cohesive element in terms of
nodal coordinates

Fig. 4 Parameters needed in
the convexity restriction and
overlapping restriction on
cohesive element to avoid
hour-glass mode

yield) and the adjacent parts unload backward on the elastic
branch. Here we refer it as the stress redistribution mecha-
nism. In fact, the continuum assumption holds in a region
until the material of the region unloads forward on the post-
peak softening branch, and there is no pre-defined interface
quantities in the system. Whereas in the conventional cohe-
sive zone model a pre-defined physical interface with inde-
pendent cohesive constitutive relations or cohesive law is
embedded along the finite element edges, which often causes
abnormal or lower wave speeds in the numerical cohesive
continuum (e.g. [40]). Besides, in the proposed multiscale
model, when the stress state reaches to a critical cohesive
state, the cohesive zone (�coh0) automatically switches to
an “interface element” so it provides the suitable kinematics
to model strong discontinuities in the domain. For the pro-
posed model, though no pre-damaged zones are introduced,
a distributed network of cohesive elements associated with
a fine finite element discretizaion can also approximate the
possible crack path. In physics, though a specimen is made of
the same material and no geometric defect is introduced, the
specimen may fracture when it is loaded to its ultimate mate-
rial strength. Likewise, though an identical EAH material is
used in both bulk and cohesive regions, the crack nucleates

and grows when some regions of the specimen are loaded
beyond the critical cohesive state. In order to simulate the
crack growth, notches or precracks are introduced in spec-
imen as initial defects. The stress concentration at the pre-
crack tip will leads to higher stress level, and hence initialize
fracture in the cohesive zone naturally.

When FEM mesh is fine enough, even if the true crack is
passing through the bulk element, one may still get satisfac-
tory result, because the simulated crack within the cohesive
element network can provide a good approximation for the
real crack. In order to prevent the bulk elements from “further
deforming” or becoming fractured in a perfect specimen, one
possible way is to truncate the post-peak branch of the atom-
istic potential of bulk element by only using the stable elastic
branch to guarantee the surface separation or fracture occurs
in the cohesive element. Generally speaking, perfect speci-
men doesn’t exist and all of the engineering specimens are
born with defects (e.g. precrack or notchs etc.). In defected
specimen, the stress distribution is not homogenous, and
there is stress singularity in the vicinity of crack tip, which
makes the cohesive elements lying in the crack growing
direction have higher effective stress. According to the equi-
librium condition, once the cohesive zones unload forward on
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Fig. 5 The multiscale hierarchy system of the proposed multiscale EA-cohesive finite element method

the softening branch, the adjacent bulk elements will unload
backward
on the elastic path of EAH constitutive model. It means that
the stress will be redistributed in the specimen. When the
the cohesive elements reach the critical cohesive state ear-
lier than the adjacent bulk elements, the stress redistribution
mechanism will guarantee that the bulk elements unload elas-
tically. The stress redistribution can also make the specimen
fractures in the cohesive elements naturally without killing
elements artificially.

3.1 Governing equations of EA-cohesive finite element
method

The governing equations of the EA-cohesive finite element
method may be derived from the balance of linear momen-
tum. Consider an open and connected set � ⊂ Rn with
boundary ∂� in the domain of analysis. Given any subset
��0 with boundary ��0, the global balance law is employed
on any given patch��0sub ⊆ ��0 in the reference configura-
tion, and the time derivative with respect to linear momentum
l is given by:

l̇ =
∫

��0sub

tn0
0 d��0 +

∫

��0sub

ρ0bd��0

=
∫

��0sub

ρ0ad��0, (8)

where ρ0 is the original density, tn0
0 is the traction force with

respect to the normal vector n0, b is the body force per mass
and a = ü is the acceleration of the deferential volume in
question. By invoking the divergence theorem, the balance
of linear momentum may be written in a global form as fol-
low,

∫

��0sub

Div(P)d��0sub +
∫

��0sub

ρ0bd��0sub

=
∫

��0sub

ρ0ad��0sub, (9)

where the P is the first Piola–Kirchhoff stress tensor. Con-
sider the balance of linear momentum for any arbitrary
��0sub within��0, the following strong form holds in mate-
rial point within the sub domain ��0sub ,

DivP + ρ0b − ρ0a = 0,∀��0sub ⊆ ��0. (10)

By the definition u = x − X, and the boundary conditions
with respect to displacement u and traction t are given by

u = ũ on �u�0 = ∂u��0, (11)

P · N = T̃ on �t�0 = ∂t��0. (12)

For a given��0, we denote one of its adjacent subsets as��0

respectively. In conventional cohesive finite elements, These
two neighbor subdomains share the part of their boundaries,
which is denoted as ��0

⋂
��0. In EA-cohesive FEM these

two boundaries are connected by a finite size cohesive ele-
ment. In other word, these two boundaries are separated by
constitutive width (2D space) or thickness (3D space) h0 (see
Fig. 5) of the cohesive zone, and they form a pair of crack
surfaces after the corresponding cohesive strength vanishes.
For convenience, the boundaries associated with the cohesive
surfaces are denoted as �coh�0 and �coh

�0 respectively. On the
reference configuration, the length of the cohesive surfaces
�coh�0 and �coh

�0 is denoted by l0. If we assume there is inertia
inside the cohesive zone, the traction forces should satisfy

N�coh�0
· P�coh�0

+ N�coh
�0

· P�coh
�0

+ h0ρ0bcoh

= h0ρ0a, on �coh�0 , �
coh
�0 , (13)

123



344 Comput Mech (2012) 49:337–355

where ρ0, N�coh�0
and N�coh

�0
denote the initial density of cohe-

sive zone, outer normal vector of �coh�0 and �coh
�0 respectively.

By doing line integration along curves�coh�0 and�coh
�0 , we can

obtain the linear momentum conservation relation of cohe-
sive zone (see Fig. 5):
∫

�coh�0

N�coh�0
· P�coh�0

d� +
∫

�coh
�0

N�coh
�0

· P�coh
�0

d�

= −l0h0ρ0bcoh + l0h0ρ0a. (14)

The initial configuration of the cohesive zone is denoted
by �coh0. By invoking the Gaussian Theorem, the dynamic
equilibrium relation of the cohesive zone is approximated as
follow
∫

�coh0

Div(Pcoh)d�+ l0h0ρ0bcoh = l0h0ρ0a. (15)

In computation, the aspect ratio � = h0/ l0 of cohesive
zone is chosen around 10−3 to 10−5 in analogous to persis-
tent slip bands. Practically, the bulk element partition of the
domain of interests may be viewed as a mesoscale or macro-
scale finite element discretization at spatial scale l0, without
considering the virtual cohesive zones. In this case, the con-
tribution of body force and inertia in cohesive zone can be
lumped into corresponding bulk element nodes.

3.2 Galerkin variational formulation for EA-cohesive FEM

To solve a problem by using the EA-cohesive FEM in the
frame of finite element method, we introduce the notion of the
multiscale cohesive element discretization: given the domain
�0 of analysis, admit the existence of triangular sub domain
�e�0 in physical space, such that

�0 =
⋃

e

�e�0. (16)

With the aid of trail function uh and test function δuh , we
obtain the following Galerkin Lagrangian weak formulation
for the proposed cohesive finite element method

nbulk
elem∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

(ρ0üh · δuh + P(u) : δFh)d�

⎫
⎪⎪⎬

⎪⎪⎭

+
ncoh

zone∑

k=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�k
coh0

(ρ0üh · δuh + Pcoh(u) : δFh
)d�

⎫
⎪⎪⎬

⎪⎪⎭

=
nbulk

elem∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

ρ0b · δud�+
∫

∂t�
e�0

T̃ · δuhd�

⎫
⎪⎪⎬

⎪⎪⎭

+
ncoh

zone∑

k=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�k
coh0

ρ0b · δud�+
∫

∂t�
k
coh0

T̃ · δuhd�

⎫
⎪⎪⎬

⎪⎪⎭

(17)

where �e�0, �k
coh0, ∂t�

e�0 and ∂t�
k
coh0 are the e-th element

domain, the k-th cohesive zone domain, the natural boundary
related to�e�0 and the natural boundary of the k-th cohesive
zone domain respectively. Even though the volume of the
cohesive element (∼ � l2

0) is much smaller than the bulk
element (∼ l2

0), we still consider contributions due to inertia
and body force inside cohesive zone. Since a cohesive zone
shares the same FEM nodes with the adjacent bulk elements,
inertia force and body force contributions are lumped to the
corresponding FEM nodes. According to the linear momen-
tum conservation of cohesive zone (see Eq. (14)), Eq. (17)
can be simplified as follow,

nbulk
elem∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

(ρ0üh · δuh + P(u) : δFh)d�

⎫
⎪⎪⎬

⎪⎪⎭

+
ncoh

zone∑

k=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�k
coh0

Pcoh(u) : δFh
d�

⎫
⎪⎪⎬

⎪⎪⎭

=
nbulk

elem∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

ρ0b · δud�+
∫

∂t�
e�0

T̃ · δuhd�

⎫
⎪⎪⎬

⎪⎪⎭

(18)

By applying the divergence theorem to the cohesive zone
�k

coh0, the cohesive traction Tcoh which is defined as Pcoh ·
Ncoh can be obtained:

∫

∂t�
k
coh0

Tcoh(u) · δuhd� =
∫

�k
coh0

Pcoh(u) : δFh
d�, (19)

where the Ncoh is the outer normal vector of �k
coh0. As we

can tell from Eq. (19), the cohesive traction applies on the
cohesive zone is a function of displacement filed of cohesive
zone. Since we can evaluate the cohesive surface separation
(normal separation and tangential separation) from displace-
ment field u, the we can obtain cohesive law for the proposed
cohesive zone model with respect to Pcoh . It must be noted
that the sign of the cohesive traction applying on cohesive
zone is different with that of associated bulk element. For
convenience, the union set of all natural boundary of cohe-
sive zone is denoted as

⋃
k ∂t�

k
coh0. By substituting Eq. (19)

into Eq. (18), the final Galerkin weak formulation is obtained:
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nbulk
elem∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

(ρ0üh · δuh + P(u) : δFh)d�

−
ne∑

ek=1

∫

�ek
coh0

⋂
(
⋃

k ∂t�
k
coh0)

Tcoh(u) · δuhd�

⎫
⎪⎪⎬

⎪⎪⎭

=
nbulk

elem∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

ρ0b · δud�+
∫

∂t�
e�0

T̃ · δuhd�

⎫
⎪⎪⎬

⎪⎪⎭

, (20)

where ne is the number of adjacent cohesive zones of
e-th bulk element �e�0. For the consideration of efficiency,
the lumped mass matrix is adopted. Then the cohesive trac-
tion contributed by the cohesive element can be lumped
together via cohesive surface (boundary) integration and dis-
tributed to corresponding nodes. It is worthy emphasizing
that the proposed cohesive zone model can simulate strong
discontinuity without introducing displacement jump enrich-
ment in the Galerkin weak formulation. In the proposed
methodology, the cohesive law with respect to Pcoh and bulk
material response P are related to the microstructure and
atomistic potential. In the following sections, an EHA consti-
tutive model is developed based on embedded atom method.
The EHA constitutive model provides a method based on first
principle how to determine, from a macroscopic standpoint,
whether a material point has entered softening deformation
region or not.

Consider the following FE interpolation as the trial func-
tion uh in each element

uh(X) =
nnode∑

I=1

NI (X)dI , (21)

where nnode, NI (X) and d I are the node number of the ele-
ment, shape function and nodal displacement of I -th node.
Following the standard FE discretization procedure (e.g. [7]),
the semi-discrete equation of motion is obtained:

Md̈ + f int (d)− fcoh(d) = fext (22)

where

M =
nelem

A
e=1

∫

�e�0

ρ0NeT Ned�, (23)

fint =
nelem

A
e=1

∫

�e�0

BeT Pe(d)d�, (24)

fcoh =
nelem

A
e=1

ne∑

ek=1

∫

�ek
coh0

⋂(⋃
k ∂t�

k
coh0

)

NeT Tcoh
e d�, (25)

fext =
nelem

A
e=1

⎧
⎪⎪⎨

⎪⎪⎩

∫

�e�0

ρ0NeT bed�+
∫

∂t�
e�0

NeT T̃
e
d�

⎫
⎪⎪⎬

⎪⎪⎭

(26)

where A, Ne and Be are the element assemble operator, the
element shape function matrix and the element B matrix
respectively.

Explicit time integration algorithm is used to solve the
discrete dynamic equations (see [7]). The brief flowchart for
explicit time integration of the proposed cohesive finite ele-
ment method is presented. After initializing the system, the
force vectors can be computed. Then the acceleration of the
present step can be obtained as:

an = M−1(fext
n − f int

n + fcohe
n

)
. (27)

Then the displacement field, acceleration field and velocity
field can be updated respectively:

dn+1 = dn + vn
tn + 1

2
an
(

tn

)2
, (28)

an+1 = M−1(fext − f int + fcoh), (29)

vn+1 = vn + 1

2
(an + an+1)
tn, (30)

where dn is the displacement field at the time step at the time
step n, vn is the velocity field at the time step n, and an is
the acceleration field at the time step n. The subscript n and
n + 1 denote to quantities evaluated at time tn and tn+1.

4 The embedded atom hyperelastic (EAH) constitutive
model

In order to study material responses during fracture, more
accurate and fundamental constitutive model is needed. In
principle, crystalline defects, interatomic bonding, and many
other properties can be studied by ab initio or first principle
based calculations [18,20]. And the solution of multi-body
Schrödinger equation can provide most accurate force field
and displacement field at meso-scale [24]. However, due to
the complexity of multi-body Schrödinger equations it is hard
to solve mesoscale problem and almost impossible to solve
macroscale (e.g. a micron to a millimeter) engineering prob-
lem by using Ab initio method with the current computer
technology. Up to today, direct ab initio computations are
only suitable for small systems of about a few thousand atoms
with a median size supercomputer [29].

Instead of solving the Schrödinger equation of a many
electron problem, one can approximate the system so that the
total energy of a given atomic arrangement can be summed
up over pair potentials [26]:
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Etotal = 1

2

∑

i, j (i �= j)

φ(ri j ). (31)

If the pair potential is used, different atomistic bonds are
independent. But this independency among atomistic bonds
is a mis-representation of physical reality. Although the pair
potential formalism has the advantage of computational sim-
plicity, only in the case of noble gases can the interactions
between atoms be described realistically by density-indepen-
dent pair potentials. This limits the capacity and suitability
of the pair potential in determining constitutive relations of
solids and especially metallic materials. For instance, FCC
metals usually have the ratio C12 : C44 closer to 2 instead of
1 indicated by the Cauchy relation based on pairwise poten-
tials simulations. This is because that the electrons of metal-
lic material are not localized around the nuclei, and in fact,
the valence electrons namely free-electron gas or electron
glue are shared among ions. Pairwise potentials do not have
enough capacity to simulate these properties. Daw and Bas-
kes postulated that the energy in a crystal solid consists of the
energy obtained by embedding an atom into a local electron
density cloud. The local electron density cloud is determined
by the surrounding atom configuration of the given atomic
system [9,10]:

Etotal =
∑

i

Ei , (32)

where Ei is the energy associated with i th atom. The Ei is
given by:

Ei = �α

⎛

⎝
∑

j �=i

� j (ri j )

⎞

⎠ + 1

2

∑

i, j (i �= j)

φ(ri j ), (33)

where �α denotes the embedding function that represents the
energy required to place i-th atom of type α into the back-
ground electron cloud, � j denotes the spherically averaged
atomic electron density of the j th atom, andφ is the repulsive
pair electrostatic interaction. Based on Eq. (33), in order to
calculate atomic potential energy or elastic energy density,
one needs to calculate the distance between each pair of two
atoms. To do this, one has to carry out molecular dynamics
computations.

However, if the local deformation is uniform, we may not
need to use molecular dynamics to calculate stress as a quan-
tity of assemble average, e.g. virial stress. Instead, we can
use the Cauchy-Born rule, which only requires to calculate
the stress in a single Wigner-Seitz cell. The application of the
Cauchy-Born rule has two pre-requisites. The first pre-requi-
site is that the deformation of the underline lattice has to be
uniform. When the first pre-requisite is satisfied, the spacial
position of the atoms within the crystal lattice conform to
the overall deformation of the medium. This situation can be
expressed by the following simple mathematical expression:

ri j = F · Ri j , (34)

where Ri j is an undeformed lattice distance vector between
the atom i and atom j , ri j is the corresponding deformed
lattice distance vector, and F is the uniform (constant) defor-
mation gradient. The above expression basically implies that
the distance between two arbitrary atoms is a function of
deformation gradient, i.e. |ri j | = f (F). The physical inter-
pretation of such statement is that the mean displacement
field uniquely determines the distance between two arbitrary
atoms, and there is no displacement fluctuation when a region
of a material undergoes uniform deformation. In the MCZM,
we assume that the deformation inside each bulk element is
uniform, therefore one can apply the Cauchy-Born rule to
calculate the distance between two arbitrary atoms without
invoking molecular dynamics calculations. Second, since the
deformation is assumed to be homogeneous, so the stress
state is also homogeneous; therefore one only needs to cal-
culate stress at one (arbitrary) material point for an entire
bulk element, and this stress should represent the stress state
for the entire bulk element, whose size is at mesoscale. This
is often done in practice by calculating the stress state at
an arbitrary material point that is located in a supercell (see
Fig. 6). For EAM calculation, the unit cell is not a conven-
tional primitive cell but a much larger super-cell involving
3rd to 6th nearest neighbors of the center atom. Let us denote
the position of the center atom in the super-cell as Xi in the
referential configuration, and xi in the current configuration,
then the referential bond vector between i-th and j-th atom
is given by:

Ri j = X j − Xi . (35)

By applying the affine mapping F on those referential bond
vectors, the deformed bond vectors between the i-th and j-th
atom is given by

ri j = x j − xi = FRi j , i �= j, i, j = 1, 2, . . . , natom

(36)

where natom is the total number of atoms within the given
atomic super-cell associated to the domain undergoing the
deformation.

Based on the assumption of homogeneous deformation in
the bulk element and the EAM formalism, the elastic energy
density in the bulk material an be derived from the potential
energy density in a lattice unit cell. The elastic stored energy
function We is given by:

We = 1

Vt

natom∑

i

Ei = 1

J V0

natom∑

i

Ei , (37)

where J is the Jacobian defined as det (F), Ei is the energy
of a single atom defined in the embedded atom model (see
Eq. (33)), and Vt and V0 are the volumes of the deformed
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Fig. 6 Depiction of super-cell
and conventional unitcell with
respect to the reference
configuration and deformed
configuration

and undeformed configuration respectively (as depicted in
Fig. 6). In particular, it should be noted that the surface map-
ping in 2D problem should invoke the conjugate of deforma-
tion gradient. Since Ei is a function of current bond vectors
ri j defined on the current configuration, if we assume that
the deformation in a local region is uniform, the total energy
becomes a function of deformation gradient F. Then the elas-
tic energy density We is given as,

We(F) = 1

det (F)V0

natom∑

i

Ei (F) = W̃e(E) (38)

where E = 1
2 (C − I) is the Green-Lagrangian strain tensor.

Since the energy change within the embedded atom model
is independent of the loading path, which implies the exis-
tence of the stored elastic energy function, and it then leads
to the the constitutive relation for the bulk material at meso-
scale:

S = 2
∂ψ(C)
∂C

= ∂W̃e(E)
∂E

(39)

where S is the 2nd Piola Kirchhoff stress (PK-II), C is the
right Green Deformation tensor and ψ is the store energy
function with respect to C. By substituting the W̃e(E), an
EAH constitutive model in terms of the PK-II stress tensor
with respect to E at the position of the i th atom is given by:

Si = 1

det (F)V0

⎧
⎨

⎩

1

2

∑

j �=i

φ′(ri j )
Ri j

⊗
Ri j

ri j

+�
′
α(ϑi )

∑

j �=i

�′
j (ri j )

Ri j
⊗

Ri j

ri j

⎫
⎬

⎭
, (40)

where ϑi = ∑
j �=i �

′
j (ri j ) is the electron density at the posi-

tion of i-th atom in the background electron cloud. Although
the 2nd Piola–Kirchhoff stress is convenient in constructing

the constitutive model, it results in a cumbersome expression
in the balance equation of linear momentum, whereas the 1st
Piola–Kirchhoff stress (PK-I) works better. Alternatively, the
EAH constitutive model expressed in the form of PK-I stress
tensor Pi is also given as follows,

Pi = 1

det (F)V0

⎧
⎨

⎩

1

2

∑

j �=i

φ′(ri j )
ri j

⊗
Ri j

ri j

+�
′
α(ϑi )

∑

j �=i

�′
j (ri j )

ri j
⊗

Ri j

ri j

⎫
⎬

⎭
. (41)

According to the derived EAH constitutive model, it is pos-
sible to link atomistic scale information with constitutive
response on higher scale level. Since fracture is intrinsically
a multiscale phenomenon, the multiscale EAH finite element
approach may provide some advantages in simulation of frac-
ture.

5 Behaviors of EAH material in bulk element
and cohesive zone

Now the most crucial problem is how to calculate the stress
based on the derived EAH constitutive formalism. As a
coarse-graining constitutive model, EAH bridges the atom-
istic scale and the mesoscale or even macroscale. It is a
method to determine material behavior from a macroscopic
standpoint based on first principle. From a mathematical
standpoint, the EAH also provides a more complete constitu-
tive formalism. As an atomistic potential formalism, EAM is
based on the density functional theory (DFT), and the reliabil-
ity is guaranteed by fitting the atomistic potential functional
to the ab initio or first principle results [25,30]. Likewise, by
carefully fitting EAH parameters with the experimental and
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Fig. 7 The 2×2×2 fcc super-cell for calculating the background free
electron gas

first principle calculation data, the EAH constitutive model
may work for a host of metallic materials.

In EAM theory, the background electron density ϑi is the
density at the reference atom site (i.e. i-th atom of interest)
due to the host atoms [4], i.e. the surrounding atoms in the
lattice. Unlike the pairwise potential, the EAM is a multibody
potential in principle. Then a super-cell is needed to perform
the calculation on the background electron density within
a plane-wave periodic framework [9,11]. As illustrated in
Fig. 7, the super-cell is constructed by stacking a couple of
conventional unit cells together without the atom in question
in the center. For example, the supercell shown in Fig. 7 can
be denoted as a 2 × 2 × 2 super-cell. The super-cell consists
of eight primitive unit cells.

For demonstration purpose, we select metal Cu as a sim-
ple illustration. The atomic electron density function for Cu
is given by:

�(ri j ) = �e exp
(

A − Ari j

r1e

)
, (42)

where r1e denotes the distance to the 1st nearest neighbor
atom in lattice at equilibrium state and �e and A are given
as 2.114 nm−3 and 6.47 respectively for copper. Given an
arbitrary i th atom, then the electron density ϑi (defined in
Eq. (40)) at the position of i-th atom can be calculated based
on different super-cells. The calculated background electron
densities for different sizes of super-cells are compared with
the reference value in Table 1. The differences between the
calculated background electron gas and the reference value
for Cu are all less than 1%. In general, the EAM potential
has two generic parts: the part coming from local electron
density, and a pair potential part. The Coulomb potential or
Coulombic type potentials are the most commonly used as
pair potential in EAM. The general form of the Coulombic
type pairwise term is given as follows [14],

φαβ(ri j ) = Zα(ri j )Zβ(ri j )

ri j
, (43)

where α and β denote the types of atoms, Zα and Zβ denote
the effective charges of respective atoms. It has been shown
that it is possible to obtain effective charges Z(ri j ) to accu-
rately describe the energy of system. Such a pairwise poten-
tial definitely decreases monotonically with the increasing
separation [11,14,41]. By assuming functional forms for
Z(ri j ), the parameters in EAM can be adjusted to fit know
bulk properties (e.g. lattice constants, elastic constants etc.)
and many specific functional forms can come out. For conve-
nience, an analytic form of pairwise potential for Cu is given
by

φ(ri j ) = −φe

(
1 + C

( ri j

r1e
− 1

))
exp

(
−D

( ri j

r1e
− 1

))
,

(44)

where the parameters C , φe and D are given as 12.06,
0.1217 eV and 6.82054 respectively.

Traditional embedding functions �α with respect to atoms
α from H to Ar are parameterized within the frame of homo-
geneous electron gas based on a DFT-type formalism (e.g.
[34,35,41]). Due to the heterogeneity of the electron gas in
the neighborhood of the atom in question, this universal func-
tional form of the embedding function can be written as fol-
lows:

�α(ϑi ) = �0

(

1 − h ln

(
ϑi

ϑe

))(
ϑi

ϑe

)h

, (45)

where �α represents the parametrization of embedding
energy function of α atom, and �0 is the model fitting param-
eters related to model fitting parameter h and Cauchy discrep-
ancy. The ϑe is the background electron gas density, which
is calculated and tabulated in Table 1 for Cu. Figures 8 and 9
illustrate the embedding energy dependence on the electron
density and interatomic distance that are expressed in Eqs.
(42) and (45). The model fitting parameter h is chosen as
0.55, and the embedded energy model fitting parameter �0

is chosen as −2.19 for parametrization. Due to the differ-
ences of the calculated electron densities, there are deviations
in the embedding energy calculation, which however is less
than 10−3eV. On the other hand, differences between exper-
imental values of the embedding energy range from 10−3

to 10−1 eV [41], which is mainly due to spatial fluctuation
of electron density. Within such range, the fluctuation in the
calculated values of embedding energy due to the size of the
super-cell may also be tolerated.

With the concern of energy conservation and computa-
tional efficiency, the following cutoff function [5] can be
implemented in the atomic electron density calculation, and
the parameter of related potential function are as follows:
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Table 1 The calculated
background free electron gas
densities on different super-cells

a Including the atom in question
b Reference given by [41]

Super-cell Atom No.a ϑie (Å−3) Difference (%)

Cu 2 × 2 × 2 32 2.650000e−002b 0.0000000000000000

2 × 2 × 2 32 2.67233958e−002 0.8430030188679303

4 × 4 × 4 256 2.67432150e−002 0.9177924528301943

6 × 6 × 6 864 2.67432185e−002 0.9178056603773572

Fig. 8 The calculated embedding energy �(eV) and the calculated
background electron density ϑ(Å−3) of Cu versus the dimensionless
atomistic distance r1/r1e

f (ri j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, r̆ ∈ [1,∞)

(
1 − (1 − r̆)4

)2
, r̆ ∈ [0, 1]

0, r̆ ∈ (−∞, 0]

(46)

where r̆ = (rc − ri j )/δr is the dimensionless distance, and
the smoothing cutoff region δr can be taken as 0.1 Å specially
for Cu.

As illustrated in Fig. 9, the embedding energy goes to zero,
when the electron density ϑ approaches zero.

5.1 EAH constitutive model in bulk region

In the proposed EAH constitutive model, the EAM potentials
are implemented to offer atomistic information and construct
coarse-graining material response on mesoscale or even mac-
roscale. In Fig. 10a, we show an EAH constitutive model
with parameters obtained from an EAM calculation for sin-
gle crystal Cu. In this case, a type of (hydrostatic stress
tr(S)/3) tri-axial loading is applied to a specimen by pre-
scribed uniformed strain loading E11 = E22 = E33. It can
be see from Fig. 10a that the EAH material is able to sus-

Fig. 9 Embedding energy �(ϑi ) (eV) versus the dimensionless elec-
tron density ϑi/ϑe

tain infinitely large hydrostatic compression. On the other
hand, it shows that the stress-strain relation can capture the
strain softening phenomena naturally. When the stress level
exceeds a critical value the post-peak behavior or post-yield-
ing behavior of single crystal Cu becomes unstable, and the
material state in that part of stress-strain relation may be
viewed as the failure state in engineering. As illustrated in
Fig. 10a, a single crystal Cu will fail due to the atomis-
tic debonding. Juxtaposing with the hydrostatic stress and
hydrostatic strain, we also plot the relationship between the
the isotropic volume strain εV = J − 1. It can also be
approximated by the trace of the Green-Lagrangian strain
tensor i.e. Eii when the strain is small. From Fig. 10a, one
can see that a single crystal Cu is failing when the volu-
metric strain is actually increasing. Physically, as the dis-
tance between two atom increases, the strength of the inter-
atomic bond becomes weaker and weaker such that the atoms
will not stay together anymore. In Fig. 10b, the mesoscale
constitutive relation obtained under a constrained uniaxial
tension and compression is depicted E11 �= 0 and E22 =
E33 = 0. As the uniaxial strain E11 increases from the stress
free state, the tensile stress component S11 with respect to
the straining increases until the critical cohesive state. Due
to the strain-constraint conditions (E22 = E33 = 0), the
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Fig. 10 The behavior of EAH (embedded atom hyperelastic) consti-
tutive model in bulk region (Cu). a Hydrostatic stress tr(S)/3 = S11 =
S22 = S33 of EAH material in bulk element with respect to triaxial

loading (E11 = E22 = E33 = tr(E)/3). b Components of PK-II
S11, S22, S33 of EAH material in bulk region vs. constrained uniaxial
loading (E11 �= 0, E22 = E33 = 0)

volumetric strain is only a function of the line strain E11.
As observed from Fig. 10b, all the normal stress components
S22, S33 are non-zero, which is the manifestation of the Pois-
son’s ratio effect, and it indicates that the deformed atom-
istic configuration is not the lowest energy state under the
prescribed deformation constraint. In order to attain a mini-
mum state, lattice structure will develop lateral deformation.
Otherwise lateral stress will develop to manifest the corre-
sponding deformation tendency when the lateral deformation
is constrained.

5.2 EAH material in cohesive zone and EAH cohesive law

The interface between the bulk regions is described by cohe-
sive zones in EA-cohesive FEM, for which the associated
EAH cohesive law is proposed. The most frequently adopted
cohesive law in literature should be the exponential, or sinu-
soidal, type of cohesive laws [40], which made a great success
in describing the work-of-separation under mode-I, mode-
II even mixed-mode conditions. For the EA-cohesive FEM
proposed here, evidently an adequate cohesive law of rele-
vant loading conditions is required to predict the occurrence
of delamination and crack propagation etc. in engineering
structures. Based on EAM, the associated EAH cohesive law
can be naturally derived by invoking the Cauchy-Born rule.
In EA-cohesive FEM, all defects and damage are assumed to
be confined within the cohesive element, which is essentially
a finite width interface. Hence, its behavior may be charac-
terized by the cohesive constitutive relations in terms of the
normal and tangential separation.

In EAH cohesive law, the energy of separation of cohesive
zone with respect to normalized normal opening is depicted

Fig. 11 The normal EAH cohesive energy φn and its repulsive part and
attractive part with respect to the pure normal separation un/R0 when
the EAH cohesive zone is under mode-I loading condition

in Fig. 11, where the dimensionless normalized normal sep-
aration is given as un/R0 and the energy of separation is
given as φn . un is the normal separation, and R0 is the bal-
ance distance between the nearest neighbor atoms in the
given super-cell, which is material-dependent. The normal
cohesive energy of separation φn can be decomposed into
two parts as repulsive cohesive energy of separation φnr and
attractive cohesive energy of separation φna . As depicted in
Fig. 11, the energy of cohesive zone with respect to repul-
sive interaction (the pairwise term in EAM) drops quickly as
the dimensionless normal opening increases in analogy to the
atomistic repulsive force. Also, the attractive energy of cohe-
sive zone increases as the dimensionless un/R0 increases.
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Fig. 12 The tangential EAH cohesive energy φt , tangential cohe-
sive traction T 12

coh , and normal cohesive traction T 22
coh versus tangential

separation ut/R0

Evidently, the total cohesive energy of separation is the direct
superposition of the repulsive and attractive cohesive ener-
gies. The characteristic of the cohesive energy of separation
is the same with energy of separation of other proposed cohe-
sive laws in literature. The existence of energy well which is
also originated from the EAM potential justifies the proposed
model as a cohesive law.

The responses with respect to tangential separation (tan-
gential cohesive energy φt , tangential cohesive traction T 12

coh
and normal cohesive traction T 22

coh) are shown in Fig. 12. As
can be seen, the shear traction (denoted as T 12

coh), increases
as the tangential separation ut/R0 increases until the critical
cohesive length (approximately 1.2R0). When the tangential
displacement is beyond the characteristic length, the shear
traction decreases and vanishes at around 4.2R0, leading to
complete shear failure. To interpret the result, we first zoom
into the atomistic scale. At atomistic scale, the atoms locates
in its equilibrium position with lowest energy. When the slid-
ing between two adjacent atomic plane initializes, the atoms
would move to higher energy state by overcoming associ-
ated resistance. The resistance has a peak and after reaching
the peak, it will drop. For the lattice of perfect crystal, such
atomistic resistance is periodic. However, due to the presence
of defects such as, dislocation, grain boundary, twin bound-
ary, etc. the lattice periodicity at mesoscale does not exist
for most engineering materials. The vanishing of shear cohe-
sive (Fig. 12) traction demonstrates this point. In Fig. 12,
the tangential energy of separation φt is plotted, in which φt

increases as the tangential separation increases, and it starts
to decrease after reaching the peak point of tangential trac-
tion and finally approaches to a constant. To investigate the
coupling between the normal cohesive traction (T 22

coh) and

Fig. 13 Cohesive energy in mixed-mode with respect to the tangential
separation u/R0 under different loading angles θ

the tangential separation, the tendency of the changing with
respect to normal cohesive traction during pure tangential
separation is also plotted in Fig. 12. Likewise, the normal
cohesive traction that increases at the beginning of the tan-
gential separation and deceases when beyond approximately
1.0R0, is mostly attractive except in the tail of interaction.

The combined influence of normal and tangential sepa-
ration under mixed-mode loading with constant separation
angle θ is shown in Fig. 13 in terms of coupled cohesive
energy of φθ . As can be seen from the figure, when the θ = 0
it stands for the cohesive energy under purely tangential sep-
aration (φt ) and likewise when θ = π/2 it stands for the
cohesive energy under the purely normal separation (φn).
To demonstrate the capacity of the EAH model to describe
mixed mode cohesive law, the mixed-mode cohesive energy,
φθ under different loading angle θ , are calculated.

The influence of the loading angle θ on the cohesive energy
φθ is illustrated by smooth transition as θ changes continu-
ously. No coupling parameters are needed in constructing
the mixed-mode cohesive relation. The reason for the natu-
ral coupling for mixed mode is that the normal as well as the
tangential cohesive traction is derived from EAH constitutive
model in the cohesive zone.

6 Numerical examples

In this section, numerical examples are presented to dem-
onstrate the capability of the EA-cohesive FEM and EAH
constitutive model.

6.1 Case I: validation of EA-cohesive FEM and EAH

Molecular dynamics (MD) is a natural and powerful method
that can be use to simulate fracture at atomistic scale. When
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 14 Evolution of the crack tip field

spatial scale and temporal scale increase, one may need to
use massively parallel MD to carry out the fracture simulation
to overcome the computation cost. To validate the multiscale
EA-cohesive FEM, we carry out a comparison study between

the multiscale EA-cohesive FEM and MD paradigm. A large
scale MD simulation of fracture using EAM potential is cho-
sen from literature [19]. The same analytical EAM potential
is implemented to construct the associated EAH constitu-
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tive model and EA-cohesive FEM model. The same mode-I
tensile loading is also applied to the EAH specimen in our
EA-cohesive FEM. To compare with the MD simulation, the
same parameters are used in constructing the EAH speci-
men. One may note that the time duration of the simulation
is limited by the traversal time period of the acoustic wave
emitted from the crack tip and bounced back from the trac-
tion-free boundary, which may cause additional reflection
wave loading at the crack tip and complicate the physical
phenomenon.

In order to compare with the results of MD simulation,
the exact same problem set-up is considered. The precracked
specimen is governed by the proposed EAH constitutive rela-
tion with the same EAM parameters. The EAH specimen in
the EA-cohesive FEM model is composed of 12,894 bulk
elements and 19,171 cohesive elements while the reported
MD simulation used 300,000–600,000 atoms. As the crack
propagates, the acoustic waves that have been emitted from
the crack tip will return back to the newly born crack region
by the reflection from the free boundaries of the EA-cohesive
model. As illustrated in Fig. 14, the acoustic wave perturbs
the propagation of the crack, and it may cause the crack bifur-
cation. Similar with large scale MD simulation results, the
acoustic waves emitted from the crack opening due to crack
generation (bond breakage) have already bounced off the top
free surface and appear as a family of concave upward arcs
that intersect concave downward arcs from later bond-break-
ing events. According to the discussions in the literature,
without proper acoustic wave absorption mechanism at the
boundary of the specimen, the reflection of the elastic waves
would set up a time limit (Tlimit = Lx/c) for unperturbed
crack propagation. The crack velocity versus time for EAM
crystal calculated by large scale MD simulation is reported.
The crack propagation velocity history computed by EA-
cohesive FEM is compared with that of the large scale MD
simulation in Fig. 15. Time unit is 20t0 [19]. According to the
simulation, the initiation time of crack propagation of EA-
cohesive model is a little earlier than that of large scale MD.
However the peak velocity of the EA-cohesive FEM is 93.6%
the peak velocity measured by large scale MD. Besides the
original path of the crack, the velocity of new path of the
forked crack is also illustrated in Fig. 15. Constant stain rate
(ε̇ = 8×10−7) is applied during the whole loading period in
the EA-cohesive FEM simulation. The Newmark-β integra-
tion scheme and the central difference integration method are
both been used in the simulation, and the time step is chosen
as 
t = 0.20 × 10−012s. As can be seen, the EA-cohesive
FEM with 12,894 elements can get satisfactory simulation
in comparison with the large scale MD with 300,000 atoms
involved, which makes the proposed EA-cohesive FEM more
computationally economic than that of MD simulation and
hence it is more suitable for mesoscale or even macroscale
fracture simulations.

Fig. 15 Comparison of crack velocity histories obtained from simula-
tions the results of large scale MD and EA-cohesive FEM

6.2 Case II: fracture simulation of a Cu foil

The second example is a simulation of fracture of a cop-
per foil with the dimension (3 mm × 2 mm) (see Fig. 16).
In this simulation, the copper foil specimen is subjected to
a dynamically prescribed symmetric uniaxial tension load
in x-axis direction. During the entire simulation, a constant
time step is chosen as
t = 1 × 10−11s for time integration.
The crack growth and propagation are successfully observed
during the simulation. There are two small pre-cracks at the
upper edge and the lower edge, which are rotational symmet-
rically located. The simulation shows that during the loading
process the two crack tips attract each other, and eventu-
ally the two cracks merge dynamically to form one single
through-crack. The whole specimen consists of 1,354 bulk
elements and 1,979 cohesive zones. At such spatial scale, take
a typical foil thickness 10μm as example, there are almost
millions of trillions atoms (1018) in the specimen, and it is
impossible to use MD to simulate fracture by using today’s
computer technology. However, by using the proposed EA-
cohesive FEM, we are able to carry out fracture simulation
at macroscale with some atomistic features.

7 Conclusions

The theory and computational algorithm of an EA-cohesive
FEM and the associated embedded atom hyperelastic (EAH)
constitutive model have been presented in this paper. It is
shown that in comparison with the pair potential based mul-
tiscale cohesive zone model implementing EAM potentials
in a cohesive FEM achieve accuracy and fidelity in material
modeling and simulation of fracture. From the perspective
from atomistic scale, the essence of fracture is interatomic
interactions. Besides ab initio method, EAM is an alternative
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(a)

(b)

(c)

(d)

Fig. 16 The prototype crack propagation simulation of Cu foil with
precracks based on EA-cohesive FEM and EAH

formalisms for describing realistic interatomic behavior with
computational efficiency. In the proposed EA-cohesive FEM,
the material domain of the interest is discretized by a set of

bulk elements and cohesive elements that are assigned with
certain certain microstructure to enable atomistic informed
mesoscale constitutive relation. Within the bulk element, the
material can be viewed as a Cauchy continuum so that the
formulae of continuum mechanics may be applied. Within
the cohesive interphase, the cohesive law can be developed
with the aid of the EAH constitutive model. Compared to
conventional cohesive zone model, the EA-cohesive FEM
builds its cohesive relation by taking into account material
micro-structure, local electron density, and atomistic bond-
ing condition, it is an approach that is fundamental superior
than the approach of empirical cohesive law. Compared with
the previous pairwise-potential-based cohesive zone method
[43], the weakness of the pairwise potential has been over-
come by adopting EAM formalism, and additional hour-glass
control measure is taken to fix the drawback of the overly
simplified effective deformation gradient map. It has been
shown that the proposed EA-cohesive FEM and EAH con-
stitutive can simulate crack growth problems for engineering
materials at mesoscale or macroscale. Since the EAH consti-
tutive model is enriched by lattice and atomistic information,
the proposed EAM cohesive finite model will be suitable for
solving small scale problems. On the other hand, it may also
work for macroscale problems of engineering material.

As a validation of the EA-cohesive FEM, we have car-
ried out a simulation of crack propagation in single crys-
tal Cu foil, which can be extend to simulating small scale
fractures of other materials with different lattice structures.
However, considering that the EAM is originally built for
metallic material systems by taking into account the contri-
bution of the free electron density [9], the EA-cohesive finite
element method may be only applied to the metallic mate-
rial systems in order to gain a satisfactory accuracy and to
utilize abundant reference databases. It should be noted that
the derivation of the EAM-based multiscale cohesive consti-
tutive formulae is based on the universal formalism of EAM,
hence any well fitted EAM potentials can be implemented in
multiscale finite element computations. We believe that by
fitting the multiscale EAH constitutive formalism with the
experimental and first principle database, the EAH consti-
tutive formalism may provide a viable simulation tool for a
wider range of materials. As a multiscale constitutive model,
EAH bridges the atomistic scale and the mesoscale or even
macroscale. It is a method to determine material behavior
from a macroscopic standpoint based on first principle. From
a mathematical standpoint, the EAH also provides a more
flexible constitutive formalism. It should be emphasized that
the derivation of the EAH constitutive formulae is general,
which is valid for any EAM formulae. Owing to the indepen-
dency of the derived formulae, any well fitted EAM potentials
can be implemented in the formulae for specific simulation
need. As an atomistic potential formalism, EAM is based
on the density functional theory (DFT), and its reliability is
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guaranteed by fitting the atomistic potential functional to the
Ab initio or first principle results [25,30]. Likewise, by fur-
ther fitting the multiscale EAH constitutive formalism to the
experimental and first principle database, the EAH consti-
tutive formalism is promising in better simulating a wider
material range.
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