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Modelling and simulation of substrate elasticity sensing in stem cells

Xiaowei Zeng and Shaofan Li*

Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA

(Received 31 July 2010; final version received 20 January 2011)

Recently, we have developed a multiscale soft matter cell model aiming at improving the understanding of
mechanotransduction mechanism of stem cells, which is responsible for information exchange between cells and their
extracellular environment. In this paper, we report the preliminary results of our research on multiscale modelling and
simulation of soft contact and adhesion of stem cells. The proposed multiscale soft matter cell model may be used to model
soft contact and adhesion between cells and their extracellular substrates. To the authors’ best knowledge, this may be the
first time that a soft matter model has been developed for cell contact and adhesion. Moreover, we have developed and
implemented a Lagrange-type meshfree Galerkin formulation and related computational algorithms for the proposed cell
model. Comparison study with experimental data has been conducted to validate the parameters of the cell model. By using
the soft matter cell model, we have simulated the soft adhesive contact process between cells and extracellular substrates.
The simulation shows that the cell can sense substrate elasticity by responding it in different manners from cell spreading to
cell contact configuration and molecular conformation changes.

Keywords: cell spreading; focal adhesion; hyperelasticity; liquid crystal; meshfree method; multiscale simulations

1. Introduction

Stem cells can sense and respond to physical signals

during cell-to-cell or cell-extracellular matrix (ECM)

interactions, and they can then integrate and process this

information. Subsequently, these information or signals

can trigger a host of reactions in stem cells, including

changes of cell morphology, dynamics, genetic responses,

overall behaviours and eventually their fate (Geiger et al.

2009).

Cell adhesion and spreading depend strongly on the

interactions between cell and ECM substrates. When

cultured onto artificial adhesive surfaces, cells first flatten

and deform extensively as they spread (Cuvelier et al.

2007). Not all cell types respond to substrate stiffness in

the same way, but many including endothelial cells

(Yeung et al. 2005), mammary epithelial cells (Paszek

et al. 2005) and mesenchymal stem cells (Engler et al.

2006) exhibit increased spreading and adhesion on stiffer

substrates compared to compliant ones (Winer et al. 2009).

Recent developments on stem cell research have

revealed that the fate or lineage specification of stem cells

depends sensitively on both the rigidity and the surface

microstructure of the ECM. For example, Discher et al.

(2005) and Engler et al. (2006) reported that matrix

elasticity directs stem cell lineage specification. Rehfelt

et al. (2007) reported that the results with drug treatments

of various cells on soft, stiff and rigid matrices show a

broad range of possible matrix-dependent drug responses;

and cells on soft gels might be relatively unaffected in

cell spreading or apoptosis induction, whereas cells on stiff

substrates seem more sensitive to diverse drugs in terms

of spreading. All these indicate a significant influence

of matrix elasticity on cell contact or adhesion, and

subsequent cytoskeleton re-organisation.

Studying the influences of biomechanical niche factors

on the fate of stem cells will eventually help in the

development of synthetic niches that may cultivate or

trigger stem cells to differentiate into the desirable

functional cells (see Discher et al. 2009). Because of its

scientific and clinical importance, a major focus of

molecular cell biology is the study of mechanotransduc-

tion effect of cells, in particular stem cells (see Bao and

Suresh 2003; Chien 2007; Wang et al. 2009).

Thus, understanding the interplay between cellular

contractile activity, stiffness of surrounding tissues and

the resulting mechanical deformations and stresses is

crucial for establishing a mechanotransduction model.

The physical process of mechanotransduction is through

contact and adhesion between cells and their extracellular

environment.

Recently, several general cell contact and focal

adhesion models have been proposed, notably Freund

and Lin (2004), Ni and Chiang (2007) and Deshpande et al.

(2008). Continuum models have also been developed

recently to predict cell adhesion in the early stages of

culture (Liu et al. 2007; Sun et al. 2009) as well as to

simulate cell motility (Roy and Qi 2010).
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In order to understand the precise biomechanical

sensing process during cell contact and adhesion as well as

to explain possible mechanotransduction mechanisms, we

have developed the following multiscale cell model. In a

recent paper (Zeng and Li 2011), the present authors have

reported some early results of this effort. The main

difference between this paper and Zeng and Li (2011) is as

follows: in this paper, we not only discuss the substrate

elasticity-induced configuration change in cell shape but

also study the substrate elasticity-induced confirmation

change in molecular structures, and most importantly we

extend the cell model to three dimensions.

The paper is organised in six sections: in Section 2,

we report the construction of our soft matter cell and

ECM model; in Section 3, we focus on the meshfree

implementation of the computational cell model; in

Section 4, we discuss the cell adhesion and contact

algorithm; in Section 5, we provide the validation of the

cell model and a few numerical simulations and finally in

Section 6, we discuss some important issues of the soft

matter cell model.

2. Cell and ECM modelling

The main objective of this work is to advance stem cell

modelling specifically and cell modelling in general.

Therefore, we have systematically constructed a cellular

biomechanical model by mathematically treating stem

cells as soft matter.

From structural viewpoint, a cell consists of membrane

wall, cytoplasm, microtubules, cell nucleus and cytoske-

leton – cell’s scaffold. The cell nucleus plays a central role

in the response to mechanical forces (Caille et al. 2002).

According to Maniotis et al. (1997), the nucleus inside the

cell is about 9 times stiffer than the cytoplasm. Based on

these observations, we propose to model the cell nucleus

as hyperelastic material, which has been used in Caille

et al. (2002) to model the nucleus of endothelia cells.

The cell membrane is basically a lipid bilayer. Up to

date, the most successful cell model is the fluid mosaic

model – the lipid bilayer model (Singer and Nicolson

1972). It captures two essential features of the lipid

bilayer: fluidity and diffusion. A well-established and very

successful mechanics or mathematics model for the cell

membrane is Helfrich’s liquid crystal cell membrane

model (Helfrich 1973), which is based on or built on the

fluid mosaic model. To extend Helfrich’s liquid crystal

membrane model, we propose to use a bulk nematic liquid

crystal material to model the outer layer of the cells.

The rationale for such a soft matter physics cell model

is that cell cytoplasm does not just consist of liquid, but it

contains cell organelles and many weakly cross-linked

polymer networks, such as actin filaments or intermediate

filaments. Depending on the phenotype, the content, i.e.

microstructure and the concentration, of these filaments

may be different. In this work, we address the modelling of

stem cells, which are of different types and may be in

different stages. For certain stem cells, their structure may

be still under development. According to Chowdhury et al.

(2010), the embryonic stem cells are , 10-fold softer than

their differentiated counterparts. According to these

observations, the cytoplasm region of our stem cell

model contains a lower cytoskeleton component with a

higher amount of liquid. Hence, the liquid crystal model

becomes a suitable option for modelling our interpretation

of cellular cytoplasm. For simplicity, in this preliminary

two-layer cell model, we do not distinguish between the

cell membrane and the cell cytoplasm. A refined soft

matter physics model that distinguishes between the cell

membrane and the cell cytoplasm will be reported in a

follow-up paper.

Here, the ECM is modelled as a substrate consisting

of a hyperelastic block, as used previously for both cell

and gel models (see Fereol et al. 2009; Sen et al. 2009)

(Figure 1). An illustration of the cell and the ECM model is

shown in Figure 1.

In the following sections, we describe both the

hyperelastic constitutive model and the liquid crystal

model as applied in our cell–ECM modelling approach.

2.1 Hyperelastic model

The hyperelastic constitutive model is used to represent

the intracellular scaffold and plasma aggregates, which are

assumed to be isotropic and nonlinear, exhibiting an

elastic response with large strains. There are more than 20

Cell

Nematic
Isotropic

Soft substrate Substrate

Cell nuclues

Ligand

Receptor

Figure 1. Soft matter cell model and soft adhesive contact model.
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hyperelastic models for describing rubber-like materials, a

comparison of different hyperelastic models can be found

in Marckmann and Verron (2006). In our research, we

adopted the modified Mooney–Rivlin material (Fried and

Johnson 1988) to model the cell nucleus and ECM.

The strain energy density function W for the modified

Mooney–Rivlin material is given as

W ¼ C1 I1 2 3I
1=3
3

� �
þ C2 I2 2 3I

2=3
3

� �
þ

1

2
lðln I3Þ

2; ð1Þ

where C1; C2 and l are the material constants and C ¼

FT ·F is the right Cauchy–Green deformation tensor; and

the three invariants of the right Cauchy–Green tensor are

defined as

I1 ¼ trðCÞ; ð2Þ

I2 ¼
1

2
ðtrðCÞÞ2 2 trðC2Þ
� �

; ð3Þ

I3 ¼ detðCÞ: ð4Þ

The corresponding constitutive relations can be expressed

in terms of the second Piola–Kirchhoff stress tensor S and

the invariants of the right Cauchy–Green tensor

S ¼ 2 ðC1 þ C2I1ÞI2 C2Cf

2 C1I
1=3
3 þ 2C2I

2=3
3 2 l ln I3

� �
C21

o
: ð5Þ

After the second Piola–Kirchhoff stress is obtained, the

first Piola–Kirchhoff stress tensor can be immediately

computed as P ¼ S ·FT, which can then be substituted into

the later developed meshfree Galerkin formulation to

calculate the internal nodal force.

If the substrate is modelled as a Mooney–Rivlin

hyperelastic medium, its elastic stiffness tensor is a fourth-

order tensor that can be expressed as

C ¼ 4
›2W

›C›C
¼ 4C2I^Iþ

4

3
C1I

1=3
3 þ 4C2I

2=3
3 2 l

� �
C21^C21

2 4 C1I
1=3
3 þ 2C2I

2=3
3 2 l ln I3

� �
C21(C21 2 4C2I:

ð6Þ

By making the elastic constants, C1; C2 and l, dependent

on spatial coordinates, one can model the substrate with

heterogeneous stiffness.

2.2 Liquid crystal cell model

Liquid crystals have biphasic properties by combining

liquid and solid characteristics. For instance, a liquid

crystal may be fluidic similar to a liquid, while having a

long-range orientational order, and thus a solid elasticity

was associated with deformations of the same order. There

are many different types of liquid crystal phases

(e.g. smectic, nematic and isotropic), which can be

distinguished by their different optical properties

(e.g. birefringence). Liquid crystal materials can mimic

biological materials and systems; many biological systems

including cell membranes, phospholipids, cholesterols and

DNA exist in liquid crystal phases (see Stewart 2003;

Stewart 2004; Woltman et al. 2007). In this cell modelling

approach, we adopt a simplified version of the Ericksen–

Leslie theory (Lin and Liu 2000) as the governing

equations for the nematic liquid crystal component.

The strong forms of the simplified Ericksen–Leslie theory

are

r0

Dv

Dt
¼ 7 ·sþ b; ; x [ VðtÞ; ð7Þ

rd0D
~h

Dt
¼ g 7 ·7^h2 rðhÞf g; ; x [ VðtÞ; ð8Þ

where v is the velocity field, h is the Nematic liquid crystal

director field, b is the body force in the current

configuration, r0 and rd0 are the density of fluid and

director fields in the reference configuration, where the

differential gradient operator is acting in the spatial

configuration, i.e. 7 :¼ ð›=›xiÞei; g is the director elastic

constant, r is a Landau–Ginzburg type potential that

governs the evolution of the director field

r ¼
dRðhÞ

dh
¼

h

e 2
jhj

2
2 1

� �

and

RðhÞ ¼
1

4e 2
jhj

2
2 1

� �2

ð9Þ

and the Cauchy stress is determined as

s ¼ 2pIþ 2md2 h7 · ð7^h(7^hÞ2 G: ð10Þ

In Equation (10), p ¼ kð1 2 JÞ is the hydrostatic pressure,

k is the bulk modulus, J ¼ detðFÞ, m is viscosity and h is a

positive constant.

3. Meshfree Galerkin formulation and the

computational algorithm

A total Lagrangian formulation is developed for the soft

matter cell model under finite deformation, and a Galerkin

weak formulation is derived and used in the numerical

computation. The numerical simulations are conducted by

using meshfree methods (Li and Liu 2004). Meshfree

methods have advantages in computing large deformation

problems compared with traditional finite element method

(FEM). In our meshfree simulation, both the cell and its

substrate are discretised by a set of particles and then they

are represented by meshfree interpolation functions.
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The weak form of the balance of linear momentum

under finite strain condition can be expressed as follows:

X2

i¼1

ð
V

ðiÞ
0

r
ðiÞ
0 €uðiÞ · duðiÞ dVðiÞ þ

X2

i¼1

ð
V

ðiÞ
0

PðiÞ : dFðiÞ dVðiÞ

¼
X2

i¼1

ð
V

ðiÞ
0

r
ðiÞ
0 BðiÞ · duðiÞ dVðiÞ

þ
X2

i¼1

ð
G
ðiÞ
t

�TðiÞ · duðiÞ dS ðiÞ þ
X2

i¼1

dP
ðiÞ
AC;

ð11Þ

where B is the body force, P is the first Piola–Kirchhoff

stress, �T is the prescribed traction on the traction boundary

GðiÞ
t , i ¼ 1 corresponding to cell and i ¼ 2 corresponding to

ECM substrate. Note that the last terms in Equation (11),

dP
ðiÞ
AC, denote the virtual work contribution from adhesive

contact, which will be discussed in details in Section 4.

The nematic director evolution is only for cell, for

simplicity, we do not introduce i ¼ 1 in the formulation, a

weak form of the governing equation can be derived as

ð
V0

rd0J
Dh

Dt
· dh dV ¼ 2

ð
V0

g ðF21 ·F2TÞ · ð7X^hÞ
� �

: ð7X^dhÞdV

þ

ð
Gt

g N · ðF21 ·F2TÞ · ð7X^hÞ
� �

· dh dS

þ

ð
Gc

g N · ðF21 ·F2TÞ · ð7X^hÞ
� �

· dh dS

2

ð
V0

gJrðhÞ · dh dV;

ð12Þ

where Gc denotes the contact boundary. By assuming that

N · ðF21 ·F2TÞ · ð7X^hÞ} ¼ 0; ;x [ Gt

and

h ¼ �h ) dh ¼ 0; ;x [ Gc:

Consider the following meshfree interpolation:

uðX; tÞ ¼
Xnnode

I¼1

NIðXÞ dIðtÞ; ð13Þ

hðX; tÞ ¼
Xnnode

I¼1

NIðXÞhIðtÞ: ð14Þ

Note that even though the director field, hðX; tÞ, is

essentially a part of displacement gradient, the robust-

ness of meshfree computation allows us to use equal-

order interpolation without causing severe numerical

instability.

Following the standard meshfree discretisation pro-

cedure, e.g. Li and Liu (2004), we can obtain the following

discrete equations of motion with the understanding that

these equations of motions are applied to both the cell and

the substrate:

M _d_¼ f ext 2 f intðdÞ; ð15Þ

where M is the lumped mass matrix, f int is the internal

force array arising from the current state of stress and f ext

is the external force array including body forces and

surface traction and contact forces

MIJ ¼

ð
V0

r0NINJ dV; ð16Þ

f int
I ¼

ð
V0

PiJNI;Jei dV; ð17Þ

fext
I ¼

ð
V0

r0BiNIei dVþ

ð
Gt

�TiNIei dSþ

ð
Gc

�fiNIei dS:

ð18Þ

At time tnþ1 ¼ tn þ Dt, the discrete equation of motion can

be written as

Manþ1 ¼ fext
nþ1 2 f int

nþ1: ð19Þ

If the central difference scheme is used in the time

integration, we have

dnþ1 ¼ dn þ Dtvn þ
1

2
Dt 2an; ð20Þ

anþ1 ¼ M21 fext
nþ1 2 f int

nþ1

� �
; ð21Þ

vnþ1 ¼ vn þ
1

2
Dtðan þ anþ1Þ; ð22Þ

where d, a and v denote the nodal displacement,

acceleration and velocity arrays, respectively.

For the nematic liquid crystal, we can define the

internal general force for director field as

fhI ¼ 2

ð
V0

Pi;JNI;JðXÞei dVþ

ð
V0

gJriNIðXÞei dV

	 

;

ð23Þ

where the generalised internal force for the director field is

defined as

P ¼ g F21 ·F2T
� �

· 7X^hð Þ; ð24Þ

if the central difference scheme is used in time integration,

we have

vhnþ1 ¼ M21
h fhnþ1; ð25Þ

hnþ1 ¼ hn þ Dtvhnþ1: ð26Þ

4. Adhesive contact model for cell–substrate

interactions

The interplay between a cell and its ECM is defined

by complex interactions between ligands and receptors.

X. Zeng and S. Li450
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In this research approach, we do not model the exact

molecular mechanisms of the adhesion phenomenon or the

detailed molecular motions during this complex process.

Instead, we model an overall adhesion effect between cells

and their substrates. The specific attractive adhesion force

may be simulated by an attractive potential force, whereas

the steric interaction between the cell membrane and the

substrate is treated as the repulsive force.

We have developed a computational algorithm and

modelling techniques to simulate cellular adhesive

contact. The main features of this contact algorithm are

(1) using the regular continuum contact mechanics to

simulate a repulsive force and (2) using a postulated

adhesive potential to mimic an attraction force.

The continuum contact mechanics algorithm is illustrated

in Figure 2. In the proposed adhesive contact algorithm,

the adhesive force is modelled by a special potential force

that is determined by the distance between a point on the

cell membrane and its shortest distance to the substrate as

described in Equation (28). In this case, we do not model

the repulsive force, but adopt the conventional finite

element or meshfree contact algorithm to enforce the

impenetrable condition between the cell and its substrate.

By assuming that the density and the size of the

substrate are much larger than the density and the size of

the cell, we may neglect the direct adhesive force from the

cell to the substrate. The total virtual work contribution

from the adhesive contact force may be written as

dPAC ¼

ð
V0

BðrÞ
r

r
· du dVþ

ð
Gð1Þ

c

f c · dg dS; ð27Þ

where the adhesive attraction force is modelled by the

potential force

BðrÞ ¼ G e2r=d0 ; ð28Þ

where G and d0 are the constants and r is the position

vector between nodal particles on the cell and the

corresponding surface element of the substrate. For

the adhesive contact, the membrane may be in contact

with the ECM. During this process, inter-penetration of the

cell membrane and the ECM surface is not permitted.

The impenetrable condition is enforced to identify the

repulsive force by using finite element-based continuum

mechanics contact algorithm. Hence, the second integral

in Equation (27) is a surface integral, in which g is the gap

vector and f c is being modelled as the repulsive normal

force plus a contact frictional force.

The basic concept behind the classical contact

procedure is that the two contacting bodies first penetrate

into each other within a single explicit time integration

step, while additional nodal forces are introduced into the

contacting nodal points such that the impenetrability

conditions are strictly enforced. We adopted the exact

enforcement of the impenetrability condition in a single

time step as previously described (Hughes et al. 1976).

In our contact simulations, both the cell and the

ECM can be made deformable. Typically, the contacting

surfaces are designated as ‘master’ and ‘slave’. Here, we

treated the cell’s outer surface as the slave and the ECM

substrate surface as the master.

The contact algorithm begins with prediction of the

slave particles at time step n, the contact-detection

algorithm is then used to search all the inter-penetration

particles based on the determinant value of the meshfree

moment matrix (Li et al. 2001). When all penetration

points are detected, the next step is to calculate the normal

gap and relative tangential velocity between the intrusion

slave particles and the closest master surface locations

(Figure 2). The procedures are outlined as follows:

(i) Calculate the normal (n) and tangential (t) gaps

gnj ¼ ðxsj 2 xmi Þ ·ni; ð29Þ

gtj ¼ ðxsj 2 xmi Þ · ti ð30Þ

with

ti ¼
ðxmiþ1 2 xmi Þ

kxmiþ1 2 xmi k
; ð31Þ

ni ¼ e3 £ ti; ð32Þ

where ni is the outward normal vector of the ith master

segment matching with the jth penetrated slave particle

and e3 is the unit vector pointing outward from the plane.

Figure 2. A penetrated slave particle and corresponding master segment.
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(ii) Calculate the normal and tangential forces

The contact force f c has two components: the normal

repulsive contact force and the tangential contact friction

force. The normal direction repulsive force may be defined

as

fnj ¼
2Ms

jgj

Dt 2
ni ¼ f nj ni: ð33Þ

In the tangential direction, the classical Coulomb

friction model is adopted in modelling the forces between

the slave body and the master body. To enforce the stick or

static condition, we have

fstick
j ¼ 2

Ms
j

Dt
vtj: ð34Þ

The tangential force cannot exceed the force limit at which

the interface can hold. After reaching the limit, a slip or

dynamic condition should be applied

f
slip
j ¼ 2 mkf

n
j

��� ��� vtj

kvtjk
: ð35Þ

The tangential force is the minimum of these two forces or

f tj ¼ 2min jmkf
n
j j; kf

stick
j k

� � vtj

kvtjk
; ð36Þ

where mk is the friction coefficient which is dependent

upon the two interacting surface materials and vtj is the

relative tangential velocity between the j-th slave particle

and the i-th master segment.

(iii) Update the contact force for each master contact

particle

During the simulation, the substrate is deformable.

Therefore, the contact force needs to be added to the

master nodal particles to make sure that the total force is

balanced. We use linear interpolation to distribute the

contact forces of the two nodal particles to the

corresponding master segment

fni ¼ 2ð1 2 aÞfnj ; ð37Þ

f ti ¼ 2ð1 2 aÞf tj; ð38Þ

fniþ1 ¼ 2afnj ; ð39Þ

f tiþ1 ¼ 2af tj; ð40Þ

where

a ¼
gtj

kxmiþ1 2 xmi k
; ð0 # a , 1Þ: ð41Þ

(iv) Redistribute the contact forces to neighbouring

particles within the substrate.

The nodal force vectors calculated above are the exact

vectors for each penetrating slave particle and the

corresponding master nodal surface particles. In the

meshfree approach, we redistribute each exact nodal force

to its supporting nodal particle. After the force redistribu-

tion, the contact force at a particle I becomes

�fI ¼
Xnnode

J¼1

NIðXJÞf J : ð42Þ

In the FEM interpolation, NIðXJÞ ¼ dIJ , we then recover

the exact nodal force vector.

In this work, the interface between ligands and

receptors is modelled as an interactive zone that separates

the cell from the substrate, and the adhesive force

distribution varies according to the magnitude of the gap

distribution. The adhesive interaction is strong near the

contact zone, and it decays as material points move away

from the contact zone. The attractive component of the

adhesive contact model is similar to a special version of

the coarse-grain FEM adhesion contact algorithm as

proposed for long-range van der Waals forces by Sauer

and Li (2007).

5. Numerical simulations

As an application of soft matter physics and a multiscale

contact-adhesion algorithm, we have uniquely simulated

cell–ECM contact and adhesion mechanics. To ensure a

meaningful simulation, we have first conducted a validation

test of the proposed cell model. By doing so, we identified

critical parameters of the soft matter model. We then

applied the verified material model to simulate contact

between a cell and various substrates with different

stiffness. We have also simulated the interaction between a

cell and a substrate with non-uniform stiffness. In addition,

we also extended the current cell model to 3D.

5.1 Validation of the cell model

To validate the proposed cell model, we have applied it to

simulate cell deformation under compression and com-

pared with experiment measurements for endothelial cells

(Caille et al. 2002). The constant force is applied at the top

and bottom rigid microplates, and the boundary nodes are

in contact with the cell surface. The classical contact

algorithm is applied in the two contact surfaces. In the

simulation, the cell deformation is defined as the relative

reduction in height, i.e. ðH0 2 HÞ=H0. We first set the

whole cell as hyperelastic Mooney–Rivlin material and fit

the force–deformation curve (see Figure 3(c)) to get the

material constants. Then, we put the fitted hyperelastic

Mooney–Rivlin material in the cell nucleus, and outside

of the nucleus region is modelled as nematic liquid crystal.
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Figure 3(a),(b) shows the cell shape before and after

deformation. The force–deformation curve is plotted in

Figure 3(c). The applied compressive forces increase

nonlinearly as a function of the cell height reduction. From

the simulation (see Figures 3(c) and 4), one can find that the

force required to create the same deformation for endothelia

cell is larger than the stem cells, which is reasonable

considering that the stem cells are undeveloped cells.

Because the two phenotypes are dramatically different, it is

inaccurate to fit the stem cell model with the experimental

data obtained from endothelial cells. As can be seen from

Figure 3, our stem cell model is much softer than

endothelial cells, which most likely is true in reality.

5.2 Cell response in four different stiffness substrates

The cell is modelled as a circular plate for 2D, with a

diameter of D ¼ 10mm. The substrate is modelled as a 2D

plate with a dimension of (L £ H ¼ 39:78mm £ 4:5mm).

Plain strain is assumed in our simulations. The exact

problem statement is shown in Figure 5.

In meshfree computation, a total of 4455 particles are

used in discretisation of the cell, and 5525 particles are

used to form the meshfree discretisation of the substrate.

The nucleus of the cell is modelled as hyperelastic

Mooney–Rivlin material. The initial density is r0 ¼ 1:0£
103 kg=m3, and the material constants are Cn

1 ¼ 2:126£

103 Pa, Cn
2 ¼ 1:700 £ 102 Pa and ln ¼ 1:700 £ 105 Pa.

The region beyond the hyperelastic nucleus is modelled

as nematic liquid crystal. The density of the liquid crystal

is chosen as r0 ¼ 1:0 £ 103 kg=m3, the density of the

director field is r0
d ¼ 1:0 and the material properties and

constants are k ¼ 2:2 £ 109 Pa, m ¼ 1:0 £ 1023 kg=ðm sÞ,

h ¼ 5:0 £ 1028, 1 ¼ 1:0 £ 1026 and g ¼ 1:0 £ 1024.

The substrate is modelled as hyperelastic Mooney–

Rivlin material. Four different substrates with different

stiffness are considered. The density for the four substrates

is the same as that of the cell nucleus. We set the material

constants C1 ¼ 1:265 £ 104 Pa, C2 ¼ 1:012 £ 103 Pa and

l ¼ 1:012 £ 106 Pa. The material properties for four

different substrates are chosen as

CS1
1 ¼ C1; CS2

1 ¼ 2C1; CS3
1 ¼ 5C1; CS4

1 ¼ 10C1

CS1
2 ¼ C2; CS2

2 ¼ 2C2; CS3
2 ¼ 5C2; CS4

2 ¼ 10C2

lS1 ¼ l; lS2 ¼ 2l; lS3 ¼ 5l; lS4 ¼ 10l:

Initially, the cell stands still and the initial gap between

the cell and the substrate is 200 nm. The bottom surface of

F(a) (b) (c)

H0 H

F 
(N

)

Hyperelastic
nucleus

Liquid crystal

F
F

F 6×10–8

Hyper cell

Experiment

Hyper + LC

4×10–8

2×10–8

0
0 0.2 0.4 0.6

Deformation

Figure 3. Validation of the cell model: (a) before deformation; (b) after deformation; (c) force–deformation curve.

Figure 4. Deformation of the cell model under force F ¼ 3 £ 1028 N: (a) hyperelastic cell; (b) liquid crystal cell with a hyperelastic
nucleus.
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the substrate is fixed during the whole simulation time.

The adhesive force brings the cell into contact with the

substrate, and then the cell spreads under the adhesive

contact forces. The constants G ¼ 9:8 £ 106 N=kg and

d0 ¼ 1:0 £ 1025 m are chosen for the adhesive potential

force. Simulations were carried out for cells in contact

with four substrates of different elastic modulus (stiffness)

described above.

From this simulation, one may observe the cell

spreading over time. In Figure 6, we display the cell shapes

and effective stress on four different substrates with

different stiffness under the same contact conditions at the

same time. One may find that the contact between the cell

and the softest substrate (substrate I) (Figure 6 (a))

generates the least cell spreading, and the contact between

the cell and substrate II (Figure 6(b)) has the second least

spreading, the cell on the substrate III has the second most

spreading (Figure 6(c)) and when the substrate stiffness is

kept increasing, the cell on the substrate IV has the most

spreading (Figure 6(d)).

It may be noted that although the case IV generates the

most cell spreading, when we keep increasing the substrate

stiffness, the difference becomes very small, which means

the spreading may not increase any more when the stiffness

of the substrate reaches a certain value. However, within

certain range, cell spreading area is directly related to the

stiffness of the substrate, and it is purely a phenomenon of

soft elasticity. Based on this model, the stem cell is a

mechanical sensor, and it can translate the mechanical

information (properties) of the substrate into its shape,

configuration and size. We have identified this as a strong

evidence supporting cell mechanotransduction without

incorporating the concept of ‘tensegrity’ on the structure of

cell scaffold (Wang et al. 2009). In fact, embryonic stem

cells do not have well-developed cell-scaffold structures.

To the best of authors’ knowledge, this type of cell response

has not been previously reported.

Because this is a continuum simulation, one can

measure the stress at every position of the cell. In Figure 7,

we display computation results that have been carried out

for cells in contact with 10 substrates with different elastic

modulus (stiffness). We have sampled the effective stress

at the centre of the cell nucleus at the same time instance.

We then plot the magnitude of the effective stress vs. the

different values of substrate stiffness. One can clearly

observe that as the substrate stiffness increases the

magnitude of the effective stress increases. Similar

correlation has been observed in experimental measure-

ment of contractile force of stem cells (e.g. Discher et al.

2005).

5.3 Conformation change due to substrate elasticity

The main rationale to use the liquid crystal model

to simulate stem cells is its representation of weakly

Figure 5. Computational model of cell spreading on different
substrates (different colour stands for different material models).

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Figure 6. Cell spreading over substrates with different stiffness: (a) substrate I, (b) substrate II, (c) substrate III and (d) substrate IV.
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cross-linked hydrogel, which may serve as a model for un-

developed cross-linked actin filaments inside the cell

before the polymerisation. The order parameter of a

nematic director field, Q, is a macroscopic tensorial field

that may represent the statistical average of molecular

orientation order or molecular conformation at a given

point inside the cell.

We hypothesise that the molecular orientation order

may be linked directly to protein expression and hence

gene expression inside stem cells. It is thus meaningful to

probe the relationship between the stiffness of the extra-

cellular substrate and the nematic order parameter insider

the cell. In literature of elastic theory of liquid crystals, the

order parameter tensor is defined as a traceless tensor

Q ¼
3

2
h^h2

1

2
I: ð43Þ

One may note that in Equation (43), the director field h is a

unit vector, whereas in the Ericksen–Leslie theory, the

strength of the director field may change due to diffusion

or dissipation. Taking into account the effect of strength

varying of the director field, hðX; tÞ, in this paper we adopt

the following definition of order parameter:

Q ¼
3

2
h^h2

jhj
2

2
I ¼ jhj

2 3

2
ĥ^ĥ2

1

2
I

� 

; ð44Þ

where

ĥ :¼
h

jhj
:

In Figure 8, we display the effective order parameter

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q : Q

p

evolution histories for substrates with four different

stiffness at a chosen sampling point near the initial contact

zone. According to Figure 8, the order parameter measured

on the substrate with the lowest elastic stiffness is on the

top of those measured on the less stiff substrates. In fact,

the order parameter evolution history curves descend as

the elastic stiffness of the substrate increases. However,

based on our calculations after certain time period of

spreading, the effective order parameter on four different

substrates converges to almost the same value. Based on

this soft matter model, this may indicate that the

mechanotransduction effect is time dependent, and it

may be a dominant factor only at the early stage of stem

cell differentiation process. After certain time, other

factors may play more important roles in such a complex

and well-coordinated physiology event.

5.4 Cell response in a stiffness-varying substrate

It is interesting to consider cell contact with substrate that

has non-uniform stiffness. We set the material properties

in the substrate as a function of position x to observe the

cell spreading motion in different directions:

CS
1 ¼ C1ð0:1 þ 9:9rÞ; CS

2 ¼ C2ð0:1 þ 9:9rÞ;

lS ¼ lð0:1 þ 9:9rÞ;

where r is defined as r ¼ ðxþ L=2Þ=L with the centre of

the substrate at x ¼ 0. The exact problem statement is

Figure 7. Effective stress vs. elastic stiffness of the substrate. Figure 8. Order parameter evolution with time with respect to
different substrates.

Figure 9. Computational model of cell spreading on a stiffness-
varying substrate, the colour in the substrate stands for different
stiffness, the stiffness at the right end is the highest.
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shown in Figure 9. In Figure 10, we display a time

sequence of a cell contacting with a stiffness-varying

deformable substrate. The colour contour is the effective

stress contour. Without varying the stiffness, the cell

should move equally on both the left and the right side of

the substrate. From the simulation results, one can find

immediately that cell move towards the right side much

faster than to the left side of the substrate due to the

stiffness gradient, which means that the cell is in favour of

stiffer substrate. These results agreed well with exper-

imental measurements (Wong et al. 2003; Engler et al.

2006) and numerical simulations (Ni and Chiang 2007) of

cell adhesion and migration.

5.5 3D simulation of cell spreading

In the following simulations, the cell is modelled as a

spherical ball in 3D, with a diameter of D ¼ 10mm.

The substrate is modelled as a 3D horizontal circular plate

with a dimension of R £ H ¼ 15mm £ 5mm. The cell

nucleus in the 3D model is the same as in the 2D model.

In the meshfree computation, a total of 4341 particles are

used in discretising the cell and 16,640 particles are used

to form the discretisation of the substrate. The nucleus of

the cell is modelled as a hyperelastic Mooney–Rivlin

material. In this original presentation, we have developed a

3D computational algorithm and modelling techniques to

simulate the cell adhesive contacts.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Time sequence of cell contact with a stiffness-varying substrate (stress contour with director field).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Time sequence of a 3D cell contact with a soft
substrate (stress contour with director field).
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Similar results have been observed from 3D simu-

lations. In Figure 11, we display the time sequence of a cell

contacting on a soft substrate. The colour contour is the

effective stress and the white arrow represents the director

field. Comparing with the 2D results, 3D simulations

provide a possible way to capture the cell morphology

changes as previously described in Ni and Chiang (2007).

6. Discussions and conclusions

To develop a fully 3D soft matter cell model that is capable

of explaining cell adhesion, locomotion and its structure

transformation coupled with focal adhesion is a challen-

ging task. In this work, we extended the 2D cell model to

3D. The developed soft matter cell model for cell contact

simulations may provide possible explanations on cell

mechanotransduction and other issues at the large-scale

level.

Our simulations have shown that (1) by using the

proposed soft matter cell model, when a ‘cell’ is in contact

with a substrate, the stress status in the cell may change

depending on the stiffness of the substrate (see Figure 7);

(2) the size of spreading area of the cell also changes or

differs depending on the stiffness of extracellular substrate

(see Figure 6) and (3) during soft contact process, the cell

is in favour of stiffer substrate (see Figure 10). It should be

noted that cell behaviour, in particular stem cell behaviour,

is a complex biological phenomenon. The proposed soft

matter cell model is only intended to model mechanical

behaviours of cells at a coarse-gaining level, which may

not and cannot explain the molecular mechanisms of cell

motion, evolution and proliferation, and it requires an in-

depth study of every aspects of molecular cell biology

including all relevant biochemical, biophysical and

biomechanical factors and their interactions at different

scales.

Developing soft matter models for cells especially

stem cells may help us understand biomechanical and

biophysical behaviours of cells. It has been shown in this

paper that the soft matter model can offer much more

explanations on interaction between the stem cell and its

mechanical niche than that of hyperelastic cell models or

viscoelastic cell models. In some cases, the soft matter

model has even shown its predictive power. It is the

authors’ opinion that by combining the soft matter cell

model with molecular simulation, we may be able to

achieve qualitative prediction on cell behaviours in

collaborating with experimental observation. The pre-

dictive power of the stem cell model may provide both

scientific insight and clinic guidance on a host of health

care problems, such as regenerated medicine and drug

design and delivery problems.

The soft matter cell model presented in this work is a

primitive one, but it may open a door for more realistic and

more accurate modelling of cells, especially stem cells.

It is possible that along the line more sophisticated soft

matter models can be developed, which are capable of

simulating self-assembly of focal adhesion, cell division,

proliferation and more.
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