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This paper formulates the moving least-square interpolation scheme in a framework of the so-called moving least-square reproducing 
kernel (MLSRK) representation. In this study, the procedure of constructing moving least square interpolation function is facilitated by 
using the notion of reproducing kernel formulation, which, ‘as a generalization of the early discrete approach, establishes a continuous basis 
for a partition of unity. This new formulation possesses the quality of simplicity, and it is easy to implement. Moreover, the reproducing 
kernel formula proposed is not only able to reproduce any mth order polynomial exactly on an irregular particle distribution, but also serves 
as a projection operator that can approximate any smooth function globally with an optimal accuracy. 

In this contribution, a generic m-consistency relation has been found, which is the essential property of the MLSRK approximation. An 
interpolation error estimate is given to assess the convergence rate of the approximation. It is shown that for sufficiently smooth function the 
interpolant expansion in terms of sampled values will converge to the original function in the Sobolev norms. As a meshless method, the 
convergence rate is measured by a new control variabltiilation parameter e of the window function, instead of the mesh size h as usually 
done in the finite element analysis. To illustrate the procedure, convergence has been shown for the numerical solution of the second-order 
elliptic differential equations in a Gale&in procedure invoked with this interpolant. In the numerical example, a two point boundary problem 
is solved by using the method, and an optimal convergence rate is observed with respect to various norms. 

1. Introduction 

Recently, there has been keen interest in developing meshless approximations for Gale&in procedures to 
solve partial differential equations. Several versions of the method have been proposed, among them are Smooth 
Particle Hydrodynamics (SPH) by Gingold and Monaghan [l], Monaghan [2]; Diffuse Element Method by 
Nayroles et al. [3]; Element Free Gale&in Method by Belytschko et al. [4,5] and Reproducing Kernel Particle 
Method by Liu et al. [6], Liu and Chen [7], Liu et al. [8] and Liu [9]. It seems to us that the moving least square 
interpolant based meshless method has special appeals, due to its unique inviting features which are 
incomparable for the other numerical methods in many aspects. The major attractions include: 

(1) 

(2) 

It is a mesh-free particle method; consequently, the usual, formidable burden of mesh generation of 
traditional finite element method is ameliorated, if it is not disposed of completely. 
It is a smooth interpolation procedure; by using this method, one can easily achieve a global conforming 
C”(O) interpolation field of desired order, which is very difficult to obtain by regular finite element 
method when m 2 2. 
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(3) It has an excellent localization capability in both frequency spectrum and spatial domain, which is 
generically suitable to the task of multiple scale analysis and multi-grid computation. 

Because of its diverse characteristics, it has attracted many researchers to use the method to solve the practical 

problems for particular benefit. Consequently, different authors tend to label it with different names according to 
a specific feature which might be their personal preferences. 

An early, but lucid formulation and documentation of the moving least square approximation is due to 

Lancaster and Salkauskas [ 101. Nevertheless, Lancaster et al. never apply the method in large scale computation 
nor in a Galerkin procedure; therefore, it was impossible for them to foresee the problems which occur in 

practical implementation. In the actual computations, the main concerns are: (1) Convergence: how fast will the 

numerical solution converge, if it converges at all. (2) Computational efficiency: how long does it take to 
compute a practical problem? These questions remain to be answered. 

Thus, it is our intention to reexamine the formulation from the computational perspective, and to 

systematically lay the foundation for this special partition of unity-a finite support kernel method. 
We start with formulating a different version of moving least-square approximation. Based on the new 

formulation proposed here, it is revealed that the moving least-square interpolant has an unique inner 
structure-a m-consistency structure. Moreover, the formulation proposed here is constructed on a continuous 
base with the emphasis on the notion of reproducing kernel representation. The meaning of ‘Moving 

Least-Square Reproducing Kernel Method’ (MLSRK) is two-fold: first, the shape function are generated by a 
moving least-square process; secondly, the interpolant of this sort contains a reproducing kernel, which can 
‘reproduce’ any smooth function accurately in a global least square sense; in particular, it reproduces the m 

order polynomial exactly, if the generating polynomial basis is order m. Furthermore, by choosing the window 
function appropriately, the MLSRK may be able to achieve an optimal accuracy in the frequency spectrum 
approximation as a psuedo-spectral method. As observed by many researchers, one of the impediments in using 
spectral methods, such as wavelet methods, to solve partial differential equations is the difficulty in handling 
irregular boundary and the associated boundary conditions. Since the MLSRK method is quite flexible in dealing 
with irregular boundary and general boundary conditions, this difficulty is much alleviated. More precisely 

speaking, by carefully selecting window function and dilation parameter, not only do the shape functions 
constructed by this method form a complete basis of a finite dimensional Hilbert space as conventional finite 
element shape function, but also the Fourier transform of the shape functions can stay within a given range of 

frequency spectrum, which naturally makes it as a very special candidate to solve evolution type of PDE in 

Galerkin procedures. 
One of the inadequacies of early moving least-square approximation is the lack of rigorous mathematical 

foundationP Therefore, the main portion of this paper is devoted to the convergence study; it is shown that the 
interpolation error decreases as the density of particle distribution increases. In fact, a better interpolation 

estimation could be achieved than that of the finite element method (see [ 111). There is a major distinction 
between the convergence in this paper and convergence for the conventional finite element method as well as 
the finite difference method. In this paper, the convergence rate is controlled and measured by the dilation 
parameter p of the window function, whereas in the finite element method convergence rate is measured by the 
mesh size h. Although the mesh size h and the dilation parameter Q of the window function are intimately 
related, the dilation parameter Q explicitly carries the information about the resolution of numerical solutions, 
and is certainly a better control parameter than the maximum distance between two particles. This notion of 

convergence has been widely adopted in the wavelet analysis [ 121. Besides, in a random meshless particle 
distribution, to define or to measure the maximum distance between the two adjacent particles is not a trivial 
task at all. 

In last part of the paper, we have shown that, for the second-order elliptic partial differential equation, the 

numerical solution converges to the exact solution in the Sobolev norm. A numerical example has been carried 
out to demonstrated the convergence properties. 

’ While finishing this study, we received a preprint from Professor J. Tinsley Oden [ 131. A mathematical analysis is presented for a 

similar method-hp-clouds method. 
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2. Moving least-square reproducing kernel interpolant 

To expedite the presentation, multi-index notation is adopted throughout the paper. If (Y := (a,, 

n-tuple of nonnegative integers cyi, we call (Y a multi-index, and its length is defined as 

IH:=Z a, 

We then denote 

e “:=e;‘e;‘...e; 

and the &h (Frechet) derivative of function u as 

D”u := ax”; 8;;. . . a,4”u 

2.1. Moving least-square reproducing formula 

115 

is an 

(2.1) 

(2.2) 

(2.3) 

Let u(x) be asufficiently smooth function5 that is defined on a simply connected open set J2 E R”. Then, for a 
fixed point X CEO, one should always be able to approximate U(X) by a polynomial series locally according to the 
Stone-Weierstrass theorem [14]. Thus, we can define a local function, 

1 0) 9 u’(x,n):= o 

vx EB(i) 

, otherwise 

where the open sphere B(i) is defined as 

B(Z) : = {xl /.x -?I < R, x E 3) 

If the function u(x) is smooth enough as assumed, there exists a local operator, such that 

u’(x, ?) 2 &u(x) : = ,$, Pi( y )d,(%) 

where the operator L; is a mapping 

I!,; : co@(i)) - C”(B(i)) 

and 

d’(x) : = {d,, d,, . . . , de}(x) 

P(x) := {P,, P,, . . . , P&x>, 

Pi(x):= (x/e)OL’ =,fJ (?>“’ 
J 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

with P,(x) = 1. 

REMARK 2.1. The formulation proposed here differs slightly with that of Lancaster and Salkauskas [lo]. In 
their original paper, Lancaster and Salkauskas constructed the local approximation function u’(x) as 

’ By this, we mean that u(x) E C’(n) at least. 
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u’(x, X) z L;u(x): = 2 P,(x)d;(i) 
i=l 

= P(x)d(i) 

One can tell the difference between the two by comparing Eq. (2.6) with (2.10). 

(2.10) 

Since the polynomial series is finite, there exists a residual error distribution rp over the ball B(Z), 

rQ(x,X):=u’(x)-P 43 > x E B(Z) (2.11) 

A functional associated with this residual is defined as 

&l(i)) : = 
i 

rz (x, X) $ @ 
x -x 

( > 
-q- dB 

B(X) 
(2.12) 

A similar functional has been given by Belytschko et al. 151. The window function @ is chosen in such a way 

that su~p(@~(r -x)} C B(i), i.e. for fixed x 

(2.13) 

For rectangular compact support in R”, C,, = 1; and for ‘hyper-spherical’ compact support, C, f 1 generally. For 
instance, C, = 15/7rr, if one uses the cubic spline window function. In the sequel, for the sake of simplicity, we 
only consider the case C, = 1. 

The expression (2.13) automatically guarantees that J@(i)) is positive definite, though, for positive 
definiteness, (2.13) may not be necessary. As a matter of fact, condition (2.13) can further be relaxed, but for 
the moment, we assume that the condition (2.13) always hold. Thus, Eq. (2.12) can also be viewed as a special 

L, norm of the residual, i.e. 

J(G)) = lllr,ll12 (2.14) 

which is endowed by the inner product 

(f&,,(g),:= j~,f(y-x)g(i.-X)~~(V-X)d~,, (2.15) 

and 

lllflll := $@jK (2.16) 

A similar inner product was proposed in the discrete form by both Lancaster and Salkauskas [lo] and Duarte 

and Oden [13]. However, in the discrete case, the positive definiteness of the quadratic summation is not 
automatically guaranteed unless certain prerequisites on the particle distribution are met. 

By minimizing the quadratic functional J@(i)), one can obtain the following normal equations 

Since ~upp{@~(x -x)} @, the integral (2.17) can be extended over the whole domain 

which leads to 

(2.17) 

(2.18) 

(2.19) 

To this end, one can define the so-called moment matrix M(i) as follows [6], 
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(2.20) 

or simply 

wq~*) . - * mqcn) 

M(i) : = (P’l OQ IP), = @q@QlP,> * * * P*l@$2 
* . 

1. 

(2.21) 

(&Jq~,) * * : 

Clearly, the moment matrix M is a Gram matrix. Since P,(X), (i = 0, 1, . . . , f) are linearly independent, the 
determinant of M is always positive (see [15]), 

QP,, P,, . . . , P,) := det(M) > 0 . (2.22) 

Thus, M(X) is always invertible; therefore, the unknown vector d(i) is uniquely determined, 

d(2) = M-'(i) I, 
X 
P’(~)u(x,@Jx -X) dLZX (2.23) 

Substituting (2.23) back into (2.6) and noticing that the argument x in (2.23) is a dummy variable, one can 
rewrite the local approximation formula as 

U’(X, X) z L+(n) 

X-X ._ .- P- ( > e &3 

=P(y)M-‘(:)In P’(~),(,)@J,-Z)dfiY, VxEB($ 
Y 

(2.24) 

So far, the manipulation is the standard weighted least-square procedure. In order to extend IQ. (2.24) to the 
whole domain, the so-called ‘moving’ procedure is introduced. The central idea of the moving least-square 
method is that one can achieve a global approximation by going through a ‘mysterious moving’ process. The 
formal procedure consists of two steps: first, one takes an arbitrary fixed point X E 0 and forms a local 
approximation formula, i.e. (2.24), which is only valid in a_local region B(i) C L!, as shown above; second, 
since the fixed point X is arbitrary, it can be any point x EL& therefore, one can let it ‘move’ over the whole 

domain, r 4x, which will lead to a global approximation of u(x). 
Before sweeping Eq. (2.24) through the whole domain, a global approximation operator G is introduced 

u(x) s Gu(x) V x E 3 (2.25) 

where 

G : Co@) I+ C”(n) (2.26) 

More precisely, the global approximation operator G is defined in such a way that it is the globalization of the 
local approximate operator L;, and the globalization is realized through the moving process, viz. 

Gu(x) : = lim L;u(x) V x E 2 
;-+x 

(2.27) 

At the final phase of the moving process, one obtains Gu(x) := &u(x), i.e. 
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(2.28) 

Eq. (2.28) is a global approximation formula, which is named by Liu et al. [6] as the ‘reproducing kernel’ 

formulation. 
To this end, one can define the components of the moments as 

P,(z,P,(z,@(z) da:, i, j = 1,. ., c: 

where dJ2: = dOI@“. 
It should be noted that the following normalization convention is adopted in this paper 

which is equivalent to 

(2.29) 

(2.30) 

(2.31) 

Nevertheless, there is a non-trivial yet subtle difference between the L2 norms of the two window functions 

I I 

The moment matrix can be recast in a compact form 

and its inverse yields 

A!- ‘(x) = 
1 . . 

q - 
D, 

(+)‘+‘A,, . . . . . . (+)“‘A,, ..: 

(2.32) 

(2.33) 

(2.34) 

Df : = de@41 (2.35) 

and A,j are the minors of M,, . 

Thus, Eq. (2.28) can be rewritten in a succinct manner, 
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Gu(x) := P(O)M-‘(x) In 
Y 
P’(~)u(y)@Jy -x) daY 

= 
I We, Y -x, MY)@JY -x) daY 

“> 
(2.36) 

where the function %‘( 9, y - X, x) is the so-called correction function [6], which is defined as follows: 

%(e, y -x,x> := P(O)M-‘(x)P’(y ) I (2.37) 

The expression for the correction function can be further simplified as follows: 

=(l,O,O ,..., 0,; 
e 

-A,, ... (-l)‘+‘A,i ... 

(-1)‘+‘A2, ..+ 
. . 

(- l)i+‘A,j 

. . 

(&+,A,, . . . . . . (#+‘Ae; . .: 

=+[A,,P, -A,,P, ,..., +(-l)‘+‘A,iP, ,..., +(-l)‘+%,,~‘,l 
e 

(2.38) 

where the vector b is defined as 

b’:=$[A,,,-A,, ,... ,(-l)‘+‘A,i,. ..,(-l)‘+‘A,J 
6 

Let 

(2.39) 

rC,(y - x,x> := We, y -x, xPQ,(y - x> (2.40) 

The function X, is referred to as the moving least-square reproducing kernel function, and consequently, the 
moving least-square reproducing kernel integral representation has the form 

u(Y)~~(Y - x,x> dfi (2.41) 

here the superscript m indicates the highest order of the generating polynomial6 and the subscript Q represents 
the corresponding dilation parameter. 

6 Generally speaking, m # e unless it is in 1-D case. 
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REMARK 2.2. The definition of reproducing kernel for a proper Hilbert space V((n) : = ‘&c)/_Y E 0; lij$,~~~, := 
a < +m} is described as follows [ 161: Vf E Y('(n) 3 K(y,n) E T(O) such that Vx E fl 

f(x) = (f(y), K(YJ)), (2.42) 

Whereas for the moving least-square kernel representation, 

%;B) t’f<x) (2.43) 

unless f(x) E r.(O), where rVt(JJ) denotes the collection of polynomial in 0 C [w” of total degree Sm. 

Otherwise, Bif(x) is only a projection of the function f in the following reproducing kernel Hilbert space 

,Y;:= CflfECOW); f=(.L XY(y -x,x)>}. 

It would be helpful to examine Eq. (2.28) through a pedagogic example. In the following, we shall illustrate 
how to construct a reproducing kernel function with linear polynomial basis in 3-D. Let 

P(x) = (l,x,,x,,x,) 

It is obvious that 

P(0)=(1,0,0,0) 

The moment matrix is then in the form 

= I R I 
PI-&X’ (Y’QIXI>2 (?‘e,x’)(Y2;2X2) (Y’e,~l)(Y3e,X’) 

\‘2;x2 (Y’e,x”)(Y’;,,*‘) (Y2;“z)’ (Y2;x2)(Y3pjx3) 

Y3-&% (Y3-&X3)(YlJ (Y’;~3)(Y2~~2) (Yy3)2 , 

(2.44) 

(2.45) 

(2.46) 

Making change of variable, one may see that the moments defined in Eq. (2.29) are closely related with the 
conventional definition of moments in classic mechanics. Let z(, := 1. One may have 

M ~,+~,,,+l)OC)=m,j(x):= I z,z,CD(z) dz 0 s i, j s 3 (2.47) 
RW , 

where m,, are the moments under the conventional definition. 
Thus, in this particular case, one can rewrite Eq. (2.46) as follows: 

(2.48) 

and the associated correction function is expressed as 
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Ce(e,y -x,x) =P(O)M-‘(x)P’(y) 

-A,, A,, -A,, 
A 22 -A,, A24 

-A,, A33 -A34 

A 24 -A34 A44 

1 
Y, -xl 

el I 1 Y2 -x2 

e2 

Y3 -x3 

e3 

=$ A,,(x)-A,,(x) 
3 [ 

(y) +~,~(x)(y) -~,.(x)(y)] 

= P(Y)b(x) (2 .49) 

where 

b’(x):=; [A,,(x), -A,,(x),A,,(n), -A,&)] (2.50) 
3 

The reproducing kernel function .?$(y - x,x) can be obtained subsequently. 
In general, the correction function has the following properties. 

LEMMA 2.1. Suppose G(e) E Ck(i& and k S m, and p 2 1, ( 1 /p) + ( 1 /q) = 1, then the correction function 

%‘(e,y -x,x)ECk(0) and V(e,y -x,x)-$1). 

PROOF. By construction, P,(a) E C”(n). From (2.29), it follows that V I(Y( Sk, 

0 ; D~(p,(z)p,(~))(D~-~~z)) dflZ (2.51) 

where z = (y --x)/e. 
Then, one can deduce from Eq. (2.5 1) that DzMij is continuous and consequently bounded in 0. As a matter 

of fact, 

ID,“M,J s C,e-‘“’ J,,, pTa ID,P(Pi(Z)Pj(Z))I ID,“-‘@%)I df% 

sC,e -‘u’ CI IJDzP(PIPj)IILp~R)IID,u-P~IILY(R) 
psa 

It is easy to verify that 

(2.52) 

I(D,P(P,P~)IILP(~, = .R(r) [D,P(Pi(z)Pj(z))IP dflz 
U 1 

1 fP 

- ‘(1) 

U 

,/q 
~~D;-P@hw = -O(l) 

f&x, 
(D,“-‘@(z))’ di& 

Hence 

ID”M.-( x 1, x )I - 0(e-‘“I) 

Again, by definition (2.39), 

(2.53) 

(2.54) 

(2.55) 

%(o,y -x,X)=P ( > 7 b(x) (2.56) 

thus 
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D:%(Q,Y -X.X)= 2 (F)D~P(~)D; ‘b(x) 
fi _. 0 

Recall. 

1 
0 

Mb(x) = 0 

i1 d 

Then 

(2.57) 

(2.58) 

Dx”(M(x)b(x)) = 0 =a flF,, ( ;)DfM(x)D;mPb(x) = 0 (2.59) 

or 

MD:‘b(x) + 2 (DfM(x))(D:‘~ “b(x)) = 0 
c g;;, 

(2.60) 

where 1 d ((~1 c k. Thereby, one can solve Drb(x) recursively; for instance, in the I-D case, 

. . 

. 

. . . 

. 

. . 

0 

0 

0 

J 
M 

(D:MP’ 
(D;M)b 

(D;M)b 

(D:M)b, 

(2.61) 

The coefficient matrix of the above equations is a lower triangular block matrix, which can be solved by forward 

substitution. Therefore. Drb(x) are uniquely determined, and by comparing the coefficients in both sides of Eq. 
(2.61) or (2.60), one may 

%(Q,X, y) E C’W) 

and 

find that D,“b(x) - I!!~(Q-!“!). Consequently, it can be deduced that 

(2.62) 

b(x)-c?(l)+ %(Q,> -X,X)--0(1) u (2.63) 

-?2. Shape function und particle distributim 

As mentioned above, the early moving least-square interpolant was formulated directly in a discrete base [IO]. 
Instead of following the earlier derivation, we would like to view the moving least-square interpolant function as 
a discretized form of the kernel formula, 

%?qh(x) = u(Y)%&-L y)@Jy -x) dfj, (2.64) 

Before proceeding to deriving the expression of the shape function, introducing several preliminary concepts is 
in order. Although there is no mesh required for this method, there are still some topological requirements on 
the particle distribution (Fig. 1). 

Let us consider a simply connected region, 2 C [w ‘, in which there is a particle distribution. By particle 
distribution we mean that 

DEFINITION 2. I (Purticle Distribution). Each particle inside or on the boundary of fJ is assigned with a 
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Fig. 1. An admissible particle distribution. 

parametric dilation vector e,, I = 1, . . . , NP. With the parametric dilation vector e,, one can construct a compact 
support region around each particle. Suppose the particle I occupies the position x, in reference coordinate 

system, the compact support can be constructed as a local ‘sphere’ 

or, a 

s, := {xl lx -x,1 s rle,l) 

parallelogram box 

Si:={x~~x,-x,;~~r@,i,@,i>o, lSii33) 

(2.65) 

(2.66) 

where constant r is a proportional coefficient. 

Not all particle distributions can be used in numerical computation. The valid particle distribution is referred 
to as the ‘admissible particle distribution’. Admissibility of the particle distribution depends on computational 
feasibility. In what follows, the concept of admissible distribution shall be precisely defined. We start with 
defining the particle density index. 

DEFINITION 2.2 (Particle Density Index). The density of a particle distribution is measured by the indices 
that are associated with the dilation parameters of all particles, 

e nlax := max{)e,), I = 1,. . , NP} (2.67) 

e mln := min{)e,), I = 1, . . . , NP} (2.68) 

In this paper, we restrict our attention on the case in which the dilation parameter is uniform for all particles, i.e. 

e, = e2 = . . . = e, = . . . = e 
NP = e 

which means that 

(2.69) 

Qmin = Pnmx = Q (2.70) 

Obviously, the smaller g is, the denser the particle distribution will be. Thereby, a density refinement can be 
defined as a decreasing process of the dilation parameter, provided that in this process the new particle 
distribution remains as an admissible particle distribution. 

DEFZNZTZON 2.3 (Admissible Particle Distribution). An admissible particle distribution is a particle distribution 
that satisfies the following conditions: 

(1) Every particle of a distribution associates with a compact supports 

S,:={x-x,lCre} (2.71) 
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and the union of all the compact support S, 

.YP 

s:= u s, 
I= I 

(2.72) 

generates a covering for the domain fi in which the particles reside, viz. 

nc.s 

(2) Vi En, there exists a ball 

3(x) := {Xl /X -Xl S rlol} 

so that the number of particles in the 6%‘, N,,, satisfies the condition 

(2.73) 

(2.74) 

N 
,,,,n c N,> c N,,,,, (2.75) 

where both N,,,,, and N,,,,, are a priori assigned numbers, such that 

0 <N,,,, 5 N,,, =c x (2.76) 

(3) The particle distribution should be non-degenerate, which means that, in 1-D case, there are at least two 
particles in %3(x), and these two particles cannot overlap, i.e. the difference of their position vector should 
form a line segment; similarly, in 2-D case, there are at least three particles in a(x), and the three 
position vectors form a nonzero triangular element. Generally speaking, for B(x) E Iw”, there are at least 
n + 1 particles in B(X), and their position vectors form a nonzero nth rank ‘simplex’ element. 

A non-admissible particle distribution is shown in Fig. 2, which fails to satisfy the Condition 1. In Fig. 2, one 
can see that in the middle of the area there is a small dark region which is not covered by the compact support of 

any particles. As a matter of fact, Condition 2 implies Condition 1. Moreover, Condition (2.75) is closely related 
to computational feasibility. The first part condition N, 2 N,,,,, guarantees the stability condition of the shape 
function, or regularity of the moment matrix M. The second part of inequality guarantees the bandedness of the 
resulting stiffness matrix. 

REMARK 2.3. 
( 1) It can be shown that the shape functions generated from the MLSRK function with the window function 

GQ(x) form a complete basis for a finite dimensional space Y”“, C C”(n). As Q 40, there exists a 

monotonic decreasing sequence 

Fig. 2. Inadmissible particle distribution. 1: shaded area is not covered by any nodal support. 

Fig. 3. Inadmissible particle distribution II. 



(2) 
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je’l> (e*[ 2 IQ31 2 * . . , (2.77) 

such that 

Y-z, c cy.$ c T;, . - * c c”(n) (2.78) 

More precisely, for admissible particle distributions as e+O, or j --;rm 

Y’f, + C”(0) c L2(0> (2.79) 

In fact, this is very similar to the basic concept of multiresolution analysis (see [17]). 
It should be noted that the particle distribution with constant dilation parameter does not necessarily mean 
uniform particle distribution; one can construct non-uniform particle distribution with constant dilation 
parameter. Fig. 1 illustrates a simple example. 
A degenerated particle distribution is shown in Fig. 4. Since all the particles lie along the x-axis, the 

moment components my and mxV will be identically zero, and then the moment matrix will be singular. 

Once an admissible particle distribution is set up, one can approximate the reproducing kernel integral by 
numerical quadrature, i.e. 

%;,,u(x) := 5 u(xJ@(~,x, -x,x)@~Jx, -x> Av, (2.80) 
I=1 

= ,!, X”,(x, -x, X)U, AV, (2.81) 

In (2.81), AV, is the quadrature weight, or Ith particle’s lumped volume. If one chooses 

A&=1, (2.82) 

the discrete form of reproducing kernel integral will be equivalent to the formulation proposed by Lancaster and 
Salkauskas [lo]. Although this is truly in the mesh-free spirit, it may not be as accurate as a discrete integral 
obtained by numerical quadrature. Another advantage of using numerical quadrature to evaluate the reproducing 
kernel integral is that it approximates the integral with the correct measure, by which we mean 

5 AV, = meas(0) (2.83) 
/=I 

whereas Lancaster and Salkauskas’ formulation as well as other discrete formulation does not preserve this 

property, i.e. 

F, 1 = NP # meas(0) (2.84) 

However, this choice can be justified by choosing different normalization factors. For simplicity of the 
presentation, this case is excluded here, though all the results presented here are valid for this case too. 

PROPOSITION 2.1 (A Necessary Stability Condition for Correction Function). For a given admissible particle 

distribution, a necessary condition for stable correction function is 

Fig. 4. A degenerate 2-D particle distribution. 
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E(@)aAV,. 1 sIcNP (2.85) 

where E(Q) : = I.“Q”, which represents the volume oj’ the kernel support, and AV, is the quadrature weight. The 

condition (2.85) implies 

N m 1” 
32 (2.86) 

PROOF. We first show that when N,,,,,, < 2, the moment matrix M(x) will be singular (not positive definite 
anymore!). 

Since 

then by the quadrature rule-the trapezoidal rule, 

(2.88) 

If N,,,,, < 2, v i + j > 2. 

= 0 (2.89) 

Consequently, the moment matrix M”(x) is a singular matrix; thus the correction function Eh is unbounded and 

hence the algorithm is unstable. 
On the other hand, if N,,, 2 2, which implies that there are at least two points inside a kernel support; 

consequently, the quadrature weight AV, has to be smaller than the volume of the kernel support, i.e. 

E(e) 2 Av, 

Otherwise, the condition (2.83) will be violated. Cl 

(2.90) 

As a matter of fact, one can show that. even in a one-dimensional case, if m 2 2, then N,,,,, 3 3. In two 
dimensions, as mentioned above, one can prove that at least N,,,,” 3 3, because if there are less than three 
particles in a plane region, by rotating the coordinate system, one moment component will always be zero, and 
hence the moment matrix will be singular. Condition 2 can be also expressed as 

N,,, 6 card{+ E supp{ YC,(T, - X, x}} s N,,,,, (2.91) 

which is partially recognized by BabuSka et al. [ 181 as the pointwise overlap condition. 
Fig. 3 shows another type of inadmissible particle distribution, which fails to satisfy the condition N,,,,, > 2. In 

Fig. 3, at the left side of problem domain, the compact supports with square shaped particle in the center 
illustrate this situation, even though in this case the whole interior domain is covered by the union of all 
compact supports. 

The discrete formulation can be viewed as a shape function expansion, which is especially useful in Gale&in 
procedure; i.e. one can assume the approximation to the solution of PDE as follows: 

U”(X) = c [,N,(e, X, x,) 
,=I 

(2.92) 

where 
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N,(e, x,x,> := Ceh(e, x, - xv SJx, - 1) Ay 

= P(o)M-‘(x)P 7 ( > @&, - xl Av, 

= X”,(x, - x,x) AV, 

From this definition, it is clear that 

(2.93) 

supp{N,) = {xl Ix -x,1\ s re> (2.94) 

In the discrete formulation, as Eqs. (2.92) and (2.93) indicate, each particle corresponds to a correction function. 

In Fig. 5, we display the distribution of a group of correct functions that correspond to a group of eleven 
particles residing evenly in the interval [O,l]. From Fig. 5, one can see that far away from the end point, i.e. the 
boundary, the correction functions take the unit value. 

REMARK 2.4. It should be noted that once a particular quadrature rule is chosen it should be carried out 

through all the integrals consistently. It is particularly important that the moments integrals should be carried out 
by the same quadrature rule, i.e. 

NP 

m;(x) : = c zizj@(z, AV, (2.95) 
I=1 

In most mathematical literature, the term ‘interpolation’ is exclusively preserved for the sampling 

representation which satisfies the condition that 

fh(x) := i: ANi (2.96) 
i=l 

which implies, 

fhGi) =A 1 and Ni(xj) = 8, (2.97) 

In the context of this paper, the term ‘interpolation’ is used in a very broad sense, is not restricted in its 

5 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
X 

Fig. 5. The profiles of correction functions. 
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60 

Fig. 6. A 2-D shape function based on the cubic spline window function 

5 

7 

Fig. 7. The tirst derivative of the shape function, (w,/dy. 

conventional connotation, i.e. sampling. The moving least-square kernel Gale&in method discussed here is 
basically a pseudospectral method; hence, the proposed interpolation function does not satisfy the usual 

interpolation condition, 

up = ,5 5,N,(e,x,x,) (2.98) 

We, xJ’ x1) + 4J (2.99) 

this means that 

0%) f 5; (2.100) 

where 5, is the dual base of N,. This brings us to another crucial point, i.e. there is an essential difference 
between the MLSRK interpolation and moving least-square reproducing representation. That is 
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-50 
60 

60 

Y 0 0 
X 

Fig. 8. The mixed derivative of shape function, d’N,/& dy 

u%) + ~;,,w (2.101) 

As a matter of fact, Lancaster and Salkauskas [lo] called the former as the non-interpolation interpolant. This 

type of approximation is also called as quasi-interpolation in spline approximation [19]. On how to construct an 
exact interpolant with singular weight functions, readers may consult Lancaster and Salkauskas [lo]. 

3. Convergence analysis 

In this section, we shall discuss the consistency condition, or the completeness of interpolation and then 
discuss the error estimation of the proposing method. Before going into the details, we need some machineries 

to set the stage. 

0 

i! 
-50 

-100 

-150 
60 

Fig. 9. The second derivative of the shape function, d2N,/dxZ. 
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3. I. Preliminq 

If LY and p are two multi-indices, we say p c (Y provided 0, s q, ‘d 1 c i d n. Let 

a!:=q!(Y2!...Q. ! IZ 

By the same token, one can denote 

It is then easy to verify the Leibniz formula 

D;(m)(x) = c (;)D,pu(x,D:. %(x) 
0c-m 

The Taylor’s formula of order (Y, Ia/ = m can then be written as 

(3. I ) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where 8 E]O, l[. 
For convenience, the definitions of Lebesgue space and Sobolev space are listed as follows. 

DEFINITION 3.1. The Lebesgue space is defined as 

L”(~~):={fllIfI/,_,,,,,,<~}. 1 sl?sx 

where the L,, norm is detined as 

IlfllLp(12,:= il, lfwdx”” v 1 GP<X 

Ilf II Lztllj := ess. sup{lf(x)i /x E 0) 

(3.6) 

(3.7) 

(3.8) 

where dx is Lebesgue measure. 

DEFINITION 3.2. Let k be a non-negative integer, and let f E L:,,(R). For 1 sp < x, the Sobolev norm is 
defined as 

llf II w;,(n) := (3.9) 

and for p = x 

In 

llfllw:(r2, := I;pIz IIDMLrm 

either case, we define the Sobolev space via 

w;(n) := if E L:",v& I Ilfll,:;(rrI < 4 

(3.10) 

(3.11) 

where L:,,(n) is the set of locally integrable functions defined as 

L:,,(0) := ulf E L’(K) v K C interior R} (3.12) 

Particularly, we denote H”‘(0) = W;(n). Later, we also need the definition of Sobolev semi-norm. 
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(3.13) 

and if p = m, 

IUI wEcn, := ;c; fess. ;zpn ID”ul) (3.14) 

In later sections, several standard inequalities will be used for error estimation. For the sake of convenience, 

they are listed below. 

Hiilder’s inequality 
For lop, qsw, p and q are conjugate to each other such that ( 1 /p) + (1 /q) = 1, 

(I) Fora,, b;aO, i=l,.... n. Suppose both sums C:=, a: and 2?=, by are finite, then 

2 a$, s@, a:)“‘[$ by)liy 
(II) If functional f E L’(a), g E L’(n), then fg E L’(R) and 

IlfAl zs llfllLP(R~ll&L(m 

(3.15) 

(3.16) 

Cauchy-Schwarz inequality 
This is a special case of Holder’s inequality. Let p = q = 2, 
(I) If both summations Xy=i a; and Ey=, b; are finite, then 

i a,bi ciz i% (3.17) 
i=l ,=I 

(II) If f E L*(n), g EL’(a); then fg E L’(0) and 

I (2 &k(x) da s IkllL2~,&&o) (3.18) 

By using the multiple index notation, we construct a complete base vector for Y:(n), where 0 C R”. 

DEFINITION 3.3. Assume 0 C R”. A complete m-order, t-component polynomial vector P(x, - x)/ 

@=[P,,Pp..., P,](x, - x) / Q consists of the following components 

Ial =o; P, = 1; 

IcyI = 1 ; P,=(F) ,...) . ..) Pn+,=(Y); 

. . . ) . . . ) . . . ) 

la(=m; . . . . Pk =(y)a’(5$)+. . .(z$k)a”, . . . ) pt(5$A)m (3.19) 

Particularly, for n = 2, e = im(m + 1); and n = 3, e = 1 + CT=, ik(k + 1). 0 

For example, in the two-dimensional case (n = 2), the components of a m-order, 8-component 

polynomial base vector, P(x, - x)/e = [P,, Pz, . . . , Pe](x, - x)/e, forms the following triangular 

pyramid, 

P, = 1 

p2=(F); pi=(l$2) 

x1-x 2 
P4=(,-) ; P, =(~)(3$) ; P, =(&$x)2 

. . . , . . . , . . . , . . . , . . . , 
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. . , . . , , . . . , ) , 

,,I 

1: , . . . r ; . . . . . . . . . . . . 
p,=(y) 

. . . . . . . . . ..) m (3.20) 

where e = [m(m + I)] / 2. 

3.2. Completeness of interpolants 

It is well known that in order to meet convergence requirements, finite element shape functions have to satisfy 
the completeness condition, i.e. they have to be able to represent rigid body motion and a constant strain field 
exactly, if the terminology of solid mechanics is used. For non-conforming elements, due to lack of analytic 

estimates, this completeness requirement is tested through the so-called patch test. Following the same idea, 
Belytschko et al. [4] have systematically conducted various patch tests for moving least square interpolant 

functions. All the MLS interpolants have passed the patch test without exception. 
Liu et al. [6] proved analytically that for Lancaster-Salkauskas’ type moving least-square interpolant, the 

completeness of the interpolant shape function is automatic. As a matter of fact, one can show that the 
reproducing kernel formula can reproduce any type of polynomial at a designed manner, which might be called 
‘super-completeness’ if one wishes to exaggerate it. In other words, the moving least-square interpolants enjoy 

an extra luxury of completeness. 
In what follows, we shall discuss this completeness-a m-consistency structure. First, we show the 

completeness in the one-dimensional case, since it offers the physical insight and the essence of the 

mathematical structure. The multi-dimensional case will follow as a natural extension. Furthermore, departing 
from this point, we shall show that the structure of this type of moving least-square interpolant yields a nice 

property, which is essential to the convergence property of the proposing method. 
For a one-dimensional case, the polynomial base vector P is 

XI - x 
P(--):= (l,F, (~)*,(~)~,_,,,(~)“‘) 

the corresponding moment matrix is 

where m, : = J,, z’ Q(z) dz. 
Its inverse matrix has the form 

_A,? . . . . . . (-1)“-“A,, 

A . . . . . . 
22 (- 1)‘+“‘A2, 

(_l)‘+“‘A,, (-l).‘;“‘A,Z . . . . .: Aim 

(3.21) 

(3.22) 

(3.23) 

REMARK 3.1. The matrix (3.22) is a Hankel type matrix, which can be always viewed as a product of the 
‘backward identity’ permutation matrix and a Toeplitz matrix [20]. 

Thus, the number of operations needed in inverting matrix (3.22) should be of the same order as needed in 
inverting the corresponding Toeplitz matrix. Therefore, numerically inverting matrix (3.22) only requires 6”m*) 
operations [21]. 

LEMMA 3.1. The moving least-square kernel interpolant function with basis (3.21) can reproduce any 
polynomials f(x) E r, exactly by using the sample values, viz. 



W.-K. Liu et al. I Comput. Methods Appl. Mech. Engrg. 143 (1997) 113-154 133 

PROOF. It is sufficient to show that for 0 C k G m. 

NP 

z, N,(e,x,x,)xF =xk VO~k<rn 

,g N,@,x,x,)x; =P(O)M-'(x) $ (P'(+DJx,-x)Ay)x; 
I= I 

Let 

XI - x 
ZI - 

---*x;=(@z,+x>” 
e 

Thus, 

,$, N,(e, x7 x,)x: = z N,(e, x, x,,(,z (;)ek-jz:-jxj) 
k 

=o 

NP 

= 
,Sk 

j Qk-‘x’P(o>M-‘(x) 2 (P’(z,>@&,, Av,)z:-’ 
,=I 

==o jck 

; Qk-jxjfyop-‘(x) 5 

,=I 
@&z,) Av, 

By the Luplace Theorem, 

@Q(ZI) AV, = ‘kj 

it then follows 

,$, N,(g, x, x,)x; = c (;)Q”-jx’s, = xk q 
j=Sk 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

More generally, in R”, the following completeness conditions hold. 

LEMMA 3.2. The moving least-square shape function, which is generated by a complete m-order, f-term 
polynomial P(x, - X)/Q, satisjes the following consistency condition: 

(3.31) 

q 
PROOF. The proof is straightforward. 
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Once again the Luplace theorem is used in the last step. 0 

(3.32) 

Direct consequences of Lemma 3.2 are the following. 

COROLLARY 3. I (m-consistency condition I). For multi-index (Y, 1 =S /aI d m, the a-order moments of the 
MLSRK shape function are identical to zero, i.e. 

x, x,) = c (x, - x)“X;(x, - x, x) Av, = ano ; 
/:I 

(3.33) 

(3.34) 

PROOF. We first show (3.33). By construction, for a complete mth order MLSRK approximation, there is a 
one-to-one correspondence between the polynomial basis P,(z) and the function z~. Therefore, for 0 G 1~~1 G m, 
3 1 Sk d e such that 

Then, for OcIaIsm. 

2 (x,i’x)~‘N,(p,x,x,)=,~, P,(~)N,(Q~~.~I) 

,=I 

= 4, = 8ro (3.36) 

which implies 

;, @, - x)“N,fe, VP x,x,) = c (x, - x)“X;(x, -x,x) AV, = c?<~,, 
,=I 

(3.37) 

(3.35) 
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Now, we show (3.34). 

NP NP 

C xpN,(e, x,x,> = C (x, - x + x)“N,(e, x, x,) 

/=I I=1 

(3.38) 

Lemma 3.2 leads a profound consequence for the moments of the derivatives of the shape function, which plays 
a key role in the convergence behavior of the MLSRK approximation. 

LEMMA 3.3 (m-consistency condition II). Let @ E C”‘(n); for 0 C [w”, the shape functions generated by the 

complete m-order, f-component polynominal basis (3.19), satisjies the following conditions, V 0 s Ial, IpI G m, 

5 (x, - x)"DfN,(e NP ,x,x,) = c (x, - x)“DfXh,(e, x, -x,x) AV, = a%p 
/=I /=I 

(3.39) 

or equivalently, 

xFDfN,(e,x,x,) = 5 xBDfXh,(x, -x,x) AV, = (a “!p)! xa-’ 
I=I 

PROOF. We first prove (3.39). The proof proceeds by induction. 

(1) I/3( =O, \alGrn; by Lemma 3.1, 

,g (x, - x)“N,(e, x,x,) = a,, = a!&, 

(2) IpJ = 1, IczI s m; without loss of generality, one can assume that 

p:=(O,O ,..., @,,O ,..., 0) and flj=l 

*DP=d X -V 

Hence, 

(3.40) 

(3.41) 

(3.42) 

NP NP 

Df c (x, - x)“N,(e, x, x,) 
I=I I ( 

= a, c (x, - x)“N,(e, x, x,) 
I=I > 

= -q;, (x~,-x,)~’ .*.(xj,-x,)+ . ..(x.,-~,)~~N,(,,x,x,) 

(3.43) 

This leads to 
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NP 

,F, @, -xrD:N,(@,x,x,) = a,!. . . g(a, - l)! ‘. . a,,!S,,,; . ~+,(~~ ‘. q,,,,, 

= a, ! . . a;! . crn!s<, ,] . . 
/ 

.a, , . . 
I 

.a, () 

I/ 

= a!Sa/-( (3.44) 

Hence, Eq. (3.39) is true for j/31 = 0, 1. Assume that (3.39) holds for )/I\ 6 m - 1 and lcr\ Cm, we need to 

that show it is true for the case (~‘1 = m, and J(YI sm. By assumption 

(3.45) 

we let 

y := (O,O, , y,. . ,O). Y, = 1 (3.46) 

Then 

0; = d,, * D;D,p = 0; 

where Jfi’J = m. 
Differentiation Eq. (3.45) yields 

-q~,(~,,-r,)'r'(xii-_~~)R:.~-(~,,-~,)11~~'.~.(~,,-~,)D~~D~N~(~,~,~,) 

NP 
+ c (x, - x)“DJDfN,(e,x,x,) = 0 

/=I 

It follows that 

,; (x, - x)“D:‘%(e, x,x,) 

NP 

= g z, (x,, -x, )“‘(x2, - x,)“~. . . (x,, - xi)“’ ’ . . . (x,, - ~,)~~~~D,pN,(,,x,x,) 

= cy,((Y,!(Y~!‘. ‘(a!, - l)!. . YY,,!)S<Q,Srrzp~‘~ q ifi . . .a@,, 

=(ff,!~,!---.,!~-‘u,,!,s,,,,q.l,~’~~~~,~~,--.~~~,,,,,=~!s,,~ 

We now show (3.3). 

2 

NP 

x;D,PN,(e, x, x,) = c (x, -x + x)“DfN,(p, x. x,) 
I=, /=I 

NP 

= c c (~)(~,-~)'~~~x~D~N,(~,r,x,, 
,=I y=zm 

= c (;)xy 2 (~,-x)'*~~~D~N,(~,x,x,) 
ysn 11-t 

There can be only one term left; i.e. the term ,6 = a - y. It then follows immediately that 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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3.3. Interpolation estimate in Hilbert space 

In this section, an interpolation estimate for the MLSRK interpolant is given, which is central to the 
convergence proof of the corresponding Galerkin method and error estimation. Since the reproducing kernel is 
defined only for the Hilbert space [27], it is pertinent to discuss the interpolation estimation in Hilbert space 
separately, instead as a special case of Sobolev spaces. The interpolation estimation in Sobolev space will follow 

shortly. 

THEOREM 3.1. Assume @(x) E Cm(%) fl WE(n), and u(x) E Cm+’ (a)fl H”“(0), where 0 is a bounded 

open set in II%“. Let 

s$&) = C u(x,)N,(e, x,x,) (3.52) 
IEA 

where interpolation shape function N,(e, x, x,) is generated by a complete m-order, e-component polynominal 

bases vector (see 3.19); the index set A := {Ill s I s NP, supp{N,} fl0 # 0} represents an admissible particle 
distribution over R. Suppose the boundary 80 

interpolation estimates hold 

is smooth enough, for 0 6 k cm, then the following 

particularly, for k = 0 

where C,, C, are constants, which are independent with the dilation parameter e. 

PROOF. It suffices to show 

(u - 9%~.h~]H~cn, c Cem+‘-t(u(Hm++n, 

By definition 

~~,,a(~) = c u(x,)N,(e, x,x,) 
IEA 

Taking the deivative of (3.56) yields 

@%~.&) = c u(x,)@N,(e,x,x,) 
‘EA 

By Taylor expansion 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

u(x,> = c + (x, - x)“D,“u(x) + c -$ (x, - x)“D,“u(x + t3(x, -x)) 
lu[Qi lorl=m+l . 

where 0 < 8 < 1. Substituting (3.58) back to (3.57) yields 

(3.58) 

o,p(qhu(x)) = c c “‘--!x” D,“u(x) + c { (x’;!x)y D,“u<x + W, - x)) * DfN,(e, x, x,) 
‘EA IoLlsm IaI=m+ I 

= ,azm & D:W( ,zA 6, - x)“DfN,(e, x, x,1) 

+ I: 2 -+ (x, - x)“D,“u(x + 0(x, - x))D,pN,@, x, x,1 
'EA lal=m+l a. 

= ,azm 5 D,“u(x)c~!G,~ t by Lemma 3.3 
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+c c + (x, - X)“D:‘U(X + H(x, - x))DfN,( @, x, x,) (3.59) 
IE 1 /U~=f?l+ I 

If an is smooth enough, one can carefully choose a particle distribution and dilation parameter Q such that each 
sub-domain supp{N,} fl0 is star-shaped with respect to x,, i.e. Vx E supp{iV,} n Q 

x +0(x, -X)E ~upp{N,} n f2 (3.60) 

thus, the above expansion always make sense. It should be noted that this is a rather loose condition, which does 
not require domain 0 to be convex. 

It follows then 

If x E supp{N,( e, x, x,)} then 3 r > 0, such that Ix, - XI c t-p,; therefore 

10:~ - Dx”%n’l,;~4l s c 2 /a, -xl”lD,“u(x + 0(x, -x))l (D,pN,(~,x,x,)l 
It l(X) <I =,,r+ I 

s c,,, t ““‘Q”‘+’ c c jD;u(x + 0(x, -x))l lD,PN,(~,x,x,)j 
/t Irx) /<I+171 A I 

where A(x) : = {I E ./11x E supp{N} nn}. 
By the Cauchy’s inequality, one will have the estimate, 

(3.61) 

(3.62) 

10;~ - D$,u)(‘C 2 D:‘u(x + 0(x, -x)) D~~i(e~w.J (3.63) 

One has 

DfN,(p x x ) = D!%(z x )D’z 3 ’ I ‘. 1’1 x 

where 

Dfz:= (2)“‘(z)“. .(!%)“” 

lD:N,(e> x> x,)/ c lD:z/~D:&(z.x,)l 

s e%@,(z,x,)l 

On the other hand, by the Leibniz rule 

D;$Cz,x,, -(c (;)D:V(z,z,,Dl” ‘(z, -z))(F) : 
v=cc 

Considering the stability condition (2.85), A, G Y”Q”, then 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 
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and Cauchy’s inequality, we have 

(3.71) 

Since G(e) E C”(O), by Lemma 2.1, % E C”(0), and IDf(z, z,)\ is bounded over a. Furthermore, from Lemma 

2.1, one can observe that the correction function %’ is a function of Q at zero order, as Q + 0. Thus, 0: %(z, z,) 
will be also a function of Q at zero order. Therefore, there exists a constant ‘?$, such that 

(3.72) 

where %:, is independent of Q. 
Hence, the derivatives of the shape function can be always bounded as follows: 

lD,pfi,kx,) =S Cp.nl@lw~w, 

From the pointwise overlap condition (2.91), for fixed X, 

card{&)} c N,,,,, , 

then 3 I E A(x), the following pointwise estimate holds 

One can readily show that 

(3.75) 

(3.76) 

Then, we conclude that 3 0 < C < ~0, 

(u - ,%?:,,u(,~,~, < CQ~+‘-~~U(~~+,~~~) k = 0, 1,. . . , m (3.77) 

or 

(Iu - LB~,,u\~~~~~, S Ck~m+‘-k(J~J(Hm(nj k = 0, 1,. . . , m 0 (3.78) 

3.4. Interpolation estimate in Sobolev space 

From theoretical perspective, the continuous version of the MLSRK representation is more fundamental than 
its discrete counterpart. In this section, a Bramble-Hilbert type theorem is asserted for the MLSRK integral 
approximation. 

THEOREM 3.2. Assume that a is a convex, compact region in [w”. v 1 G p < ~0, (1 /p) + (1 /q) = 1, assume 
u E P+‘(Lt) n w;+‘(L2) and @ E C”(0) n w:(O). Let 

LB;u(x):= 
I 

n u(Y)X,(Y -x,x) dfiY (3.79) 

for 0 G k 5 m, m > n/p, the following interpolation estimate holds 

(3.80) 

or 
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(3.81) 

Before we prove Theorem 3.2, few lemmas are needed. However these lemmas are the continuous counterparts 
of Lemmas 3.2 and 3.3. The proofs of following Lemmas are omitted, because they are similar to the proofs of 

Lemmas 3.2 and 3.3. 

LEMMA 3.4. The MLSRK approximation, generated by the complete m-order, t?-component polynomial basis 

vector P(y -X)/Q := [P,, P,, , P( J(y -x)/Q, has the properties 

(3.82) 

or equivalently, 

(3.83) 

LEMMA 3.5. The derivatives of the MLSRK function generated by the complete m-order, &component 

polynomial sati& the ,following conditions, V 0 s JoI, I/?[ G m, 

I 
(y - x)“D$?$(y - x,x) dQ = a!& (3.84) 

fI 

or equivalent!\ 

PROOF [Theorem 3.2/. It suffices to show (3.80). By Taylor’s theorem, Vf(x) E C’““([O, l]), one has 

(3.86) 

Assume R is convex. supp{XP(y -x,x)} fl R must be also convex; therefore Vs E [0, 11, 

z = x + s(y - X) E supp{ ;;%,(y - X. x)> n f2 

Suppose u(x) E C “’ “(0) fl Wi:” ‘(0). One can define the real function f(s) as 

f(s) : = u(x + s(y - x)) 

Then by the chain rule, it can be verified that 

(3.87) 

(3.88) 

j$ f’“‘(s) = c & D”u(x + s(y - x))(y - x)” 
,*I=!. 

Let s = 1 in (3.88) and considering (3.86) and (3.89) it yields 

u(y) = c -$ D”u(x)(y -x)” + c *I-’ (m + 1 )s”‘D”u(y + s(x - y)) ds 
1 ill c ,,I <I ) = I,, + 1 0 

(3.90) 

By definition, 

3 ;u<x, = I fl u(yM&y - x,x) dQ . 

then 

(3.91) 
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D,“< .qu(x>) = I 0 
u(y)@ rt,(y - xv x) day 

Substituting (3.90) into (3.92) yields 

141 

(3.92) 

+ s 2 (Y-X)" ’ 
fl lnl=m+ I 

fX! If 0 
(m + l)s”D”u(y + s(x -y)> ds D;X,(y -x,x> dflJ 

= & ww%, e By Lemma 3.5 

+ 
I 

2 (y-x)” 1 

R lo(=m+l 
a. I {I 0 

(m + l)s”D”u(y + S(X -y)) ds D,B.?Qy -x,x) daY (3.93) 

Let 4 :=X/Q, r) :=y/g and consider the fact that 

IY --x(<re Y,X Esupp{X,(y -x,x)) (3.94) 

V(p(=k, OCkSm, one has 

IDfu(x) - Df%tu(x)lS 1 lo { c 
lal=m+l 

v (I,’ (m + I)s"D"u(y + s(x -y)) ds) 

* (0,” .WY - T 0) dfi?n,l 

S Cm.n,,em+‘-k 
I, { ,.,E+, (lb 

s”(Lh(y + s(x -y))l ds 
) 

* dD;Wrl- 6 5))) $} df& 

where~(1)-j,5)=~:(1,rl-L5)~(-_). 
Then, by H8lder’s inequality 

Since 

(3.95) 

(3.96) 

(3.97) 

we have 
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(3.98) 

Consequently. 

.s”‘lD%(y + s(x - y))l ds 

I’ 
s”‘jD”u(y + s(x - y)) dL?, dL$ (3.99) 

where x.xuc y -x.* 1 is the characteristic function of compact support of XQ(y - x,x), i.e. for fixed y, 

I 
x.i/L,,‘y-x,XI := 

VnEsupp{X~>(y -x.x)} 

0 otherwise 
(3.100) 

Making change of variable, for fixed y, we let 

z := y + s(x -y) (3.101) 

then dn = s” d.Q,, thus 

If m >nlp, 

(3.103) 

(3.104) 

and (3.81) follows readily. 0 
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4. Galerkin procedures and numerical example 

4.1. Error estimation for elliptic partial differential equation 

The interpolation estimate obtained in last section can be used to derive the abstract error bound for 
approximate solutions obtained by using the moving least-square kernel Gale&in method. In fact, a better 
convergence rate has been observed for the MLSRK method than that of the conventional finite element method. 
This issue will be further explored in the Part II of this series [ 111. To illustrate the general procedure, an error 

estimate for elliptical partial differential equations is considered. 

4.1.1. The Neumann problem 
Since natural boundary condition problems require fewer restrictions on both trial functions and weighting 

functions, it is convenient to consider the following model problem-a Neumann problem for the second-order 

elliptic partial differential equation 

L(u) = -v*u + u =f(x) x E n (4.1) 

au 
an = g(x) X E an (4.2) 

where f, g are assumed to satisfy sufficient regularity requirements. 

Let us start with the bilinear form a(u, v) 

a@,~):= n(Vu*Vu+u.u)dO 
I 

(4.3) 

It is obvious that a(u, u) is coercive on H,(O), 

a(u, u) = IIullfflCn, Z= ~l\ull~l~~, v u E H’W) (4.4) 

where 0 < y < 1. Or we should say that a(u, u) is a H ‘(J&elliptic form. It is also straightforward to show that 

a(u, u) is continuous, i.e. 3 C > 0 such that 

a(u, u) c Cll~ll,~,,,ll~ll,~~~, (4.5) 

As a matter of fact, by Cauchy’s inequality 

In the last step, the arithmetic-geometric inequality is used. 
Then, by the Lax-Milgram theorem, the original problem 

variational formulation (weak form), 

[FinduEH’(R)suchthatVuEH’(0) 

Let 

?“z<fi) : = span{Ny \I E A; supp{Ny } n 0 # 0) 

(4.6) 

(4.1)-(4.2) is equivalent to the following 

(4.7) 

(4.8) 

Here, the superscript m indicates that the shape function is constructed by the complete mth order polynomial. 
Clearly, “Irt(fl) C C”(n) C H’(a) provided that m 3 1. 

Then, we formulate the moving least-square kernel Galerkin problem I as 
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For the moving least-square Galerkin solution ~1’ of (4.9), we have the following error estimate, which is based 

on the celebrated Cia Lemma [22]. 

THEOREM 4.1. Let u E c’“’ + ’ (0); .f u is the solution of Neumann problem (4. I)-(4.2), and up E V”:(n) is the 

solution of weak fornnhtion (4.91, then 3 Co, C, > 0 mch that 

(4.10) 

and 

(4.11) 

where the constants, C’,,. C,, do not depend on dilation pammeter Q. 

PROOF. We first show (4.10). Since v”E ‘Vr(O)CH’(fl) 

Subtraction (4.13) from (4.12) yields 

a(u-u”,v”)=O. VUU”E’VT(fl) 

thus 

11~ - u”[/~~~~~, = a(u - u’, u - ~1’)) 

= a((u - u”), (u - vQ) + (vc’ - u”)) 

XI a(u - u’, u - u”) + a(u - u’, v(“ - u’) 

= a(u - uV, u - v”) c=v” - uU E LY;(n, 

5 CIlu - u% +f&lIu - v% ‘(0 1 e by continuity of a(u, v) 

Thus, V v” E Y;($J), 

lb - 4JH ‘(0) s c t,c,;;;,n, llu - ~“IlH~Cf~, 

= C lim I,e~?rm(n) lb - aPtO, P 
Since v” is an arbitrary element in YT(f2), let 

u Q = 9 U1 
Q.hU 

Note that uQ # %J,,u! Consequently, by the interpolation estimate (3.53), we obtain 

lb - uelL/ ‘(a) zz cllu - ~:.,AH ‘cR I 
s C, eml14Hm- ICI) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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Next, we show (4.11). The procedure is the standard duality technique known as Nitsche’s trick. Let ee = u - ue 

and consider the following auxiliary problem, 

L(w) = ee (4.19) 

The corresponding weak solution satisfies 

a(w, u) = (ee, u) , Vu E Y:(O) (4.20) 

Choosing u = ee and considering 

a(ue, u - ue) = a(ue, ee) V ue E Y:(O) (4.21) 

one has 

lIeelI L~cnj = a(w, ee) = a(w - ue, ee) (4.22) 

Let up = we. By Cauchy’s inequality, the above expression can be bounded as follows: 

lleel12~~R~ = a(w - we, u - 2) 

c cllw - WellH’(R~Ib - UelIH’cf2, + by continuity of a(u, u) 

c CC’ebh,~cRjIb - ~~h,+~, = by (3.53) 

On the other hand, the continuous dependence of the solution on the data requires 

Il4~w2, s C”lleellL~~n~ (4.23) 

Thus, 

lleellt~~R~ G CC’C”elleellL+& - u~II~w) (4.24) 

which finally leads to 

lb - ~ellL~~o, S CC’C”cJu - ue)lHpnj G CO~m+‘~IuI(Hm+l~n~ 0 (4.25) 

In most numerical computations, the interpolated function fe(x), ge(x) are used instead of exact input data 
function f(x) and g(x). Generally speaking, the moving least-square Gale&in methods adopted are usually 
‘non-interpolation’ schemes; this makes the numerical computation extremely intriguing. In the actual 
computations, the following scheme is implemented: 

f”(x) := s;,J(x) x E n (4.26) 

gQ(x> : = 93 ;,,g<x, x E n (4.27) 

where function g(x) E H’(n) n C’(n) or even more smooth, such that 

&7(x):= g9 1 xEaf2 
continuous function; x E R 

(4.28) 

In this manner, the so-called moving least-square kernel Galerkin method is based on the following variational 

formulation 

(Find ue E ‘Y:(n) such that V ue E Y:(O) 

MLSRKG(I1): 
(VueVue + ueue) dR = 

REMARK 4.1. In (4.29), the expression I,, geue da.0 should be interpreted as 

I aR ge(eq Y, x,)ue(y, x,) dy 

where y E 80, x, En. 

(4.29) 

(4.30) 

cl 
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Based on the formulation MLSRKG(I1) (4.29), we have the following error estimation. 

THEOREM 4.2. Assume 2f.J is Lipschit:; the solution c.f (4.7) u(x) E C”‘:(0), and also the input data are 

sujjiciently smooth and regular f E C”+‘(n), g E C”“(afI) a g E C”” (0). The approximation error of the 
solution of Neumann problem (4, I)- (4.2) based on formulation MLSRKG(II) (4.29) is bounded by 

and 

(4.3 1) 

(4.32) 

where the constants C,,, C, do not depend on the dilation parameter Q. 

Since the proof is standard and it is very similar to the proof of Theorem 4. I, we omit the detail here. 

4.1.2. The Dirichlet problem 

Here, let us consider the following model problem 

-v2u + /A =,f(x) x E fi 

u = h(x) x E ai1 

To solve this problem, the conventional finite element method is to minimize the functional 

(4.33) 

(4.34) 

J(u) = ~~ [(Vu). (Vu) + u . u] dR - 2 
i i 

fu dfl (4.35) 
fr 

Unlike the finite element interpolating shape function, most moving least-square interpolant based trial functions 
do not satisfy the essential boundary condition generally unless special care has been taken. Thus, the classical 
technique cannot be legally used in the computation. An early alternative suggested by Belytschko et al. [4] is to 
seek the stationary point of the following functional, 

J(U, h) = 
I 

[(Vu).(Vu) + u .ul d0 - 2h fud0, 
I> I fl 

(4.36) 

by using the Lagrangian multiplier method. 
The physical meaning of the Lagrangian multiplier in this case is the boundary flux [23]; if we solve the 

elastostatic problem, the Lagrangian multiplier would be the boundary traction. In contrast to the finite element 
shape function, the interior particles, in a MLSRK interpolating field, have non-trivial contribution to the 
boundary flux, specifically, V x E X2, 

NP 

A”(x):= c v,N,(g,x,x,) x, E 12 
I=I 

(4.37) 

Thereby, we are basically dealing with a typical mixed problem here. It is well known that the mixed algorithm 
is not always stable unless additional restrictions are imposed on its weighting function space, or trial function 
space [23]. 

It has been discovered recently that the correction function can actually enforce the shape function to fulfill 
the essential boundary condition by carefully choosing the dilation parameters. 

Technically speaking, at least in one dimensional problem, it is possible to construct a finite-dimensional trial 
function space, %y, such that 
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u” E q(o) 

%:(a) := span{N~Isupp{N’;} fl0 Z 0; IV,&,) = &, V x, E dO} 

In terms of weighting function, one can show that it is feasible to construct a 

function space, 

(4.38) 

(4.39) 

finite-dimensional weighting 

“Ilr~~J.Q) : = span{Ny Isupp(N~} fl R # 0; N,(r) = 0, tl x E an} (4.40) 

where ‘Wt,0 C %:. For one-dimensional problems, .two pictorial examples of such finite-dimensional trial 

function basis are shown in Figs. 10 and 11. Some other examples of such finite-dimensional spaces may be 

constructed by proper choice of dilation parameter. 

The family of shape functions in Fig. 10’ are constructed based on cubic spline window function with linear 

generating polynomial, and the family of shape functions in Fig. 11 are constructed based on the fifth-order 
spline window function with quadratic generating polynomial. In both cases, the particle distributions are 
uniform. The group of shape functions in Fig. 10 have the support radius re = 2 hx; for those shape functions in 
Fig. 11, the support radius is re = 3 Ax. For the multiple dimensional problem, proper trial function basis or 
weighting function basis can be devised with care. The significance of this finding is not just a happy ending, it 
shows that the moving least-square kernel Galerkin method still preserves some essential advantages that the 

traditional finite element method possesses. 

By employing the classic variational technique, the moving least-square reproducing kernel Galerkin 
formulation for Dirichlet problem (4.33) and (4.34) can be set as follows: 

Find ue E %~(0) such that tl we E We,, 

MLSRKG(II1): 

I 
(Vu” .Vwe + ue. we) da = 

II I 
fwe da 

(4.41) 

n 

Following the same procedure in the last section, one can show that the following statement holds. 

1 , I I I 

-0.2’ 1 I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

X 

Fig. 10. A finite-dimensional trial function basis that belongs to the space %b[O, 11. 

’ This example is discovered by Jeffrey Gosz, a graduate student at Northwestern University 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 I 
X 

Fig. I I. A finite-dimensional trial function basis that belongs to space %:[O, I]. 

THEOREM 4.3. Let u E C”“‘(n). rf u is the solution of Dirichlet problem (4.33)-(4.34), and u is the solution 

of weak formulation (4.41), then 3 C such that 

(4.42) 

and 

(4.43) 

where the constants Cd,,, C,, do not depend on dilation parameter Q. 

The above nice finite-dimensional trial function subspace can be constructed for nonuniform particle 
distribution. On the other hand, it has been found recently that one can always construct the following 

finite-dimensional shape function basis for highly irregular particle distribution with special care, 

q := span{N~lsupp{N~ fI 0 # 0, N,(x) = 0 Vn, E 0 and x E aa} (4.44) 

This is good enough to handle the general Dirichlet problem. Following Hughes [24], we can define a new 
function, 

he(x) : = 
h(x) > x E aLLi 

continuous function x E 0 
(4.45) 

such that the trial solution can be chosen as 

Ue = ue + hg 

where ue E c(0). 

(4.46) 

Therefore, for general multi-dimensional problem, we can have the following Bubnov-Galerkin formulation 
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Given f(x), find ue = ue + he, 

where ue E e(n), such that Vwe E c(0) 

I I 
(Vue .Vwe + ue. we) da = 

a 
n (fie -Vhe - he .Vwe ’ we) d.f2 

149 

(4.47) 

The proof of convergence of above algorithm is almost the same as the proofs in the last section. 

4.2. Numerical example 

There are many problems which have been tested and solved by using the moving least-square kernel 
Galerkin method. In order to compare with other numerical algorithms, here, a special benchmark problem is 
tested. This problem was originally proposed by Rachford and Wheeler [25] to test the convergence property of 
the H-‘-Gale&in method, and was 

method. It is a two point boundary 

-u,,X+U=f(x) xE(O,l) 

u(O)=u(l)=O 

where 

used again by BabuSka et al. [26] to test the mixed-hybrid finite element 

value problem, 

(4.48) 

f(x) = 
2cX( 1 + a’( 1 -X)(x -2)) 

(1 + (Y2(x -#)* 

+ (1 - x)(arctan(cY(x -X)) + arctan 

The exact solution of Eq. (4.48) is 

(4.49) 

u(x) = (1 - x)(arctan(a(x -2)) + arctan( (4.50) 

According to the designed feature, the solution (4.50) changes its roughness as the parameter (Y varies. When (Y 
is relatively small, the solution (4.50) is smooth; as (Y becomes large, there will be a sharp knee arising close to 
the location x =X. Thus, it provides quite a challenging test for numerical computations. 

Following the choice of BabuSka et al. [26], the two representative parameter groups chosen are as follows: 

the smooth solution: :I,‘;” 

the rough solution: ~~~~~ 

(4.51) 

(4.52) 

In Fig. 12, the exact solutions-both smooth and rough are plotted in comparison with numerical results. One 
can see that the numerical solutions agree with exact solutions fairly well in both cases-the smooth solution as 
well as the rough solution. In Fig. 13, the comparison between exact solution and numerical solution is made for 
the first-order derivatives. As mentioned above, two types of shape functions have been used in numerical 
computation: the shape functions generated by cubic spline window function and those generatedf by fifth-order 
spline window function, i.e. the shape function families shown in both Figs. 10 and 11. The computation is 
carried out for four different particle distributions: 11 particles, 21 particles, 41 particles and 8 1 particles. The 
results shown in Figs. 12 and 13 is obtained by using the first group of shape function with 41 particles 

uniformly distributed in the domain. 
Based on numerical results, the convergence rate of the algorithm is also shown with respect to different 

norms: L, norm, H, norm, and ( * Imax norm. For the shape functions generated by cubic spline window function, 
the corresponding convergence results are plotted in both Figs. 14 and 15, and the convergence results for the 
shape function based on fifth order spline window function are displayed in Figs. 16 and 17. 

As mentioned above, the shape function family in Fig. 10 is generated by linear polynomials, i.e. m = 1, and 
the shape function family in Fig. 11 is generated by quadratic polynomials, i.e. m = 2. Based on Theorem 4.42, 
the convergence rates with respect to L, norm are 2 and 3, respectively. The numerical results in Figs. 14-17 



150 W.-K. Liu et al. I Cmput. Methods Appl. Mech. Engrg. 143 (1997) 113-154 

2 I 

1.8 

1.6 

1.4 

1.2 

V 
3 

0.8 

IQ0 
Q -b 
I 

, 

e,;- rough solution 

9 I 9 
I ‘Q 

k 
0 

X 

Fig. 12. The exact solutions and numerical soIut]ons of the benchmark problem. 
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Fig. 13. The derivatives of exact solutions and numerical solutions. 

show that the numerical computation is doing far better than the estimate. Nevertheless, when the particle 
density increases, the theoretical bound will become evident. On the other hand, one may observe that there 
seems to be a tendency that H, error norm converges almost as fast as the L, error norm. 

One may also notice an interesting fact that both L2 norm and H, norm have faster convergence rate than that 
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Fig. 14. The convergence rate for the smooth problem, (1 = 5.0, % = 0.2, for shape functions with basis of linear polynomial. 
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Fig. 15. The convergence rate for the rough problem, ~1 = 5.0, x = 0.2, for shape functions with basis of linear polynomial. 

of the maximum norm, which is totally in contrast with the conventional finite element method; the regular finite 
element method has an opposite tendency that maximum norm always have a faster convergence rate than H 
norms. 



152 W.-K. Liu et al. I Comput. Methods Appl. Mech. Engrg. 143 (1997) 113-154 

-4 

-6 

-8 

-10 - 

L 
:: 
k -12 

Gl 
$1 

-14 

H-1 norm 

slope = 3.5-p'. 
,,: 

,_,_ 
&. 

-16 

-18 / 

slope = 3.8 

-20 
-5.5 -5 -4.5 -4 -3.5 -3 -2.5 

log1 Idilation parameterI I 

I e-u’ lmax 
,,_._.I ‘.. 

__....‘. 

_A 
/+ 

Fig. 16. The convergence rate for the smooth problem. (Y = 50.0, n = 0.4, while using shape functions with the base of quadratic 

polynomial. 

4 I I I I I 

2 Ie_u’I_max, _.~ ,__._.._.,._........ ..--..-x 

0 

slope = 3 . 8 
,,./ 

,_N’.” 
_**- + 

_._._ .._.. *:.“I 
7 

.._ ,,,z.:r: ___........ .._ 

-2 

-4 

-6 

slope = 4 

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 
log1 [dilation parameter11 

Fig. 17. The convergence rate for the rough problem, cy = 50.0. x = 0.4. while using shape functions with base of quadratic polynomial. 



W.-K. Liu et al. I Comput. Methods Appl. Mech. Engrg. 143 (1997) 113-154 153 

5. Closure 

After Nayroles et al. [3], Belytschko et al. [4] and Liu et al. [6] applied and modified the moving least-square 

approximation, a class of meshless methods have emerged with a completely different outlook. This is 
particularly evident after the connection between the reproducing kernel particle method and spectral analysis 
was made [7]. The use of moments, dilation parameter, and spline window function, . . . , etc. show its affinity to 

spectral method and, in particular, the wavelet method. 
In this paper, a formal documentation of the MLSRK method has been presented. The analysis has shown that 

the numerical solutions obtained by using this method will converge as the dilation parameter e approaches to 
zero. This is also confirmed by various numerical experiments conducted in Northwestern University in the last 

three years. 

There are several points that we would like to reiterate. First, the MLSRK method builds a bridge between the 

traditional interpolation method and the spectral method; that is very desirable for the next generation of finite 
element methods. Second, by using moving least-square interpolant, higher-order conforming shape functions, 
such as ue E C’(0) or higher, can be easily constructed, which is difficult to realize by using the regular finite 
element method. This could have a direct impact on computational structural mechanics, such as numerical 
simulations of plates and shells. In addition, as we hope, the complete avoidance of ‘variation~1 crimes’ may be 

possible. Third, as a meshless or semi-meshless method, a tremendous work reduction has been achieved in 
mesh data preparation. This is a significant advance for numerical computations that involve complex 
geometrical objects and mesh refinement and adaptivity procedures. However, the tradeoff is that there is also an 

increase of computer time to generate and evaluate these shape functions. How to balance this tradeoff still 
remains an issue of future research, which is crucial for this method to gain its popularity. 

From our perspective, up to this point, the MLSRK method is not yet a mature numerical tool. There is still 
much room for improvement so that the method can fit various computational tasks. Nevertheless, whatever the 
modification might be, the key issue is to increase the computation efficiency. If this problem can be properly 
handled without losing its original technical merits, there is no doubt that the meshless methods could become 
powerful numerical tools. 
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