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A B S T R A C T

Recently, we have developed a multiscale soft matter model for stem cells or primitive cells

in general, aiming at improving the understanding of mechanotransduction mechanism

of cells that is responsible for information exchange between cells and their extracellular

environment. In this paper, we report the preliminary results of our research on multiscale

modeling and simulation of soft contact and adhesion of cells. The proposed multiscale

soft matter cell model may be used to model soft contact and adhesion between cells

and their extracellular substrates. This model is a generalization of the Fluid Mosaic

Model (Singer and Nicolson, 1972), or an extension of Helfrich’s liquid crystal membrane

model (Helfrich, 1973). To the best of the authors’ knowledge, this may be the first time that

a softmattermodel is developed for cell contact and adhesion. Moreover we have developed

and implemented a Lagrange type meshfree Galerkin formulation and the computational

algorithm for the proposed cell model. Comparison study with experimental data has been

conducted to validate the parameters of the model. By using the soft matter cell model,

we have simulated the soft adhesive contact process between cells and their extracellular

substrates. The simulation shows that the cell can sense substrate elasticity by responding

in different manners from cell spreading motion to cell contact configurations.
c⃝ 2010 Elsevier Ltd. All rights reserved.
d

1. Introduction

Stem cells are unspecific cells that have two defining
properties: (1) they have the ability to differentiate into all
other functional cells in human body, and (2) they have
the ability to self-regenerate. Even though it is generally
believed that transcription regulation, or genetic factor, plays
an important role in this decision-making process, neither
the topology nor the dynamics of the regulatory networks are
known at the moment.

Recent developments on stem cell research have revealed
that the fate or lineage specification of stem cells depends
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sensitively on both the rigidity as well as surface microstruc-

ture of the extracellular matrix (ECM). For example Discher

et al. (2005) and Engler et al. (2006) reported that matrix elas-

ticity directs stem cell lineage specification. Rehfelt et al.

(2007) reported that results with drug treatments of various

cells on soft, stiff, and rigid matrices show a broad range

of possible matrix-dependent drug responses; and cells on

soft gels might be relatively unaffected in cell spreading or

apoptosis induction whereas cells on stiff substrates seem

more sensitive to diverse drugs in terms of spreading. All

these indicate a significant influence of matrix elasticity on

.
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cell contact or adhesion, and subsequent cytoskeleton re-
organization.

To study the influences of bio-mechanical niche factors on
the fate of stem cells will eventually help the development
of synthetic niches that may cultivate or trigger stem cells
to differentiate into the desirable functional cells (Discher
et al., 2009). Because of its scientific and clinic importance,
a major focus of molecular cell biology is the study of
mechanotransduction effect of cells, in particular stem cells
(see Wang et al., 2009, Chien, 2007 and Bao and Suresh, 2003).
As pointed out in Wozniak and Chen (2009): Two main factors
contribute to the mechanical stresses that are experienced by cells
and influence cell behavior in early development are the mechanical
stiffness of the local tissue environment and the contractile activity
of the cells that are pulling on that environment. Stiffness and
contractility both contribute to the cellular mechanical stresses that
are essential for mechanotransduction. Cells routinely contract to
pull on the scaffolds to which they are attached (the extracellular
matrix (ECM) or other cells), thereby generating tension in the
cell (internal mechanical stress). The magnitude of such stress is
affected both by the strength of contractile activity in the cell and
the substrate stiffness.

Thus understanding the interplay between cellular
contractile activity, stiffness of surrounding tissues and the
resulting mechanical deformations and stresses is crucial
for establishing a mechanotransduction model. The physical
process of mechanotransduction is through contact and
adhesion between cells and their extracellular environment.
Recently, several models of cell contact and formation of
focal adhesion have been proposed, notably Freund and Lin
(2004), Ni and Chiang (2007), and Deshpande et al. (2008).
Continuum models also have been developed recently to
predict cell adhesion in the early stage (see Liu et al., 2007,
Cheng et al., 2009 and Sun et al., 2009).

In order to understand the precise mechanical factors in
cell contact, adhesion, and sensing process, and to explain
the possible mechanotransduction mechanism, recently we
have developed a soft matter cell model for study of cell
contact and adhesion. This paper reports the preliminary
results of this study.

The paper is organized in six sections: in Section 2 we
shall report the construction of our soft mater cell and
extracellular matrix model; Section 3 is focused on the
meshfree implementation of the computational cell model,
in Section 4 we shall discuss the Cell adhesion and contact
algorithms; and in Section 5, validation of the cell model
and a few numerical simulations are provided, and finally in
Section 6 we shall discuss some important issues of the soft
matter cell model.

2. Cell and ECM modeling

The main objective of this work is to advance stem cell
modeling and cell modeling in general, we systematically
build a soft matter cell model by treating stem cells as soft
matters. Amulti-component cell model with a coarse-grained
adhesive body force is proposed.
2.1. Basic hypothesis and assumptions

The cell membrane is basically a lipid bilayer. Up to today, the
most successful cell model is the fluid mosaic model — the
lipid bilayermodel (Singer and Nicolson, 1972). It captures two
essential features of the lipid bilayer: fluidity and diffusion.

A well-established and very successful mechanics or
mathematics model for the cell membrane is Helfrich’s liq-
uid crystal cell membrane model (Helfrich, 1973), which is
based on or built on the fluid mosaic model. Because Hel-
frich’s liquid crystal cell membrane model has successfully
predicted the bi-concave shape of red blood cells, it has
been regarded as the first triumph of soft matter physics.
This is because the microstructure of the liquid crystal, es-
pecially that of Smectic-A liquid crystals, resembles that of
the lipid bilayer of cells. In fact, many view the lipid bilayer
as a form of bio-liquid-crystal. However, three decades after
the Singer–Nicolson model, new evidences have shown that
the freedom of proteins on cell membrane are far from un-
restricted e.g. Vereb et al. (2003). Damjanovich et al. (1997)
showed that the emerging evidence on hierarchically built
super-structured protein complexes, which may hinder the
diffusion of proteins in the membrane. Dietrich et al. (2002)
and Jacobson et al. (1995) have pointed out: “Most mem-
brane proteins do not enjoy the continuous unrestricted lateral
diffusion . . . . Instead, proteins diffuse in a more complicated way
that indicates considerable lateral heterogeneity in membrane struc-
ture, at least on a nanometer scale”.

From structure viewpoint, a cell consists of membrane
wall, cytoplasm, microtubes, cell nucleus, and cytoskeleton
— cell’s scaffold. The cell nucleus plays a central role
in the response to mechanical forces (Caille et al., 2002).
According to Maniotis et al. (1997), the nucleus inside the
cell is about 9 times stiffer than the cytoplasm. Based on
these observations, we propose to model the cell nucleus as
hyperelastic materials, which has been used in Caille et al.
(2002) to model the nucleus of endothelial cells. To extend
Helfrich’s liquid crystal membrane model, we propose to use
a bulk nematic liquid crystal material to model the outer layer
of the cells.

The rational for such soft matter cell model is that cell
cytoplasm does not just consist of liquid, it contains cell
organelles and many weakly cross-linked polymer networks,
such as actin filaments or intermediate filaments. Depending
on the types of cells, the content, i.e. microstructure, as well
as the concentration of these filaments may be different. In
this work, since we are only interested inmodeling stem cells,
for stem cells, the cell cytoskeleton may be less developed
than that of other functional cells. Therefore, the cytoplasm
region of the stem cell contains less cytoskeleton but more
liquid. Hence, the liquid crystal model may be also suitable
for modeling cell cytoplasm region. For simplicity, in this two-
layer cell model, we do not distinguish the cell membrane
and cell cytoplasm in the present paper as a preliminary
study. A refined soft matter model that distinguishes the cell
membrane and cell cytoplasm will be reported in a separated
paper.

The extracellular matrix is modeled as a substrate of
hyperelastic block, which has been extensively used as cell
models or gel models (see Sen et al., 2009 and Fereol et al.,
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Fig. 1 – Soft matter cell model and soft adhesive contact model.
2009). An illustration of the cell model is shown in Fig. 1. In the
following sections, we shall described both the hyperelastic
constitutive model and the liquid crystal model used in our
cell and extracellular matrix modeling.

2.2. Hyperelastic model

Inside a cell, we use hyperelastic constitutive model to
represent cell scaffold and cell plasma aggregates, which are
isotropic and nonlinear, and exhibit elastic response of large
strains. For hyperelastic material, we adopted the modified
Mooney–Rivlin material (Fried and Johnson, 1988) to model
the cell nucleus and extracellular matrix. The strain energy
density function W for the modified Mooney–Rivlin material
is given as

W = C1(I1 − 3I1/3
3 ) + C2(I2 − 3I2/3

3 ) +
1
2

λ(ln I3)2 (1)

where C1, C2 and λ are material constants and C = FT
· F is

the right Cauchy–Green deformation tensor; and the three
invariants of the right Cauchy–Green tensor are defined as

I1 = tr(C) (2)

I2 =
1
2

[(tr(C))2 − tr(C2)] (3)

I3 = det(C). (4)

The corresponding constitutive relations can be expressed in
terms of the second Piola–Kirchhoff stress tensor S, and the
invariants of the right Cauchy–Green tensor,

S = 2{(C1 + C2I1)I − C2C − (C1I1/3
3 + 2C2I2/3

3 − λ ln I3)C−1
}. (5)

After the second Piola–Kirchhoff stress is obtained, the first
Piola–Kirchhoff stress tensor can be immediately computed
as P = S · FT, which can then be substituted into the later
developed meshfree Galerkin formulation to calculate the
internal nodal force.

If the substrate ismodeled as aMooney–Rivlin hyperelastic
medium, its elastic stiffness tensor is a fourth-order tensor
that can be evaluated as

C = 4
∂2W
∂C∂C

= 4C2I ⊗ I +
4
3

(C1I1/3
3 + 4C2I2/3

3 − λ)C−1
⊗ C−1

− 4(C1I1/3
3 + 2C2I2/3

3 − λ ln I3)C−1
⊙ C−1

− 4C2I. (6)

By making the elastic constants, C1, C2 and λ, dependent
on spatial coordinates, one can model the substrate with
inhomogeneous stiffness.
2.3. Liquid crystal model

Liquid crystal is a typical complex fluid, and its microstruc-
ture, especially that of Smectic-A liquid crystal, resembles
that of the lipid bilayer of cells. In this work, we adopt a sim-
plified version of the Ericksen–Leslie theory (Lin and Liu, 2000)
as the governing equations for the nematic liquid crystal that
is used in the proposed cell modeling. The strong forms of the
simplified Ericksen–Leslie theory are

ρ0
Dv
Dt

= ∇ · σ + b, ∀x ∈ V(t) (7)

ρd
0
Dh̃
Dt

= γ

∇ · ∇ ⊗ h − r(h)


, ∀x ∈ V(t) (8)

where v is the velocity field, h is the Nematic liquid
crystal director field, b is the body force in the current
configuration, ρ0 and ρd

0 are density of fluid and director fields
in the reference configuration, where the differential gradient
operator is acting in the spatial configuration, i.e. ∇ :=

∂
∂xi

ei;
γ is the director elastic constant, r is a Landau–Ginzburg type
potential that governs the evolution of the director field

r =
dR(h)

dh
=

h
ϵ2

(|h|
2

− 1), and R(h) =
1

4ϵ2
(|h|

2
− 1)2 (9)

and the Cauchy stress is determined as

σ = −pI + 2µd − η∇ · (∇ ⊗ h ⊙ ∇ ⊗ h) − G. (10)

In Eq. (10), p = κ(1− J) is the hydrostatic pressure, κ is the bulk
modulus, J = det(F), µ is viscosity, η is a positive constant, and
G is the contribution from the contact boundary condition,
which can be expressed as

G =


A(h · ∇ϕs)h ⊗ ∇ϕs planar anchoring
A[(h · h)∇ϕs − (h · ∇ϕs)h] ⊗ ∇ϕs

homeotropic anchoring
(11)

where A is a contact constant. A Lagrangian level-set
field variable, ϕc, is used to characterize the contact
interface location and distribution, and it is chosen as the
summation of all meshfree interpolant shape functions in the
extracellular matrix,

ϕs(x, t) =

Ns−
I=1

NI(X), ∀X ∈ VECM. (12)

Since in the interior of cell,

Ns−
I=1

NI(X) ≡ 0 ⇒ ∇ϕs ≡ 0, ∀X ∈
◦

Vcell.
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However, around the contact region of the cell,

Ns−
I=1

NI(X) ≠ 0 ⇒ ∇ϕs ≠ 0

and its contribution provides the contact force contribution
from the director field.

Note that we may construct another Lagrangian level-set
field,

ϕc(X, t) =

Nc−
I=1

NI(X), ∀X ∈ Vcell

by using the meshfree shape functions in the cell, and we can
use it to replace the director elastic constant γ as

γ(X) → γϕc. (13)

Since the meshfree interpolants are a partition of unity inside
the cell (Li and Liu, 2004),

ϕc(X) =

Nc−
I=1

NI(X) = 1, ∀X ∈
◦

Vcell

it makes γ(X) = γ in the interior of the cell, and at the
boundary of the cell, elastic contact will change gradually to
zero. Note that the advantage to have ϕc available will make
the calculation of cell surface curvature easy, and it is needed
for the surface tension calculation in the part where the
cell is in contact with ambient atmosphere. The atmosphere
contact condition is

σ · n = −(σ0κ + pair)n, ∀X ∈ Γcell/air (14)

where σ0 is the surface tension, pair is atmosphere pressure,
and Γcell/air is the interface between the cell and atmosphere.
The principal surface curvature of the cell may be approxi-
mated as

κ = ∇x · n (15)

where F =
∂x
∂X is the deformation gradient.

Remarks 1. Dh̃
Dt is the objective rate, and it can be any of the

following rates,

(a). The convected rate :
◦

h=
Dh
Dt

+ ℓT
· h;

(b). The corotational rate :
△

h=
Dh
Dt

− w · h;

where ℓ is the velocity gradient, and w is the spin tensor,

ℓ = ḞF−1

w =
1
2

(ℓ − ℓT).

3. Meshfree Galerkin formulation and the
computational algorithm

A total Lagrangian formulation is adopted in the numerical
computation. The numerical simulations are conducted by
using meshfree methods (Li and Liu, 2004). Meshfree method
have advantages for treating large deformation problems
comparing with traditional finite element method. In our
meshfree simulation, both the cell and its substrate are
Fig. 2 – Meshfree discretization of the cell and extracellular
matrix model.

discretized by a set of particles and then they are represented
by interpolation functions (see Fig. 2).

The weak form of the balance of linear momentum under
finite strain condition can be expressed as

2−
i=1

∫
Ω

(i)
0

ρ
(i)
0 ü(i)

· δu(i)dΩ (i)
+

2−
i=1

∫
Ω

(i)
0

P(i)
: δF(i)dΩ (i)

=

2−
i=1

∫
Ω

(i)
0

ρ
(i)
0 B(i)

· δu(i)dΩ (i)

+

2−
i=1

∫
Γ

(i)
t

T̄(i)
· δu(i)dS(i)

+

2−
i=1

δΠ
(i)
AC (16)

where B is the body force, P is the first Piola–Kirchhoff stress,

T̄ is the prescribed traction on the traction boundary Γ
(i)
t , i = 1

corresponding to cell and i = 2 corresponding to extracellular

matrix substrate. Note the last terms in Eq. (16), δΠ
(i)
AC, denote

the virtual work contribution from adhesive contact, which
will be discussed in details in the next Section.

The nematic director evolution is only for cell, for
simplicity, we do not introduce i = 1 in the formulation, a
weak form of the governing equation can be derived as:∫
Ω0

ρd
0J

Dh
Dt

· δhdΩ

= −

∫
Ω0

γ{(F−1
· F−T) · (∇X ⊗ h)} : (∇X ⊗ δh)dΩ

+

∫
Γt

γ{N · (F−1
· F−T) · (∇X ⊗ h)} · δhdS

+

∫
Γc

γ{N · (F−1
· F−T) · (∇X ⊗ h)} · δhdS

−

∫
Ω0

γJr(h) · δhdΩ (17)

where Γc denotes the contact boundary. By assuming that

N · (F−1
· F−T) · (∇X ⊗ h) = 0, ∀x ∈ Γt

and

h = h̄ ⇒ δh = 0, ∀x ∈ Γc.

Consider the following meshfree interpolation,

u(X, t) =

nnode−
I=1

NI(X)dI(t) (18)

h(X, t) =

nnode−
I=1

NI(X)hI(t). (19)

Note that even though, the director field, h(X, t), is essentially
a part of displacement gradient. The robustness of meshfree
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computation allows us to use equal-order interpolation
without cause severe numerical instability.

Following the standard meshfree discretization procedure,
e.g. Li and Liu (2004), we can obtain the following discrete
equations of motion with the understanding that those
equations of motions applied to both cell and substrate:

Md̈ = fext
− fint(d) (20)

where M is the lumped mass matrix, fint is the internal
force array arising from the current state of stress, fext is the
external force array including body forces and surface traction
and contact forces,

MIJ =

∫
Ω0

ρ0NINJdΩ (21)

fint
I =

∫
Ω0

PiJNI,JeidΩ (22)

fext
I =

∫
Ω0

ρ0BiNIeidΩ +

∫
Γt

T̄iNIeidS +

∫
Γc

f̄iNIeidS. (23)

At time tn+1 = tn + 1t, the discrete equation of motion can
be written as:

Man+1 = fext
n+1 − fint

n+1. (24)

If the central difference scheme is used in the time
integration, we have

dn+1 = dn + 1tvn +
1
2

1t2an (25)

an+1 = M−1(fext
n+1 − fint

n+1) (26)

vn+1 = vn +
1
2

1t(an + an+1) (27)

where d,a,v denote the nodal displacement, acceleration and
velocity arrays, respectively.

For the nematic liquid crystal, we can define the internal
general force for director field as

fhI = −

∫
Ω0

Pi,JNI,J(X)eidΩ +

∫
Ω0

γJriNI(X)eidΩ


(28)

where the generalized internal force for the director field is
defined as

P = γ(F−1
· F−T) · (∇X ⊗ h) (29)

if central difference scheme is used in time integration, we
have

vh
n+1 = M−1

h fhn+1 (30)

hn+1 = hn + 1tvh
n+1. (31)

4. Adhesive contact models for cells

Between the cell and its extracellular matrix, there are
complex interactions between ligands and receptors. In this
research, we do not model the exact molecular mechanism
of the adhesion or the detailed molecular motions during
this process. Instead, we are interested in modeling the
overall adhesion effect between cells and their substrates.
The specific attractive adhesion force may be simulated by
a cohesive potential, or an attractive potential force, and the
Fig. 3 – A penetrated slave particle and the corresponding
master segment.

steric interaction between cell membranes and the substrate
is treated as the repulsive force.

We have developed a computational algorithm and
modeling techniques to simulate the cell adhesive contacts.
The main features of this contact algorithm is (1) using the
regular continuum contact mechanics to simulate repulsive
force, and (2) using an postulated adhesive potential to mimic
attraction force. The continuum contact mechanics algorithm
is illustrated in Fig. 3. In the proposed adhesive contact
algorithm, the adhesive force is modeled by a special body
force that is determined by the distance between a point
in the cell and its shortest distance to the substrate as
described in Eq. (33). In this case, we do not model the
repulsive force, but adopt the conventional finite element
or meshfree contact algorithm to enforce the impenetrable
condition between the cell and its substrate.

By assuming that the density and the size of the substrate
are much larger than the density of the size of the cell, we
may neglect the adhesive force from cell to substrate. The
total virtual work contribution from the adhesive contact
force may be written as

δΠAC =

∫
Ω0

B(r)
r
r

· δudΩ +

∫
Γ

(1)
c

fc · δgdS (32)

where the adhesive attraction force is modeled by the
following body force

B(r) = G


d0
r + d0

4
(33)

where G and d0 are constants and r is the distance vector
between nodal particles in cell and corresponding surface
element in substrate. In adhesive contact, the membrane
may be in contact with the ECM. During this process,
interpenetration of the cell membrane and the ECM surface
is not permitted. The impenetrable condition is enforced
to count the repulsive force by using finite element based
continuum mechanics contact algorithm. Hence, the second
integral in Eq. (33) is a surface integral, in which g is the gap
vector, and fc is being modeled as the repulsive normal force
+ contact frictional force.

The basic idea of classical contact procedure is that the
two contacting bodies firstly penetrate into each other within
a single explicit time integration step and then additional
nodal forces are introduced into the contacting nodal points
such that the impenetrability conditions are strictly enforced.
We adopted the exact enforcement of the impenetrability
condition in a single time step (see Hughes et al., 1976).

In our contact simulations, both cell and ECM can be
deformable. Usually the contacting surfaces are designated as
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master and slave. We treat the cell outer surface as slaves and
treat the ECM top surface as master surface.

The contact algorithm begins with prediction of the slave
particles at time step n, the contact–detection algorithm is
then used to search all the interpenetration particles based on
the determinant value of themeshfree momentmatrix (see Li
et al., 2001). When penetrations are detected, the next step is
to calculate the normal gap and relative tangential velocity
between the intrusion slave particles and the closest master
surfaces (see Fig. 3). The procedures are outline as followings:

(i): Calculate the normal gap and tangential gap

gn
j = (xs

j − xm
i ) · ni (34)

gt
j = (xs

j − xm
i ) · ti (35)

with

ti =

(xm
i+1 − xm

i )

‖xm
i+1 − xm

i ‖
(36)

ni = e3 × ti (37)

where ni is the out normal vector of ith master segment
matching with the jth penetrated slave particle, e3 is the unit
vector pointing outward from the plane.

(ii): Calculate the normal force and tangential force

The contact force fc has two parts: the normal repulsive
contact force and the tangential contact friction force.

fnj =

2Ms
j gj

1t2
ni = fn

j ni. (38)

On the tangential direction, the classical Coulomb friction
model is adopted inmodeling friction between salve body and
master body. To enforce the stick condition, we have

fstick
j = −

Ms
j

1t
vt

j . (39)

The tangential force cannot exceed the tangential force
limit the interface can hold. After reaching the limit, a slip
condition should be applied

fslip
j = −|µkfn

j |

vt
j

‖vt
j‖

. (40)

The tangential force shall be the minimum of these two
forces,

ftj = −min(|µkfn
j |, ‖fstick

j ‖)
vt

j

‖vt
j‖

(41)

where µk is the friction coefficient which is decided by
different surface materials, vt

j is the relative tangential

velocity between the jth slave particle and the ith master
segment.

(iii): Update the contact force for master contact particles

Since in the simulations the substrate is deformable„ we
should get the contact force back to themaster nodal particles
to make sure the total force is balanced. We use a linear
interpolation to distribute the contact force to the two nodal

particles of the corresponding master segment,

fni = −(1 − α)fnj (42)

fti = −(1 − α)ftj (43)

fni+1 = −αfnj (44)

fti+1 = −αftj (45)

where

α =

gt
j

‖xm
i+1 − xm

i ‖
, (0 ≤ α < 1) (46)

(iv): Redistribute the contact forces to neighboring particles

within the support

The force vectors calculated above are the exact nodal

force vector for each penetrating slave particle and corre-

sponding master nodal surface particles. In meshfree ap-

proach, we have to redistribute such exact nodal force to its

supporting nodal particles. Hence after the force distribution,

the contact force at the particle I is,

f̄I =

nnode−
J=1

NI(XJ)fJ. (47)

In finite element interpolation, NI(XJ) = δIJ, we recover the ex-

act nodal force vector.

In actual cell contact, the spatial densities for both ligands

and receptors changes from time to time during the adhesive

contact. In fact, both ligands and receptors are capable of

self-assemble, which is a complexmechano-diffusion process

e.g. Freund and Lin (2004).

We hypothesize that the density of the receptors is directly

related to the spatial density and magnitude of director field

of liquid crystal field, such that the weak forms of Eqs. (16)

and (17) are explicitly coupled through the spatial density

and magnitude of the directory field, i.e. β1(t) = c1ρd(t)‖h‖

and β2(t) = c2ρd(t)‖h‖ where c1 and c2 are constants. A

coupled mechano-diffusive contact/adhesion theory for the

soft matter cell model will be presented in a separated paper.

As a preliminary study, in this paper, we consider that the

densities of ligands and receptors in the contact zone are

fixed.

In this work, the interaction zone between ligands and

receptors is modeled as an interactive zone that separates the

cell and its substrate, and the adhesive body force distribution

varies according to the magnitude of the gap distribution.

The adhesive interaction is strong near the contact zone, and

it decays after a material point is away from the contact

zone. The attractive part of the adhesive contact model is

similar to a special version of the coarse-grain FEM adhesion

contact algorithm proposed for long range van der Waals

force by Sauer and Li (2007). For detailed information of

coarse-graining adhesion model, readers may consult Sauer

and Li (2007).
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Fig. 4 – Validation of the cell model: (a) Before deformation; (b) After deformation; (c) Force–deformation curve.
5. Numerical simulations

We have applied the soft matter cell model together with the
multiscale contact–adhesion algorithm to simulate cell–ECM
contact and adhesion. To ensure a meaningful simulation,
we have first conducted validation test of the proposed cell
model. By doing so, we can identify the parameters of the soft
matter model. Then we applied the verified material model to
simulate contact between a cell and substrates with different
stiffness. We have also simulated the interaction between the
cell and a substrate that has non-uniform stiffness.

5.1. Validation of the material models

To validate the proposed cell model, we have applied it to
simulate cell deformation under compression and compared
with experiment measurements for endothelial cells (Caille
et al., 2002). The cell nucleus is modeled as hyperelastic
Mooney–Rivlin material and outside of the nucleus region
is modeled as nematic liquid crystal. The constant force is
applied at the top and bottom rigid microplates, and the
boundary nodes are in contact with the cell surface. The
classical contact algorithm is applied in the two contact
surfaces. In the simulation, the cell deformation is defined
as the relative reduction in height, i.e. (H0 − H)/H0. Fig. 4(a)
and (b) show the cell shape before and after deformation. The
force–deformation curve is plotted in Fig. 4(c). The applied
compressive forces increases nonlinearly as a function of
the cell height reduction. From the simulation, one can find
that the force required to create the same deformation for
endothelial cell is larger than stem cells, which is reasonable
considering the stem cells is undeveloped cells.

Since endothelial cells are not stem cells, so it is very hard
for us to fit the model with the experimental data obtained
from endothelial cells. It can be seen from Fig. 4 that our stem
cell model is much softer than endothelial cells, which most
likely is true in reality.

5.2. Cell response in four different stiffness substrates

The cell is modeled as a circular plate for 2D, a ball for 3D,
with a diameter of D = 10 µm. The substrate is modeled as
Fig. 5 – Computational model of cell spreading on different
substrates (different colors stand for different material
models).

a 2D plate with a dimension of (L × H = 39.78 µm × 4.5 µm).
The exact problem statement is shown in Fig. 5. Plain strain
is assumed in our simulations.

In meshfree computation, a total of 4455 particles are
used in discretization of the cell, and 5525 particles are
used to form the meshfree discretization of the substrate.
The time step is chosen as 1t = 5 × 10−12 s. The dilation
parameters are selected as (ρx = 1.481x, ρy = 1.481y) and
(1x = 0.174 µm, 1y = 0.2 µm) for cell, (1x = 0.18 µm, 1y =

0.18 µm) for substrate. The nucleus of the cell is modeled
as hyperelastic Mooney–Rivlin material. The initial density is
ρ0 = 1.0 × 103 kg/m3 and the material constants are Cn

1 =

2.126 × 103 Pa, Cn
2 = 1.700 × 102 Pa and λn

= 1.700 × 105 Pa.
The region beyond the hyperelastic nucleus is modeled as
nematic liquid crystal. The density of the liquid crystal is
chosen as ρ0 = 1.0 × 103 kg/m3, the density of the director
field is ρ0d = 1.0 and the material properties and constants are

κ = 2.2 × 109 Pa, µ = 1.0 × 10−3 kg/(m s), η = 5.0 × 10−8,
ε = 1.0 × 10−6, γ = 1.0 × 10−4. The friction coefficient for
the contact algorithm is chosen as µk = 0.1. The substrate
is modeled as hyperelastic Mooney–Rivlin material. Four
different substrates with different stiffness are considered.
The density for four substrates are same as the cell nucleus.
We set the material constants C1 = 1.265 × 104 Pa, C2 =

1.012 × 103 Pa and λ = 1.012 × 106 Pa. The material properties
for four different substrates are chosen as:

CS1
1 = C1, CS2

1 = 2C1, CS3
1 = 5C1, CS4

1 = 10C1

CS1
2 = C2, CS2

2 = 2C2, CS3
2 = 5C2, CS4

2 = 10C2

λS1
= λ, λS2

= 2λ, λS3
= 5λ, λS4

= 10λ.

The classical continuum contact algorithm has been used in
these simulations. The constant G = 9.8 × 106 N/kg and d0 =
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Fig. 6 – Cell spreading over substrates with different stiffness: (a) Substrate-I, (b) Substrate-II, (c) Substrate-III,
(d) Substrate-IV.
4.0×10−5 m for the adhesive body force (see Eq. (33)). The cell
is standing still initially and the initial gap between the cell
and substrate is 400 nm. The bottom surface of the substrate
is fixed during the whole simulation time. The adhesive
force will bring the cell into contact with the substrate, and
then the cell will spread under the adhesive and contact
forces. Simulations have been carried out for cells in contact
with four substrates of different elastic modulus (stiffness)
described above.

From this simulation, one may observe the cell spreading
over time. In Fig. 6, we display the cell shapes on four different
substrates with different stiffness under the same contact
conditions at the same time. One may find that the contact
between the cell and softest substrate (substrate-I) (Fig. 6 (a))
generates the least cell spreading, and the contact between
the cell and substrate-II (Fig. 6(b)) has the second least cell
spreading, and the contact between the cell and substrate-III
(Fig. 6(c)) has the second most spreading, and when we keep
increasing the substrate stiffness, the cell on the substrate-IV
has the most spreading (Fig. 6(d)).

It may be noted that although the case IV generates the
most cell spreading, the difference between Case IV and Case
III is very small, which means the spreading may not increase
anymore when the stiffness of the substrate reaches a certain
value. However, within certain range, cell spreading area is
directly related to the stiffness of the substrate, and it is
purely a phenomenon of soft elasticity. Based on this model,
the stem cell is a mechanical sensor, and it can translate
the mechanical information (properties) of the substrate into
its shape, configuration, and size. This is the definition of
mechanotransduction.

Zooming in Fig. 6, we juxtapose the two last sequences
of cell contact process in Fig. 7. From Fig. 7 (b), one may
find that under stiff substrate the shape of the cell nucleus
become concave in contract of the convex shape of the
cell nucleus under softer substrates. This finding indicates
that the deformed shape of cell nucleus also depend on the
stiffness of the extracellular matrix. This is a first concrete
evidence of cell mechanotransduction at a distance without
using the explanation of the tensegrity postulate on the
structure of cell scaffold (see Wang et al., 2009). In fact,
embryonic stem cells do not have well-developed cell scaffold
structures. To the best of authors’ knowledge, this type of cell
response has not been reported before.

5.3. Cell response in a stiffness-varying substrate

It is interesting to consider cell contact with substrate that
has non-uniform stiffness. We set the material properties in
the substrate as a function of position x to observe the cell
spreading motion in different directions

CS
1 = C1(0.1 + 9.9r)

CS
2 = C2(0.1 + 9.9r)

λS
= λ(0.1 + 9.9r)

where r is defined as: r = (x + L/2)/L with the center of
the substrate at x = 0. The exact problem statement is
shown in Fig. 8. In Fig. 9, we display a time sequence of a
cell contacting with a stiffness-varying deformable substrate.
The color contour is the effective stress contour. Without
varying the stiffness, the cell shouldmove equally on both left
and right side of the substrate. From the simulation results,
one can find immediately that cell move towards the right
side much faster than to the left side of the substrate due
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Fig. 7 – Cell nucleus configurations with different ECM stiffness: (a) = b4; (b) = d4.
Fig. 8 – Computational model of cell spreading on a
stiffness-varying substrate.

to the stiffness gradient, which means that the cell is in
favor of stiffer substrate. This results agreed very well with
experimental measurement (Wong et al., 2003), (Engler et al.,
2006) and numerical simulations (Ni and Chiang, 2007) of cell
adhesion and migration.

6. Discussions and conclusions

In conclusion, the proposed soft matter cell model may
be applicable to simulation of stem cell contact providing
possible explanations on cell mechanotransduction and other
issues at the large scale level.

Our simulations have shown that: (1) By using the
proposed soft matter cell model, when a “cell” is in contact
with a substrate, its traction force may change depending on
stiffness of the substrate; (2) the size of spreading area of
the cell also changes or differs depending on the stiffness of
extracellular substrate (see Fig. 6); and (3) during soft contact
process, the cell is in favor of stiffer substrate (see Fig. 9). It
should be noted that cell, in particular stem cell, behaviors
are complex biological phenomena. The proposed soft matter
cell model is only intended to model mechanical behaviors
of cells at a coarse-gaining level, which may not and cannot
explain the molecular mechanisms of cell motion, evolution,
and proliferation, and it requires in depth study of every
aspects of molecular cell biology including all relevant bio-
chemical, bio-physical, as well as bio-mechanical factors and
their interactions at different scales.

Developing soft matter models for cells especially stem
cells may help us understand bio-mechanical and bio-
physical behaviors of cells. It has been shown in this paper
that the soft matter model can offer much more explanations
on interaction between the stem cell and itsmechanical niche
than that of the hyperelastic cell model. In some cases, the
soft matter model has even shown its predictive power. It is
the authors’ opinion that by combining the soft matter cell
model with molecular simulation we may be able to achieved
qualitative prediction on cell behaviors in collaborating with
experimental observation. The predictive stem cell model
may provide both scientific insight as well as clinic guidance
on a host of health care problems, such as regenerated
medicine and drug design and delivery problems.
Fig. 9 – Time sequence of cell contact with a stiffness-varying substrate.
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The soft matter cell model presented in this work is a
primitive one, but it may have provided a useful approach
for more realistic and more accurate modeling of cells,
especially stem cells. It is possible that along the line more
sophisticated soft matter models can be made that are
capable of simulating self-assembly of focal adhesion, cell
division, proliferation and more.
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