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of Ductile Failure by Meshfree Method
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Abstract: Ductile failure is a complex multi-scale phenomenon evolved from
the micro-voids to macro-crack. There are three main failure mechanisms behinds
a ductile failure: adiabatic shear band (ASB), spall fracture, and crack. Since this
type of thermo-mechanical phenomena involves large deformation and large scale
plastic yielding, a meshfree method has intrinsic advantages in solving this kind of
problems over the conventional finite element method. In this paper, the numeri-
cal methodologies including multi-physics approach for ASB, parametric visibil-
ity condition for crack propagation, and multi-scale approach to determine spall
strength in simulating ductile failure have been reviewed. A thermo-mechanical
coupling algorithm is proposed to incorporate reproducing kernel particle method
(RPKM) with rate dependent Johnson-Cook model. Numerical simulations demon-
strate that this meshfree method can capture the essential features of a ductile fail-
ure.

Keywords: meshfree, thermo-mechanical, ductile failure, adiabatic shear band,
crack, spall fracture

1 Introduction

During the past decades, many experiments have revealed that the ductile failure in
metal under shock wave due to collision, explosion, etc. leads to extremely high
strain rate (up to 106 m/s) with large local plastic deformation. This is in contrast
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with a brittle failure where cracks are nucleated and evolved with small plastic de-
formation [Chevrier and Klepaczko (1999)]. The ductile failure can be interpreted
as the result of voids nucleation-growth-coalescence effect. At micro-scale (about
0.1 to 10 µm), the voids are nucleated from inhomogeneities and inclusion inside
solid driven by the positive hydrostatic stress [Antoun et al. (2003)]. With posi-
tive tri-axial stress and shear stress [Nahshon and Hutchinson (2008)], the volume
of voids may increase and some neighboring voids could be trigged by localized
deformation. Such voids coalescence may lead to material instability at meso-
scale (10 to 300 µm) [Chevrier and Klepaczko (1999)]. When voids coalesce to
each other, the macro-scale cracks will be formed. During such nucleation-growth-
coalescence process, three main failure morphologies: spall fracture, shear band,
and cleavage cracking [Chevrier and Klepaczko (1999)] may take place. Here,
shear band is a un-cleavage damage phenomenon. Spall fracture is dominated by
voids growth and coalescence. And, a crack can be found at macro-scale fracture
evolving into separating boundaries inside a solid. Although several studies have
been conducted to simulate ductile failure [McVeigh and Liu (2009)], most of these
studies deal with the three kinds of material failure mechanisms separately.

There are two types of mesh sensitivities in mesh-based computational method, e.g.
FEM. The first type of mesh-dependent sensitivity comes from the rate-independent
plasticity. Since the rate-independent theories admit infinitesimal plastic zone near-
zero-width singular surface solution, the discrete finite element size cannot capture
this weak discontinuous surface accurately. The second type of mesh-dependent
sensitivity is the so-called mesh-alignment sensitivity. There are essentially two
approaches to simulate the evolving solid separation in FEM mesh topology: (1)
embed the possible crack path in the original FEM mesh, which leads to crack prop-
agating along the pre-set crack path, and (2) use ‘killing element’ and remeshing
technology, in which the crack path is limited along element boundaries. Both of
the two approaches have obvious limitations to capture the crack path accurately.
When a ductile failure is associated with finite plastic deformation, the process
becomes irreversible. Mathematically speaking, the element death and remeshing
approach is difficult to be implemented for ductile failure because plastic process
is history dependent.

Meshfree or particle-based methods have intrinsic advantages to represent the evolv-
ing geometry of a solid with crack propagation or fracture. The first well-known
particle method is the so-called Smoothed Particle Hydro-Dynamics (SPH), which
operates on the strong form of partial differential equations (PDEs) [Li and Liu
(2004)]. Another particle method, so-called Meshfree Galerkin method, oper-
ates on the Galerkin’s weak form of PDEs. In the past decades, several Mesh-
free Galerkin methods, such as Diffuse Element Method (DEM), Element Free
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Galerkin Method (EFGM), Reproducing Kernel Particle Method (RKPM), H-P
Cloud Method, Partition of Unity Method, Meshless Local Petrov-Galerkin Method
(MLPG) [Atluri and Zhu (1998); Atluri and Zhu (2000)], have been developed. For
contemporary development of meshfree methods, we refer to a review article by Li
and Liu [2002]. The applications to simulate adiabatic shear band, spall fracture
and crack propagation by RKPM method are reported intensively. In a series of
studies, Li and his co-workers have systematically conducted meshfree simulations
of ductile failure e.g. [Ren and Li (2010); Li and Liu (2000); Li, Hao, Liu, (2000);
Li et al (2001); Li et al (2002)]. In this paper, some recent developments on this
topic are reported.

This paper is organized in six sections. In section 2, a thermo-mechanical coupled
formula is proposed to incorporate RKPM with Johnson-Cook model. In section 3,
4 and 5, the applications of handling adiabatic shear band, crack propagation and
spall fracture are reported, respectively. In section 6, a few remarks and comments
are made, and some important issues of ductile fracture have also been discussed
there.

2 Thermo-mechanical coupling with meshfree method and Johnson-Cook
model

Ductile failure induced by shock wave undergoes enormous plastic deformation,
which, in turn, generates a large amount of heat locally. At some locations, temper-
ature can sharply increase up to near melting point [Zhou, Rosakis, Ravichandran
(1996a); Zhou, Ravichandran, Rosakis (1996b)]. Hence, to simulate the ductile
failure of a solid under shock loading, the thermo-mechanical coupling has to be
considered. Using the virtual power principle, the weak form of the linear momen-
tum can be written as:∫

Ω0

P : δFdΩ =
∫

ΓT
0

T ·δudS−
∫

Ω0

ρ0
∂ 2u
∂ t2 ·δudΩ (1)

Where P denotes the nominal stress, which is the transpose of the first Piola–
Kirchhoff stress, and it can be related to the Kirchhoff stress as τ = PFT . And,
ΓT

0 denotes the traction boundary where the traction force T is prescribed. Assume
that in the domain Ω0, there is a valid particle distribution of np particles. The
displacement field u can be approximated by the following meshfree interpolation,

uh(X, t) =
np

∑
I=1

NI(X)UI(t) (2)

Here, NI is the meshfree interpolation shape function at a specified particle I. UI is
the displacement at particle I.
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Equation (1) yields the following discrete equations [Ren and Li (2010)]:

M
∂ 2u
∂ t2 = fext − fint (3)

where M is the mass matrix that may be lumped by the row-sum; the external force
vector fext and internal force vector fint are given respectively as,

fext
I =

∫
Γx

Ti (X, t)NIeidS (4)

fint
I =

∫
Γx

Ph
Ji

∂NI

∂XJ
eidΩ, (5)

where the Einstein summation convention is applied in Eq.(4) and Eq.(5) for both
index i and J.

The interpolation shape function of RKPM may be viewed as an enhanced version
of the original SPH shape function as [Li and Liu (2004)]:

NI(X) = C(X, X̄)w(X− X̄)∆VI (6)

where X̄ denotes a specific particle, w(X− X̄) is the kernel function , C(X, X̄) is
the correction function and ∆VI is the integration volume for particle located at X̄.

Considering the heat generation and conduction process, the strong form of energy
balance can be shown as:

ρ0Cp
∂T
∂ t

= χτ : dp +∇X
(
JF ·K ·F−T ·∇X T

)
∀X ∈Ω (7)

where F is the deformation gradient, T is the temperature, χτdenotes the fraction
of plastic work converting to heat, ∇ is the gradient operator in the reference con-
figuration, Cp is the specific heat and dp is the plastic rate of deformation. For
isotropic heat conduction, the heat conductivity tensor will be K = κ I, where κ is
the conductivity coefficient.

To build a stable integration algorithm for thermo-mechanical coupling, the opera-
tor splitting technique proposed by Armero and Simo [Armero and Simo (1993)] is
employed. The energy balance formula including heat generation and conduction
is given as:∫

Ω

ρ0Cp
∂T
∂ t

δT dΩ =
∫

Ω

(
χτ̄ ˙̄ε−

(
F−1K̇ ·F−T

∇T
))

δT dΩ (8)
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Subsequently, the discrete weak form can be assembled in the following algebraic
equations [Ren and Li (2010)],

C · Ṫ = G−H ·T (9)

where C is defined as the thermal mass, G is the matrix related to heat generation
due to plastic strain, and H is the matrix related to heat conductivity.

C = [CIJ] , CIJ :=
∫

Ωx

ρ0CpNI (X)NJ (X)dΩX (10)

G = [GI] , GI :=
∫

Ωx

χτ̄ ˙̄εNI (X)dΩX (11)

H = [Hi j] , Hi j :=
∫

Ωx

κF−1
I` (X)F−T

`J (X)Ni,J (X)N j,I (X)dΩX (12)

The total rate of deformation of a thermo-mechanical coupling process can be de-
composed into three distinct parts, i.e. elastic, plastic and thermal parts as follows,

d = de +dp +dT (13)

A rate form constitutive equation is then formulated,
∇

τ = C : de = C :
(
d−dp−dT ) (14)

where

dp = ˙̄ε n̂ (15)

dT = α Ṫ I (16)

n̂ is the normal of deviatoric stress(s) and:

n̂ =
3

2 τ̄
s (17)

The Johnson-Cook constitutive model [Johnson and Cook (1985)] is adopted to
calculate the plastic strain rate ˙̄ε:

˙̄ε = ε̇0exp
{

1
C

(
σY

g(ε̄,T )
−1
)}

. (18)

g(ε̄,T ) =
[
A+B−n

ε

]
[1−T m] (19)

with T = T−Troom
Tmelt−Troom

.

where ε̇0 is referential strain rate, normally taken as 1.0s−1, n and m is the strain
hardening and thermal softening parameters, Troom is the room temperature, and
Tmelt is the melting temperature. In Ren and Li (2010), formulas are provided to
update stress status in explicit dynamical simulation.
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3 Meshfree simulation of adiabatic shear band

3.1 Overview

Shear band is a narrow region of un-cleavage localized shear deformation. It
can happen under different loading conditions in various materials [Bai and Dodd
(1992)]. When metal and alloy deforms under high strain rate loading e.g. high
speed impact or explosion, a specific shear band, also known as adiabatic shear
band (ASB), forms. The plastic deformation will generate large amount of heat
inside shear band. Comparing with the time scale (normally at several microsec-
onds), most of the heat stays within shear band (hence considered adiabatic), and
leads to stress collapse. However, due to the extremely high temperature gradient
near the shear band, the heat conduction still plays a crucial role in ASB failure.
The shear band phenomena have been observed for more than two decades. Zhou
et al [Zhou et al (1996ab)] used a single notch specimen to test the dynamic shear
band propagation under various impact speeds. Kalthoff [Kalthoff (1988)] used a
double-notch impact specimen to study two shear bands. Li and Liu [Li and Liu
(2000)] used meshfree method to simulate strain localization problem and com-
pared with FEM results. Li et al [Li et al (2000)] discussed the abilities of meshfree
method to alleviate the mesh-alignment sensitivity associated with strain localiza-
tion problem such as ASB. Li et al. [Li et al (2001); Li et al (2002)] simulated the
failure mode switching (ductile-to-brittle: shear band to crack) phenomena under
different impact speeds, which are reported experimentally. They also reported the
dynamical shear band propagating along a curved path and high strain rate region
in front of shear band tip.

3.2 Criteria of ASB propagation

When ASB is formed, the material response inside shear band is drastically differ-
ent from the region away from the shear band. Currently, the most efficient method
to simulate shear band is to employ normal metal constitutive model in the region
away from shear band and soft constitutive model to simulate the plastic flow in-
side shear band. To implement this model, a crucial step is to set failure criteria
for ASB propagation. Several criteria had been proposed e.g. the simple plastic
strain and stress criterion by Batra and Kim [Batra and Kim (1992)], dynamic re-
crystallization criterion by Medyanik et al [Medyanik et al (2007)]. One of the
most popular ASB growth criteria is introduced by Zhou et al [Zhou et al (1996b)],
which depends on strain rate, and it is given in the following form,

ε̄cr = ε1 +(ε2− ε1)
ε̇r

ε̇r + ˙̄ε
(20)

where ε1, ε2, ε̇rare empirical strain parameters and ε1< ε2. This criterion suggests
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that the critical strain decreases with the growth of strain rate. The critical strain
is equal to ε2 when the strain rate is zero and approaching ε1 as the strain rate
approaches infinity.

3.3 Physical model of ASB

The multi-physics modeling technique is adopted to model the constitutive behav-
iors for particles inside ASB at different stages. When temperature is high and
plastic deformation is dominating, we use a fluid-like model to describe those ma-
terial particle inside the ASB. In this work, we use a so-called fluid model, which
provides the post-localization stress collapse mechanism inside ASB [Zhou et. al.
(1996ab)]:

τ =−γ[1− J +α(T −Troom)]
J

E
1− v

I+ µd (21)

where τ is Kirchhoff stress tensor, γ is stiffness parameter, µ is a viscosity co-
efficient, J is the determinate of deformation gradient, and I is the second order
identity tensor.

 

 

Figure 1: Configuration of ASB experimental specimen.
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3.4 Numerical simulations

Zhou et. al. [Zhou, Ravichandran and Rosakis (1996b)] proposed a special ASB
experimental set-up, which is now called Zhou-Rosakis-Ravichandran (ZRR) prob-
lem. In the experiment, the target plate has a single notch because it can elimi-
nate the interference as well as interaction of the diffracted waves between multi-
notches, which occurs in Kalthoff-Winkler (KW) problem [Kalthoff (1988)]. There-
fore, a longer and “cleaner” shear band can be observed. The configuration of test
is shown as Fig. 1. The Johnson-Cook material constants of the specimen (4340
Steel) and the material constants of the fluid model are listed in Table 1 and Table
2. The parameters in Eq. (18) are shown in Table 3.

With a loading velocity of 40 m/s, the numerical results are shown in Figures 2 to
4. The adiabatic shear band is nucleated about 14µs after loading. The average ve-
locity of ASB is 1100 m/s and the maximum temperature inside shear band is 1266

Table 1: Johnson-Cook constants of Steel 4340.
Parameter Value Definition
E 208 Gpa Young’s modulus
ν 0.3 Poisson’s ratio
ρ 7830 kgm−3 Mass density
A 792490Mpa Yield stress
B 510Mpa Strain Hardening
n 0.26 Strain hardening index
ε̇0 1.0s−1 Reference strain rate
m 1.03 Temperature softening
Cp 477J(kg.K)−1 Specific heat
α 11.2E-06K−1 Coefficient of Thermal expansion
χ 0.9 The fraction of plastic work convert to heat
k 38 Conductivity coefficient

Table 2: Constants of Fluid Model.
Parameter Value Parameter Value Parameter Value

γ 0.002 α 3.2d-7 µ 1200

Table 3: Parameters in Criteria of ASB.
Parameter Value Parameter Value Parameter Value

ε1 0.04 ε2 0.3 ε̇r 4.0d4
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K, which is consistent with the experimental results [Zhou, Rosakis, Ravichandran
(1996a)]. In Figure 2, one can find the “curved” shear band path that is very typical
in actual ductile failure. The temperature profile of a vertical line located at 4 mm
in front of notch tip (Dashed line in Fig. 1, there are 50 points with length of 8
mm) is monitored as shown in Figure 3, which illustrates the heat is generated in-
side ASB and conducted to surrounding area. Also, the temperature history of one
particle inside ASB is shown in Figure 4(a), which describes the heat generation
and conduction phenomena. The effective stress-effective strain curve of a particle
inside ASB in Figure 4(b) shows the stress collapse inside shear band that has been
verified by experiments.

 

T=4μs T=14μs 

T=60μs 

T=28μs T=48μs

T=72μs T=90μs

Figure 2: ASB propagation with ductile thermo-mechanical model (effective stress
contour).

4 Meshfree simulation of crack propagation

4.1 Overview

Another prominent mode of failure occurring in material under shock loading is
the crack propagation. The main challenge in modeling the crack propagation is
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Figure 3: Temperature profile inside ASB.

     
(a)                                                   (b) 

 

Figure 4: (a) Temperature profile inside ASB, (b) Effective stress, (V2)-effective
strain inside ASB.

to re-build the field variables. Meshfree methods have been successfully imple-
mented in simulating crack growth phenomena. Belytschko and his co-workers
have systematically applied Element Free Galerkin (EFG) method [Belytschko and
Tabbara (1997)] to simulate crack growth. Liu et al [Liu et al (1999)] demonstrated
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the ability of RPKM for large deformation fracture and damage problems. Li and
Simonsen [Li and Simonsen (2005)] proposed the parametric visibility condition
algorithm to update meshfree integration field to automatically represent the evolv-
ing crack inside a solid. Based on this algorithm, Simkins and Li [Simkins and Li
(2006)] considered the thermal effect during ductile failure process, which captures
some essential characteristics of ductile failure. Ren and Li [Ren and Li (2010)]
proposed an automatic crack nucleation, propagation and arrest algorithm to simu-
late a double-crack plugging fracture process.

4.2 Parametric visibility condition algorithm

Due to the appearance of crack, the influence domains of particles nearby the crack
surfaces have to be re-constructed with updated interpolation function. In Fig. 5,
the dashed circle C1 and C2 denote interpolation area of two particles respectively.
With the enforced visibility condition, the crack surface is treated as an opaque
wall. Therefore, a particle at one side of the wall cannot ‘see’ the particles at the
other side of the wall, which means the connection between these two particles is
cut. Since crack growth is incremental, we only update the connectivity map of
limited number of particles, which are located inside union of C1 (interpolation
area of old crack tip) and C2 (interpolation area of current crack tip).

 
Figure 5: Modified meshfree interpolation field in front of a propagation crack tip
[Li and Simonsen (2005)].

Suppose that there is a connectivity between two particles (X11,Y11) and (X12,Y12).



264 Copyright © 2011 Tech Science Press CMES, vol.71, no.3, pp.253-277, 2011

A line segment between old and current crack tip is located between the points
(X21,Y21) and (X22,Y22) (Fig. 6). The parametric equations of these two lines are
[Li and Simonsen (2005)]:{

X = X11 +λ1(X12−X11)
Y = Y11 +λ1(Y12−Y11)

(22)

{
X = X21 +λ2(X22−X21)
Y = Y21 +λ2(Y22−Y21)

(23)

where λ1and λ2are the parametric variables for line segment respectively. If these
two line segments intercept each other, the following parametric visibility condi-
tions have to be satisfied (see Figure 6):

0 < λ1 < 1 and 0 < λ2 < 1 (24)

 

Figure 6: The illustration of the 2D parametric visibility condition.

For more detailed information of parametric visible condition, readers may refer
to the references [Li and Simonsen (2005); Simkins and Li (2006)]. A sample of
interpolation evolution proposed in Ren and Li [Ren and Li (2010)] is shown in
Figure 7. Here the original shape function of one particle is shown as a single ‘hill’
(Fig. 7 (a)). After crack passes through it, its shape function will be split into two
parts (Fig. 7 (b)). To visualize the morphology of evolving crack, the background
mesh is also shown in Fig. 7.
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(a) 

 
(b) 

 

Figure 7: Meshfree shape function evolution along crack propagation: (a) Original
shape function; (b) Updated shape function after crack propagation.

5 The Johnson-Cook model

The linear elastic fracture mechanics, such as those based on J-integral (Rice [1968]),
requires information over a finite area to determine the fracture strength of the
crack-tip. On the other hand, for inelastic fracture with large scale plastic yielding,
J-integral based approach may not be justified. In this work, a damage mechanics
approach with a local fracture criterion is adopted, which uses damage nucleation
and growth at a single point to measure ductile failure. In this work, we use the
Johnson-Cook damage model to demonstrate how the procedure works, in which
the material damage at each material point is calculated according to the following
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cumulative damage law ([Johnson and Cook [1985]),

D = ∑
∆ε

ε f
(25)

where D is the damage value, ∆ε is the plastic strain increment in one time step
[Simkins and Li (2006)],

ε f =
[

D1 +D2 exp(D3
τm

τ̄y
)
]
[1+D4 ln ε̇] [1+D5Γ] (26)

Γ =
T −Troom

Tmelt −Troom
(27)

τm = (τ11 + τ22 + τ33)/3, D1, D2, D3, D4 and D5 are material damage constants.

5.1 Numerical results

5.2 crack propagation

During the simulation, the visibility criterion is applied to all surfaces of the notches
and cracks to modify the connectivities among particles. Once a crack starts to
propagate, the influence domains of particles around crack surfaces will be updated
and their shape functions have to be re-calculated. To illustrate the capability in
handling with multiple cracks, tests are implemented on one 0.1× 0.1 m plate with
four horizontal notches as shown in Fig. 8(a), or two inclined notches as shown in
Fig. 8(b), respectively. Velocity boundary conditions of 20 m/s are applied on both
top and bottom edges to reach tension state in the plate. In addition, the Johnson-
Cook model is employed with all material constants listed in Table 1. The damage
contours after crack propagations for different types of notches can be found in Fig.
8.

5.3 Crack bifurcation

A similar procedure is applied to model crack bifurcation. As shown in Fig. 9(a),
three particles around the existing crack tip will be considered as new crack tips
because their damage values exceed the damage limit. Since multiple new tips are
allowed, the bifurcation of crack may appear. To model such bifurcation properly,
we consider the following procedure for two-dimensional cracks. Assume that
there are n particles in front of the current crack tip have exceeded the damage
tolerance, and then the current crack tip will be separated into the n+1 particle and
n new cracks will be formed, where n is the number of simultaneous new crack
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Figure 8: Damage contour after crack propagation.

tips. The field variables of all new particles, which are split from the current crack,
are assigned according to the following rules,

Massnewi = 1
n+1 Massold

Volumenewi = 1
n+1Volumeold

Dispnewi = Dispold +δi

Velnewi = Velold

Accnewi = 0.0
Tempnewi = Tempold

Damagenewi = Damageold

(28)

Each branch starts the new crack propagation and the old crack tip stops growing
as shown in Fig. 9(b). Then, the connectivity maps of all particles are updated
according to all new crack surfaces.

To illustrate the crack bifurcation simulation, an example of tensioned-plate with
a horizontal notch is considered. The plate has same material and boundary con-
ditions as above examples except for the reduced damage tolerance value. In this
example, the damage limit is reduced 30% percent to allow possible multiple new
crack tips form simultaneously, which then that lead to the crack bifurcation. Fig.
10 demonstrates a bifurcation with two branching cracks.

5.4 Plugging fracture

Ren and Li [Ren and Li (2010)] simulated a plugging fracture process for a projec-
tile impact problem, and compared with experiments. In this paper, the Kalthoff-
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(a)                                      (b) 

 

Figure 9: Sketch of forming crack branches: (a) multiple new crack tips are found
nearby the existing crack tip; (b) crack branches are formed by add new particles.

 

Figure 10: Crack bifurcation.

Winkler (KW) problem [Kalthoff (1988)], which is a vintage experiment set-up for
ASB study, is simulated. The specimen configuration is similar as in Fig. 1, except
there are two pre-set notches with a gap of 50 mm. The material constants of the
specimen are list in Table 1. The damage constants are shown in Table 4. The pro-
jectile speed is 180 m/s, which is much higher than the experimental ASB speed to
make crack propagation inside a specimen.

Table 4: Constants in Johnson-Cook damage model.

Parameter Value Parameter Value
D1 0.05 D2 3.44
D3 -2.12 D4 0.002
D5 0.61 Dcr 0.02
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T=30μsT=2μs T=8μs T=16μs T=24μs

T=36μs T=58μs T=82μs T=96μs T=104μs

Figure 11: Time sequence of crack propagation (effective stress contour).

A time sequence of crack propagation is displayed in Fig. 11. The final crack
morphology is shown in Fig 12(a). This simulation reveals some essential features
of ductile failure. First, it can be seen that the high effective stress is released
from the crack surface. Second, the ductile crack surface shows a zig-zag pattern,
which is the essential feature of a ductile failure [Li and Simonsen (2005)]. A
comparison of the ASB simulation with the crack propagation simulation in the
same KW experimental set-up (projectile velocity: 80m/s) is shown in Figure 12.
It can be seen that the orientation of ASB and crack path is similar, which implies
that the ASB and crack interact each other during the ductile failure process.

6 Meshfree simulation of spall fracture

6.1 Overview

The ductile failure begins with nucleation of voids, which depend on the micro-
scale (0.1 to 10 µm) structures of a material such as crystal grains, heterogeneous
impurities and material defects [Antoun et al. (2003)]. Along with voids matrix
debonding, there are ASB joining that leads to voids coalescence. This is the so-
called spall fracture [Chevrier and Klepaczko (1999); Kanel (2010)]. Based on
existing experimental data, a recent survey by Kanel [Kanel (2010)] discussed the
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      (a)                                      (b)  

 

Figure 12: The ductile failure morphologies of KW problem: (a) Detailed crack
surface morphology and (b) Double shear band paths.

spall fracture mechanisms and governing factors. So far, all the experiments in-
terpret spall process by an indirect way [Chevrier and Klepaczko (1999)] from the
surface velocity history. To study such dynamic spall process, numerical methods
become important approaches to investigate spall phenomena. A well-known nu-
merical model of spall fracture is void Nucleation-and-Growth method. Recently,
Wright and Ramesh [Wright and Ramesh (2008)] presented a framework for a self-
consistent theory of spall fracture in ductile materials. Clayton et al. [Clayton
(2005); Vogler and Clayton (1993)] used a rate-dependent crystal plasticity model
to simulate dynamic fracture along the grain boundaries of polycrystalline solids by
cohesive finite element method. Ren et al [Ren et al (2011)] related the macro-scale
spall strength to the kinematics of micro void growth in a Representative Volume
Element (RVE), and proposed a meshfree algorithm of void nucleation, growth and
coalescence.

6.2 The multi-scale spall strength formulas

Experimental studies illustrate that spall strength (the tensile stress just before the
spall fracture nucleation) is related to the duration of loading, i.e., the rate of volume
deformation. Based on the experimental data, Antoun et al [Antoun et al (2003)]
formulated a well-validated empirical equation to calculate the spall strength of
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solid, which is given as follow,

σ
spall = A

(
V̇
V0

)m

(29)

where A and m are material constants. The symbol V denotes the total volume of
material at current time and V0 is the total volume of material at initial configura-
tion. The empirical spall strength is a function of macro-scale properties of a solid,
based on a quasi-static theory. The macro-scale mechanics variables can be defined
as the average value of a microscopic element. A solid with internal voids can be
considered as a porous material, and its overall mechanical responses may be mod-
eled by using the Representative Volume Element (RVE) with an outer surface that
encloses a fixed mass and certain number of voids (Figure 13). Assume that the
center of the RVE is located at x̄(t).

 

Figure 13: Representation Volume Element (RVE) with spall voids inside material.

Considering a porous material, the total volume of material can be divided into two
parts: Vs (volume of solid) and Vυ (volume of voids). If the material is incompress-
ible, from the definition of RVE, we have

V̇ = V̇s +V̇υ (30)

Assume that initially that the material has no defects, which means that V0=Vs at t
= 0. Then the empirical spall strength formula can be written as

σ
spall = A

(
V̇υ

Vs

)m

(31)
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Let f be the void volume per unit total volume, i.e., the void fraction in porous
material

f =
Vυ

V
(32)

The rate of void growth ḟ can be defined as

ḟ ==
V̇υ

Vs
(1− f )2 (33)

Then we can connect the spall strength to micro scale quantities f and ḟ as follows

σ
spall = A

(
ḟ

(1− f )2

)m

(34)

Following Wright and Ramesh [Wright and Ramesh (2008)], ḟ can be defined as

ḟ = 1− f
(

˙̄xi,i−
˙̄p

k̄ ( f )

)
(35)

k̄ ( f ) = k
4(1− f )µ

4µ +3 f k
(36)

where ˙̄p is spherical stress rate, k is bulk modulus and µ is the shear modulus. It
is speculated that a spall fracture is induced by the tri-axial tensile stress. In this
paper, we use the spherical stress of the second Piola-Kirchhoff stress (PK-II) pas
the control variable in the spall fracture criterion of a meshfree particle. And, two
spall fracture criteria are employed: 1) the spall strength exceeds the critical value,
and 2) the spherical stress pexceeds its spall strength:

σ
spall ≥ σcr and p≥ σ

spall (37)

6.3 Numerical simulations

In this simulation, a target-flyer impact simulation has been carried out to study
the dynamic spall fracture process. The flyer impacts one side of specimen with
a velocity of 100 m/s. The flyer is modeled as a rigid plate and the dimension of
the target plate is 2 mm x 10 mm. The material properties of the target plate are
modeled by the Johnson-Cook model with material constants shown in Table 5 and
Table 6.

The dynamic evolution of spherical stress is shown in Fig. 14. Since spherical stress
provides direct evidence of the presence of shock wave, we actually find that it is
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Table 5: Johnson-Cook material constants for the target plate.

Parameter Value Definition
E 200GPa Young’s modulus
ν 0.3 Poisson’s ratio
ρ 7850 kgm−3 Mass density
A 490MPa Yield stress
B 807MPa Strain Hardening
n 0.73 Strain hardening index
ε̇0 1.0s−1 Reference strain rate
m 0.94 Temperature softening
Cp 452J(Kg.K)−1 Specific heat
α 11.2E-06K−1 Coefficient of Thermal expansion
χ 0.9 The fraction of plastic work convert to heat
k 38 Conductivity coefficient

Table 6: Spall fracture criterion constants for the target plate.

Parameter Value Definition
A 0.65GPa Empirical constant
m 0.11 Empirical constant
σcr 2.5e8 The minimum of spall strength for voids nu-

cleation
pcr 2.0e9 The critical value for void growth

the tensile spherical stress wave that drives the spall nucleation and growth. Spall
voids nucleate at the twinkle when the high tensile spherical stress (orange to red
region) is reached. After that moment, the stress wave propagation is disturbed by
the newly formed voids. When the tensile spherical stress wave comes back to ex-
isting spall voids, these voids keep growing and coalesce each other. From the final
morphology of spall fracture, Fig. 15, we can find the fracture zone is distributed
inside the specimen with large plastic strain, and more spall voids are nucleated
near the ends of vertical spall fracture zone, which is caused by the boundary effect
of the specimen, which was not observed in the previous work [Ren et al (2011)].

7 Discussions and conclusions

The ductile failure is characterized with numerous plastic deformations. It is a com-
plex multi-physics and multi-scale process that evolves from micro-scale voids to
macro-scale crack propagation. The development of experimental method, damage
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  T=0.5μs                    T=1.5μs                    T=1.8μ 

 
             T=1.85μs                   T=3.5μs                    T=5.0μs 

 Figure 14: Time sequence of spall fracture (Color contour is spherical stress).

 
Figure 15: Spall fracture morphology shown as plastic strain.
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mechanism, and numerical modeling theory for ductile failure is still under active
investigations.

From the numerical point of view, the simulation of a dynamic fracture process
means evolution of the computational domain. Meshfree has intrinsic advantages
in simulating this kind of problems. This paper reviewed the current state-of-the-art
numerical simulation theories of three main ductile failure phenomenas. A mesh-
free formula with thermo-mechanical coupling and Johnson-cook model are pro-
posed. For ASB simulation, based on a multi-physical method, an application of
the Zhou-Rosakis-Ravichandran (ZRR) problem is reported. The stress collapse
and thermal effect inside shear band are discussed. We found that the average
velocity of ASB is 1100 m/s and the maximum temperature inside shear band is
1266 K, which is consistent with the experimental results reported by Zhou et al.
(1996a). For macro-crack simulation, the Parametric Visibility Condition algorithm
is discussed and a double crack Kalthoff-Winkler (KW) problem is simulated. The
final fracture morphology shows ASB and crack interact with each other in duc-
tile failure. For spall fracture, we calculate the macro-scale spall strength from
the micro-scale features of voids and capture the dynamic spall fracture process.
The numerical simulations demonstrate that meshfree method can capture the main
essential features of a ductile failure.
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