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Shock wave induced spall fracture is a complex multiscale phenomenon, and it is a challenge to build a
constitutive and computational model that can capture essential features of the spall fracture. In this
work, we present a computational micro-mechanics model to simulate spall fracture by utilizing the mul-
tiscale micro-mechanics theory proposed by Wright and Ramesh [36] and a RKPM meshfree method. The
focus of this work is to develop and demonstrate a simulation tool that is capable of simulations of spall
fracture in engineering application. First, based on a well-known empirical formula, we relate the mac-
roscale spall strength to the kinematics of micro void growth in a Representative Volume Element (RVE).
The connection between micro void growth and overall kinematics of the RVE is made through the con-
servation of mass in the micro to macro transition process. Second, we develop a set of meshfree void
growth algorithms that is tailored to represent kinematics of void nucleation, growth and coalescence,
and these algorithms retain the conservation of mass, momentum, and energy during simulations of duc-
tile spall fracture. Third, based on the Johnson–Cook model, we developed a meshfree computational for-
mulation, and we have carried out simulations of the spall fracture of a Ti–6Al plate under impact loads to
validate the model. From the simulation, we find that the interaction between the first two inelastic wave
pulses plays an important role in the mechanism of spall fracture. The numerical results show that the
proposed method can capture some features of the spall fracture, and it may be used to simulate the spall
fracture in engineering applications.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The spall fracture is a shock wave induced dynamic fracture
phenomenon, which is practically important in high speed impact
problems in many applications such as structures under ballistic or
blast loads. The experimental results show that the macroscopic
spall damage is strongly depend on material micro-structures at
the length scale of (0.1 � 10 lm). At this specific length level, the
solid is characterized by crystal grains, heterogeneous impurities,
material defects and so on. Along the shock wave passage, the
microscopic voids will be nucleated first, and they then grow at
dislocation sites. These growing microscopic voids expand into
cavities, and coalesce each others, finally they form macroscopic
spall fracture cracks.

After the first observation of spall phenomena by Hopkinson
[12], many experiments have been conducted to explore the mech-
anism of spall fracture under the shock wave loading condition.
Interested readers may consult a recent monograph by Antoun
ll rights reserved.
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et al. [2], which has a complete survey on most of the previous
work on spall fracture. In the last decade, the new experimental
techniques, such as the line-VISAR [34,35] are adopted to investi-
gate the spall fracture at mesoscale and in microsecond time dura-
tion. So far, the experimental method still cannot precisely record
the dynamical process of spall fracture inside solids. Most data
measured from experiments are the free-surface velocity and
stress of specimen, and they are being examined by using the wave
propagation theory to link to the spall fracture resistance of differ-
ent materials under wide range of strain rates of shock wave load-
ings. For example, Gluzman et al. [9] investigated the strength
properties of 35KH3NM steel under about 500 m/s impact. Kanel
et al. [15] investigated the effect of initial temperature effects on
spall strength of aluminum and magnesium materials by varying
test temperature from room temperature to melting point. Vogler
and Clayton [35] studied dynamical deformation and spall fracture
of an extruded tungsten alloy, which is a dual phase polycrystalline
metal.

Based on many experimental data, a recent survey by Kanel [16]
has discussed the spall fracture mechanisms and governing factors.
It concluded that the strain rate generated by the shock wave and
the micro-structure of specimen plays very important roles in spall
fracture.

http://dx.doi.org/10.1016/j.cma.2010.10.003
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Because the current experimental measurements cannot cap-
ture the spall phenomena directly, some attempted to develop
numerical models and simulations to study the basic features of
spall fracture. Essentially, the spall can be considered as the micro-
scale void nucleation and growth, and they lead to macroscale frac-
ture when microscale voids coalescence causes surface separation.
The main focus of current models is to simulate the fracture pro-
cess at microscale, and a main approach is so called the Nucle-
ation-and-Growth model. Davison et al. [6] is an early example
of such work. Subsequently, many work in this direction have been
published, such as Rajendran et al. [28], Wang [37,38], etc.
Recently, Wright and Ramesh [36] have applied the self-consistent
theory of micro-mechanics to homogenize the micoscale dynamics
of void nucleation and growth in order to study spall fracture in
ductile materials. In their work, a porous medium is represented
by Representative Volume Element (RVE), the deformation of
RVE can be divided into elastic and plastic parts. The macroscopic
spherical stress in the material drives the response in the volume
elements, thus the macroscopic pressure and the kinematics of
growing microscopic voids are coupled automatically. At meso-
scale (grain size), Krivtsov and Mescheryakov[17] used a coarse-
grained molecular dynamics with a Lennard–Jones potential to
simulate spall phenomena of a flyer-specimen system. At this
scale, an alternative approach is to adopt the crystal plasticity the-
ory and investigate the dynamic fracture of material by high strain
rates. Clayton [5] and Vogler and Clayton [35] have used a cohesive
finite element method and a rate-dependent crystal plasticity
model to simulate dynamic spall fracture in polycrystalline solids.
At macroscale, continuum mechanics theory is adopted to model
the solid response, Kanel et al. [15] carried out a 1D simulation
of spall fracture of aluminum and magnesium over a wide range
of load duration. However, we have not found any publication of
spall fracture simulation by using engineering computational
method in multi-dimensional cases at macroscale level.

In fact, although extensive research has been carried out to
investigate the mechanism of spall fracture, most these simula-
tions have remained at the stage of academic research. To capture
the dramatic changes and evolution of spall damage in a material,
and material behaviors during the shock wave, and to accurately
predict ductile failure process have remained to be challenges in
computational failure mechanics.

During spall fracture process, a ductile solid will be undergoing
extremely high strain rate deformation, and material failure starts
to localize inside the solid at small scales, which pose serious chal-
lenges for computations. For instance, how to simulate the spall
void formation in ductile materials by using finite element method
(FEM). The finite element method seems not very successful in
ductile fracture simulations because it is a thermodynamically
irreversible process, which prohibits artificial numerical unloading
that is essential in FEM remeshing. On the other hand, meshfree
interpolations have flexibility to adapt computational domains
with evolving topological structure without numerical unloading.
Recently, there have been quite a few research works using mesh-
free methods to simulate fracture problem, e.g. Belytschko et al.
[3,4]. Liu et al. [24] discussed the advantage of using RKPM mesh-
free method on simulation of large deformations, high gradients,
and localization problems. Hao et al. [11] investigated the ductile
fracture process involving damage evolution with a micromechan-
ics cell model. Moreover, Hao and Liu [10] proposed a hybrid
meshfree/finite element method, the moving particle finite ele-
ment method, to solve high speed penetration and dynamic crack
propagation problem. In particular, Li and his co-workers have
developed a meshfree crack growth algorithm specifically target-
ing for ductile fracture simulations [19,30,31].

In this paper, we present a multi-scale constitutive formulation
of spall fracture, which can estimate the spall strength from the
microscale information of an RVE, and then build the correlation
between the macro/micro-scale kinematic quantities of RVE of so-
lid. This approach is combined with a macroscale rate dependent
thermo-mechanical meshfree Galerkin formulation to simulate dy-
namic behaviors of a material. The proposed method in this work
uses the well-validated Johnson–Cook constitutive model as the
macroscale constitutive relation for the testing material, and all re-
quired material constants are tested and documented engineering
constants; hence, the proposed approach is valuable in prediction
of the structure response by shock wave loading in practical engi-
neering computations.

The paper is organized into six sections: in Section 2, we shall
present a complete meshfree Galerkin weak formulation, meshfree
interpolation, and constitutive update; in Section 3, we shall dis-
cuss the multiscale spall strength theory, and in Section 4, we shall
present a meshfree algorithm of void nucleation, growth and coa-
lescence. A numerical example of the impact simulation of a Ti–6Al
alloy specimen is presented in Section 5, and it is compared with
the experimental data. Possible mechanism of spall fracture is also
discussed. We conclude the paper in Section 6 with a few remarks.

2. Meshfree Galerkin formulation with the Johnson–Cook
model

2.1. The RKPM meshfree approximation

In recent years, several meshfree methods have been developed
in computational mechanics, such as smoothed particle hydrody-
namics (SPH) [26], Element-free Galerkin Belytschko [3,4], the
reproducing kernel particle method (RKPM) [23], and h-p Clouds
[8]. The particular mesh-free method used in this work is RKPM
method. The detailed theory of RKPM method can be found in [22].

In this paper, The RKPM shape function NI(X) (see [22]) may be
viewed as an enhanced version of the original SPH shape function.
The basic ideal of RKPM is to construct a proper kernel function by
‘correcting’ the original SPH kernel function, wðX� XÞ, to satisfy
the partition of unity condition so that the rigid body motion and
linear deformation can be correctly represented. The RKPM inter-
polation function can be represented as:

uhðX; tÞ ¼
Z

X
CðX;XÞwðX� XÞuðXÞdXX: ð2:1Þ

Here the original kernel function, wðX� XÞ, is obtained by a Carte-
sian product of the one-dimensional cubic spline function [22], and
CðX;XÞ is called the Correction function:

CðX;XÞ ¼ bTðXÞpðX;XÞ: ð2:2Þ

In the above formulation, pðX;XÞ can be any complete basis func-
tions. In this paper, we choose the first order polynomials or bi-lin-
ear polynomials as the basis function:

pTðX;XÞ ¼ ½1; x� �x; y� �y; ðx� �xÞðy� �yÞ�: ð2:3Þ

Here b(X) is a coefficient vector, and it is determined by the repro-
ducing condition [22], which will lead to the following vector
equation,

bðXÞ ¼M�1ðXÞpð0Þ; ð2:4Þ

where:

MðXÞ ¼
Z

X
pðX� XÞPTðX� XÞwðX� XÞdXX; ð2:5Þ

pTð0Þ ¼ ½1;0;0;0�: ð2:6Þ

Assume that in the domain X there is a valid particle distribution by
np particles. The RKPM kernel function is compact supported,
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finally, the kernel integration, Eq. (2.1), can be discretized to form a
numerical interpolation:

uhðX; tÞ ¼
Xnp

I¼1

CðX;XÞwðX� XÞUIðtÞDVI ð2:7Þ

¼
Xnp

I¼1

NIðXÞUIðtÞ; ð2:8Þ

where DVI is integration weight and finally, the RKPM interpolation
function is then defined as:

NIðXÞ ¼ CðX;XÞwðX� XÞDVI: ð2:9Þ
2.2. An explicit thermo-mechanical meshfree formulation

The high-speed impact process will produce enormous plastic
deformation, and in turn the material plastic flow will generate a
large amount of heat at some local area. At the locations of some
material points, the temperature can sharply increase up close to
melting temperature. During the spall fracture process, Kanel
et al. [15] have found a large range of peak pressure in shock wave
when the initial temperature of aluminum and magnesium speci-
men varies from room temperature to that close to the melting
point. Therefore the effects of thermo-mechanical coupling and
heat conduction cannot be neglected in high-speed impact simula-
tions. In this work, a fully coupled thermo-mechanical impact
problem with inelastic damage evolution is considered. By the vir-
tual work principle, the weak formulation of equation of motion
can be written as:Z

X0

P : dFdX ¼
Z

CT
0

T � dudS�
Z

X0

q0
@2u
@t2 � dudX; ð2:10Þ

where P denotes the nominal stress, which is the transpose of the
first Piola–Kirchhoff stress, and it can be related to the Kirchhoff
stress as s = PFT; and CT

0 denotes the traction boundary where the
traction force T is prescribed. The above weak form formulation is
obtained by integration by parts of the balance equation of linear
momentums. Considering the heat generation and conduction pro-
cess, the strong form of energy equation can be written as:

q0Cp
@T
@t
¼ vs : dp þrXðJF�1 � K � F�T � rXTÞ; 8X 2 X0; ð2:11Þ

where T is the temperature, v denotes the fraction of plastic work
converting to heat, rX is the gradient operator in reference config-
uration, Cp is specific heat. For isotropic heat conduction, the heat
conductivity tensor K ¼ jI, where j is the conductivity coefficient,
and dp is the plastic rate of deformation.

In general, the simulation of such coupled thermo-mechanical
problem is a complex and difficult process. An effective integration
scheme to solve such coupled thermal–mechanical equations is the
so-called operator splitting method proposed by Armero and Simo
[1]. In their scheme, a fractional time step method is adopted that
is associated with an operator split of a fully nonlinear thermal–
mechanical system into an adiabatic heat generation phase, fol-
lowed by a heat conduction phase at the fixed configuration. Fol-
lowing the same procedure, the strong form energy balance
equation may be also divided into the heat generation part and
the heat conduction part,

q0Cp
@T
@t
¼ vs : dp ð2:12Þ

and

q0Cp
@T
@t
¼ rXðJF�1 � K � F�T � rXTÞ: ð2:13Þ
For adiabatic heating, the least square weighted residual equation
is:Z

X0

q0Cp
@T
@t

dTdX ¼
Z

X0

vs : dpdTdX: ð2:14Þ

In this work, the material modeling is accomplished by adopting a
thermal–mechanical coupled Johnson–Cook model. For this model,
we can show that:

vs : dp � v�s � _�e 8x 2 XðtÞ: ð2:15Þ

The weak form of heat conduction equation is:Z
X0

q0Cp
@T
@t

dTdX ¼
Z
@X0

JðF�1 � K � F�TrXTÞ �NdTdS

�
Z

X0

JðF�1 � K � F�TrXTÞrXðdTÞdX: ð2:16Þ

The first term of the right-hand side of above equation is the
boundary heat dissipation. Because the response time for high
speed impact/penetration only last for a few milliseconds; and nor-
mally most of the heat generated inside solid does not have enough
time to dissipate into the ambient environment. For simplicity, we
may ignore the part of heat that dissipates into the surrounding
environment. Hence, the weak form of heat conduction equation
becomes:Z

X0

q0Cp
@T
@t

dTdX ¼ �
Z

X0

ðJF�1 � K � F�TrXTÞrXðdTÞdX: ð2:17Þ

Finally, the energy balance equation including heat generation and
conduction becomes

Z
X0

q0Cp
@T
@t

dTdX ¼
Z

X0

v�s _�edTdX�
Z

X0

ðJF�1K � F�TrXTÞrXðdTÞdX:

ð2:18Þ

Here the weak forms of balance of linear momentum, heat gen-
eration, and heat conduction are expressed in Eqs. (2.10) and
(2.18).

The corresponding boundary conditions in referential configu-
ration are,

P � N ¼ T0; 8X 2 Ct ; ð2:19Þ
u ¼ �u; 8X 2 Cu; ð2:20Þ

here, Ct and Cu denote the traction boundary and essential bound-
ary, and N is the unit normal vector of Ct.

It should be noted that the meshfree interpolation used here is
not able to represent essential boundary data via boundary value
interpolation. Therefore, an extra term appears in the weak form
Eq. (2.10)

Z
Cu

T0 � dudCX ð2:21Þ

because du – 0, "X 2 Cu. On how to estimate this term and enforce
the essential boundary condition for meshfree methods, the readers
are referred to Li and Liu [22].

By meshfree discretization, the temperature field may be inter-
polated by a temperature array of all particles:

T ðtÞ ¼ fT1; T2; . . . ; TnpgT
: ð2:22Þ

The displacement and temperature fields can be approximated by
the meshfree interpolation,
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uhðX; tÞ ¼
Xnp

I¼1

NIðXÞUIðtÞ; with UIðtÞ ¼ fUI1;UI2;UI3gT
; ð2:23Þ

duhðX; tÞ ¼
Xnp

I¼1

NIðXÞdUIðtÞ; ð2:24Þ

ThðX; tÞ ¼
Xnp

I¼1

NIðXÞTIðtÞ; ð2:25Þ

dThðX; tÞ ¼
Xnp

I¼1

NIðXÞdTIðtÞ: ð2:26Þ

The weak form Eq. (2.10) will then become a set of discrete dynam-
ics equations:

M
d2u

dt2 ¼ fext � f int
: ð2:27Þ

The conventional row-sum lumped mass matrix M is adopted for
explicit time integration scheme, and the external and internal force
arrays are calculated as follows,

fext
I ¼

Z
CT

TiðX; tÞNIEidS; ð2:28Þ

f int
I ¼

Z
Cx

Ph
iJ
@NI

@XJ
EidX; ð2:29Þ

where Ei is the unit vector of referential coordinate.
Then the energy balance Eq. (2.18) becomes

Cp � _T ¼ G�H � T ; ð2:30Þ

where Cp is defined as the specific thermal mass, G, is the matrix re-
lated to heat generation due to plastic strain, H is the matrix related
to heat conductivity:

Cp ¼ ½CpIJ�; CpIJ :¼
Z

XX

q0CpNIðXÞNJðXÞdXX ; ð2:31Þ

G ¼ ½GI�; GI :¼
Z

XX

v�s _�eNIðXÞdXX ; ð2:32Þ

H ¼ ½Hij�; Hij :¼
Z

XX

jF�1
I‘ ðXÞF

�T
‘J ðXÞNi;JðXÞNj;IðXÞdXX ; ð2:33Þ

where XX is the integration weight for each particle in the back-
ground grid.

2.3. Constitutive update

During high speed impact, the propagation of shock wave in-
duces high strain rate plastic deformation, and most of the plastic
work will convert to heat [33], and consequently it leads to mate-
rial softening. Hence, the mechanical response of material is a rate-
dependent thermal–mechanical phenomenon.

For ductile fracture problem, the total deformation may be
decomposed to three parts: elastic, plastic, and thermal parts:

d ¼ de þ dp þ dT
: ð2:34Þ

A rate form constitutive equation is used:

s
r
¼ C : de ¼ C : ðd� dp � dTÞ: ð2:35Þ

In the case of isotropic hardening:

dp ¼ _�en̂; ð2:36Þ

where n̂ is the normal of deviatoric stress:

n̂ ¼ 3
2�s

s: ð2:37Þ
In adiabatic heating, the rate of deformation induced by thermal ef-
fect is

dT ¼ a _TI; ð2:38Þ

where a is the coefficient of thermal expansion, and I is the second
order unit tensor.

Based on the Johnson–Cook model [13,14] the plastic strain rate
_�e is calculated as follows,

_�� ¼ _�0 exp
1
C

sY

gð��; TÞ � 1
� �� �

; ð2:39Þ

gð��; TÞ ¼ ½Aþ B��n�½1� T m�; with; T ¼ T � T0

Tm � T0
; ð2:40Þ

where _��0 is a referential strain rate, normally, we choose it as 1.0s�1,
n and m are strain hardening and thermal softening parameters, T0

is the room temperature, and Tm is the melting temperature.
In the explicit time integration, the basic field variables such as

stresses, strains are calculated explicitly based on the information
of the previous time step as computation progresses. To enhance
the accuracy of the time integration, we adopt a fractional time
increment scheme that evaluates the time derivatives of field vari-
ables at a time instance tn+h that is between tn and Tn+1. To illustrate
the procedure, we discuss the update of the Kirchhoff stress s from
t = tn to t = tn+1

snþ1 ¼ sn þ _shDt; ð2:41Þ

where _sh is the Kirchhoff stress at predicted step th, h 2 [0,1]. Using
the Jaumann rate of the Kirchhoff stress, we have,

_sh ¼ s
r

h þwn � sn � sn �wT
n: ð2:42Þ

From Eq. (2.35), s
r

h can be written as:

s
r

h ¼ C : ðdh � _��hn̂h � a _ThIÞ: ð2:43Þ

To reduce the complexity of the computational algorithm, while
computing the energy equation at each quadrature point, we first
consider adiabatic heat generation:

_Th ¼
v

qCp
�s _�eh: ð2:44Þ

To compute the rate-dependent material responses, a modified for-
ward Euler tangent algorithm is adopted in constitutive update pro-
cess. The detailed information may be found in Peirce et al. [27] and
Ren and Li [29], in which the Jaumann rate of the Kirchhoff stress
(see Eq. (2.43)) can be obtained as,

s
r

h ¼ C : dh �
_��t

1þ n
þ n
ð1þ nÞHh

Ph : dh

 !
Ph þ

3Kav�sh

qCp
I� I

� �
;

ð2:45Þ

where I is the unit vector, and

Ph :¼ C : n̂h:
3. Multi-scale spall strength theory

3.1. A multi-scale spall strength formula

Since the fracture time under shock wave loading is comparable
to the duration of load, the spall strength, i.e. the critical tensile
stress just before the spall fracture initiates, may depend on the
characteristics of loading waves. Over the last few decades, exten-
sive experiments have been conducted for spall fracture. Experi-
mental data with a number of materials over a large range of
volumetric strain rate shows that an empirical power function
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can describe spall strength in terms of decompression rate of load-
ing wave ð _V=VoÞ, see Kanel et al. [15], Antoun et al.[2],

rspall ¼ A
_V

V0

 !m

; ð3:1Þ

where A and m are material constants. _V means the rate of total vol-
ume of material at current time and V0 is the total volume of mate-
rial before deformation. Because this simple empirical formula can
relate the complex spall fracture phenomena to measurable quanti-
ties during a spall fracture experiment, it has been widely used in
the experimental analysis.

In the empirical formula (Eq. 3.1), we can find all the related
variables are macro-scale quantities. However, spall fracture is
obviously a multi-scale process, i.e. spall voids are nucleated at
meso-scale, and subsequently they grow larger and coalesce to
macro-scale voids and cracks inside the solid. Based on this empir-
ical formula, in this paper, we try to find a theory to relate the
macro-scale spall strength to the micro-scale features of solids.

From micro-mechanics viewpoint, the spall fracture can be con-
sidered as an overall effect of voids growth and coalescence inside
material. Under the quasi-static condition, the macro-scale
mechanics variables can be defined as the average value of a micro-
scopic element. The solid with voids inside can be considered as a
porous material, and its effective material behavior may be de-
scribed by the average material behaviors of a Representative Vol-
ume Element (RVE), in which the hosting matrix contains a certain
volume fraction of voids in its interior. A schematic illustration of
an RVE containing voids is shown in Fig. 1.

In Fig. 1, the RVE is sketched as a solid sphere, and several micro
voids are distributed inside the RVE. Following Wright and Ramesh
[36], the center of mass of an RVE is located at X. For the RVE, we
define its total mass as m, the total volume of RVE as Vt, the volume
of solid inside RVE as Vs, and the volume of voids inside RVE as Vv.
In this paper, we consider the spall damage as the effect of micro
void growth inside a material particle, notate f be the void volume
per unit total volume, i.e., the void fraction in porous material
particle,

f ¼ Vv

Vt
: ð3:2Þ

For each RVE, we assume that when deformation starts, the mate-
rial is perfect without defects, which means that V0 = Vs at t = 0,
and we consider the solid as incompressible material. Then from
the definition of RVE, we have:

_Vt ¼ _Vs þ _Vv ¼ _Vv : ð3:3Þ
Fig. 1. The Representative Volume Element (RVE) with voids.
Then the empirical spall strength formula can be written as:

rspall ¼ A
_Vv

Vs

 !m

: ð3:4Þ

The rate of void fraction can be derived as:

_f ¼
_Vv

Vs þ Vv
� Vv _Vv

ðVs þ VvÞ2
¼

_Vv

Vs
ð1� f Þ2: ð3:5Þ

Finally, we can connect the spall strength to microscale quantities _f
and f as follows,

rspall ¼ A
_f

ð1� f Þ2

 !m

: ð3:6Þ

During the spall fracture process, the spall void fraction f is cumu-
latively increasing. Since the spall strength can be related to the
microscale quantities of a material particle, we may use the volume
fraction of the voids f as the governing parameter for spall damage
evolution.

3.2. The kinematics of finite deformation of RVE

Eq. (3.6) describes the relation of voids fraction and spall
strength, however, f and _f are the micro features inside a material
particle or an RVE, they cannot be computed explicitly in macro-
scale simulation by FEM or Meshfree simulations. Back to Fig. 1,
we can find that the volume of RVE is composed by solid and voids.
Obviously, we have:

Vt ¼ Vs þ Vv ð3:7Þ

and let m denote the void volume per unit solid volume, then we
have,

m ¼ Vv

Vs
: ð3:8Þ

From above definitions, we can find:

1þ m ¼ ð1� f Þ�1
: ð3:9Þ

Now considering the conservation of mass in the porous material,
we may define the average density of RVE as:

�q ¼ 1
Vt

Z
Vt

qdV ¼ m
Vt
; ð3:10Þ

where �q is the average density of RVE. In meshfree simulation, each
material particle is assigned a distinct density value. On the other
hand, the average density of the solid part of RVE can be defined as:

q̂ ¼ m
Vs
: ð3:11Þ

From the above equations, we have:

�q ¼ q̂ð1� f Þ: ð3:12Þ

This equation relates the macroscale mass density ð�qÞ to microscale
mass density of RVE ðq̂Þ.

Then the rate of density relation should be:

_�q ¼ ð1� f Þ _̂qþ _f q̂: ð3:13Þ

Wright and Ramesh [36] derived macro rate of deformation of RVE
from its micro properties by conservation of mass:

dii ¼ �
_̂q
q
þ

_f
1� f

: ð3:14Þ

From Wright and Ramesh [36], when the void volume is constant,
we have _̂q=q̂ ¼ _�q=�q. Therefore, they consider the first term on the
right-hand side of above equation as the elastic contribution, and
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the second term as the plastic contribution. For elastic deformations
at the macroscopic scale, the volumetric rate of expansion may be
written as the ratio of the rate of macroscopic tensile pressure _�p
and the macroscopic bulk modulus, hence:

dii ¼ �
_�p

�kðf Þ
þ

_f
1� f

; ð3:15Þ

where _�p is the rate of spherical stress. In this paper, it is written in
terms of the volumetric rate of PK-II stress,

_�p ¼ 1
3

X
_Sii

� �
: ð3:16Þ

As discussed in Wright and Ramesh [36], the bulk modulus of a
porosity solid can be derived from the elastic properties of that
homogeneous solid, the self-consistent bulk modulus of a porosity
solid can be estimated as,

�kðf Þ ¼ k
4ð1� f Þl
4lþ 3fk

; ð3:17Þ

where k is the bulk modulus, and l is the shear modulus of macro-
scopic material.

Finally, from above equation we can get the formula for the rate
of void growth,

_f ¼ 1� f dii �
_�p

�kðf Þ

 !
: ð3:18Þ

Note that in the above equation, except the void fraction f, the other
quantities of the right side are macroscale material constants. In
meshfree simulation, these constants are assign to each meshfree
particles.

In this work, we assume that f is a cumulative value that starts
from zero before the solid deforms. In an explicit time integration
scheme, it can be calculated during constitutive update as,

f iþ1 ¼ f i þ _f idt; ð3:19Þ

where dt is time increment, and superscript i, is the time step.
In Eq. (3.18), dii denotes the trace of the macroscale rate of

deformation of RVE. In this work, we assume every meshfree par-
ticle is a specific RVE with different void fraction during the dam-
age process. Therefor, a particle or an RVE located at X in reference
configuration shown in Fig. 1, will move to the position �x in current
configuration during finite deformation. This motion can be
described as the velocity gradient ‘ defined in the current
configuration,

‘ ¼ @
�v
@�x

: ð3:20Þ

The velocity gradient can be split into two parts: a symmetric part
as the rate of deformation d and an anti-symmetric part as the rate
of spin w:

‘ ¼ dþw; ð3:21Þ
d ¼ ð‘þ ‘TÞ=2; ð3:22Þ
w ¼ ð‘� ‘TÞ=2: ð3:23Þ

In this paper, a total Lagrangian approach is adopted to represent
the finite deformation of particle. Therefore, ‘ should be expressed
in terms of the deformation gradient:

‘ ¼ _F � F�1; ð3:24Þ

where _F ¼ @�v
@X

.
Then the rate of deformation d in Eq. 3.18 can be calculated

from the deformation gradient in reference configuration,

d ¼ ð _F � F�1 þ F�T � _FTÞ=2: ð3:25Þ
4. A meshfree spall nucleation and growth algorithm

4.1. Spall void nucleation algorithm

In Section 3, we have proposed a muti-scale formula to calcu-
late the spall strength from the void fraction of each meshfree par-
ticle. At initial stage, all the macroscale meshfree particle, which is
a microscale RVE, is perfect without defect; after a shock wave is
sweeping through the specimen, first microscale damage occurs,
and then a macroscale void may nucleate at the location of a par-
ticle when a chosen macroscale damage criterion is met.

The spall fracture is a complex process, and it is also difficult to
be observed in experiments. Today, there is a general consensus
that spall fracture is induced by the tensile stress generated by
the compressive shock wave. In this work, we use the spherical
stress of the second Piola–Kirchhoff stress (PK-II) p as the control
parameter in the spall fracture criterion. When the spherical stress
of a particle exceeds its spall strength, which is related to the cur-
rent damage state of that particle, as indicated in Eq. (3.6), the void
will nucleate at the location of this particle. However, the empirical
spall strength formula Eq. (3.1) shows that spall strength will de-
crease with decreasing of strain rate, i.e., when the impact velocity
is too low to form a shock wave, Eq. (3.1) will not be applicable.
Hence, we consider the condition of spall nucleation as: (1) the
tensile spherical stress of meshfree particle exceed its spall
strength in Eq. (3.6), and (2) the spall strength exceed critical
value:

pj P rspall and rspall P rcr; ð4:1Þ

where pj is the PK-II spherical stress of jth particle:

pj ¼
X

Sj
ii

� �
=3:0: ð4:2Þ

Comparing to the normal crack, a spall void is more like a cavity
inside a solid, the unique shape of void makes it a real challenge to
be captured in numerical calculations. In finite deformation of a
ductile material, it is very difficult to construct a spall void inside
a solid and re-build the current kinematic fields to keep the mass
and energy conserved. However, the meshfree has inherent advan-
tages to simulate the ductile material failure process. Simonsen
and Li [30] have proposed a useful algorithm to simulate crack
growth or propagation in ductile material under finite deforma-
tion. A so called parametric visibility condition algorithm is used
to automatically modify the integration fields of particles without
user’s interference. In this paper, a modified parametric visibility
condition algorithm is adopted to update the meshfree particle
integration field when a void is nucleated.

For a real spall void, its potential expansion direction is the sur-
face normal of a cave. However, the numerical simulation disperses
the continuum domain with particles. To simplify this problem, we
only use four particles to form a quadrangle cave to represent the
spall void in 2D simulation, as shown in Fig. 2. In this paper, the
meshfree particles located on the surface of voids are marked as
square black boxes, the regular meshfree particles are marked as
circular black dots.

Here, when the ith particle satisfies the spall criteria, Eq. (4.1), a
spall void will be nucleated at the location of this particle. As
shown in Fig. 2, the ith particle is split into 4 particles: ith,
Numnp + 1st, Numnp + 2nd, Numnp + 3rd (Numnp is the total
number of particles in the current computing domain) along the
x- and y- axes separately.

The spall void is viewed as an empty cavity inside the solid
shown as the shadow region in Fig. 2. In meshfree simulation, each
particle is associated with a finite volume vi, here we assume this
original particle volume as the total volume of RVE, hence, the off-
set value of spall quadrangle d is:



Fig. 2. Schematic illustration of void nucleation algorithm.

Fig. 3. The scheme of Parametric Visibility Condition.
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d ¼
ffiffiffi
2
p

2

ffiffiffiffiffiffiffi
v if

p
: ð4:3Þ

The mass and volume of these four particles are re-assigned accord-
ing to the following algorithm to keep the mass and volume
conserved:

Massnew
i ¼ 1

4
Massold i ¼ 1;2;3;4; ð4:4Þ

Volumenew
i ¼ 1

4
Volumeold i ¼ 1;2;3;4; ð4:5Þ

where the Massold and Volumeold are the original mass and volume
assigned to ith particle before void nucleates.

The kinematic field variables, such as displacements, velocity,
and accelerations of the new particles are assigned following algo-
rithm to keep the energy conservation:

Dispnew
i ¼ Dispold þ d i ¼ 1;2;3;4; ð4:6Þ

Velnew
i ¼ Velold i ¼ 1;2;3;4; ð4:7Þ

Accnew
i ¼ 0:0 i ¼ 1;2;3;4: ð4:8Þ

The meshfree interpolation relies on a local connectivity map to
associate one particle with its neighboring particles, shown as Ci

and Cj for ith and jth particles in Fig. 2.
After the void is formed by these 4 particles, one has to develop

a numerical algorithm that can automatically modify the local con-
nectivity map around the void. The following parametric visibility
condition is used in the simulation to modify the local meshfree
connectivity map to reflect geometric change of domain due to
void nucleation.

The detail of parametric visibility condition algorithm is de-
scribed in Simkins and Li [21], Simonsen and Li [30]. Figuratively
speaking, the spall void inside solid can be demonstrated as a spe-
cific wall-zone. A material point at one side of the wall can not
‘‘see’’ the material points in the other side. This principle is termed
as, ‘‘visibility condition’’. To determine whether or not two mate-
rial points are separated by a solid discontinuous gap, one can
check whether or not the line segment connecting two material
points intercept that gap. However, the algorithm for line segment
intercepting a spacial area (the shadow area in Fig. 2) is complex. In
this paper, we only test a line segment with two diagonals of void
quadrangle equivalently.

For a single spall void, one only needs to check and update
interpolation fields of the nodes which located inside the sup-
ported circle shown as Ci in Fig. 2. For such a particle labeled as
jth in Fig. 2, its supported circle is Cj, then one needs to test all line
segments which connect particle jth and its supporting particles
with visibility condition.

Suppose that we want to modify connectivity relation between
particle (X11,Y11) and the rest of particles inside Cj. We denote an
arbitrary point inside Cj as (X12,Y12) and the vertexes of one of
the diagonals as (X21,Y21) and (X22,Y22). The parametric equations
of the straight line that connects points (X11,Y11) and (X12,Y12) are:

X ¼ X11 þ k1DX1; ð4:9Þ
Y ¼ Y11 þ k1DY1; ð4:10Þ

where k1 is the parametric variable and:

DX1 ¼ X12 � X11; ð4:11Þ
DY1 ¼ Y12 � Y11: ð4:12Þ

On the other hand, the parametric equations for the straight line
that connects two vertexes of any one diagonals of void quadrangle
are:

X ¼ X21 þ k2DX2; ð4:13Þ
Y ¼ Y21 þ k2DY2; ð4:14Þ

where k2 is the parametric variable and:

DX2 ¼ X22 � X21; ð4:15Þ
DY2 ¼ Y22 � Y21: ð4:16Þ

If the two line segments intercept each other, the following Para-
metric Visibility Conditions have to be satisfied:

0 6 k1 6 1 and 0 6 k2 6 1: ð4:17Þ

These parametric visibility conditions are illustrated in Fig. 3. If both
parametric visibility conditions are met, then the line segment be-
tween two arbitrary points inside Cj will be intercepted by the new-
ly formed spall void, and hence one should disconnect the
interpolation connections between these two points.

We can use the same algorithm to test both diagonals of spall
quadrangle. If the segment (X11,Y11) and (X12,Y12) are intercepted
by one of diagonal segments, one can say that segment is inter-
cepted by that spall void. In other words, one point should be re-
moved from the connectivity map of the other point, and it then
ensures that there is no cross-void interpolation. The evolution of
interpolation field of a meshfree particle by void nucleation is illus-
trated in Fig. 4. Fig. 4(a) shows the interpolation field of a meshfree
particle (the center of high value zone), after a quadrangle cavity is
nucleated, the interpolation fields of the new four particles (the four
vertexes of cavity) are shown in Fig. 4(b). It can be seen that there is
no interpolation field going through the cavity space, and one can
say the shadow area in Fig. 2 is a physical cavity inside solid.



Fig. 4. Change of meshfree interpolation field around a nucleated void.

Fig. 5. Schematic illustration of void growth algorithm.
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4.2. Void growth algorithm

Recently, Wright and Ramesh [36] utilized the average kine-
matics variables of an RVE to formulate a micro-mechanics based
spall void growth criterion, and Vogler and Clayton [35] have ap-
plied cohesive finite element method to simulate the spall mecha-
nism based on the different grain orientations. Nevertheless, up
until today, the mechanism of spall fracture is still not very clear,
besides most people agree that the spherical tensile stress inside
solid is the primary factor to drive the spall growth. Therefore in
this work, to carry out a macroscopic engineering simulation of
spall phenomena, we simply use the spherical stress of PK-II as
the main variable to estimate the spall void growth process. We as-
sume that when the spherical stress of a particle near a vertex of a
spall void exceeds a critical value, the vertex of the spall void will
propagate to this specific particle. This criterion can be described
by following expression:

pj > pcr; ð4:18Þ

where pcr is the critical value that controls the process of spall void
growth.

In reality, the potential expansion direction of a spall void is the
normal direction of void surface, and the shape of the spall voids is
probably a sphere in three dimensional space and a circle in two
dimensional space. However, just as we use quadrangle instead
of the circle shape voids to nucleate a new void, in the meshfree
simulation, we simply assume that the spall void growth directions
are localized at the four vertexes, and each vertex is attached to a
meshfree particle. Therefore, each vertex expands in a quarter fan
from the original particle position, as indicated as I, II, III, IV quad-
rant in Fig. 5.

Fig. 5 gives an illustration that if the vertex of quadrangle satis-
fies the void growth criterion, Eq. (4.18), the vertex will then prop-
agate to another particle. For example, the vertex (particle No.
Numnp + 3) propagates to particle jth inside the IV quadrant at
current time step. Therefore, the current spall void shape is shown
as a polygon with particles: ith, Numnp + 1-th, Numnp + 2-th,
Numnp + 3-th, j-th, Numnp + 4-th. And the current spall void has
four potential growth vertexes as i-th, Numnp + 1-th, Numnp + 2-
th, and jth in the next time step. From Fig. 5, we can find that
the old vertex is split to two particles (Numnp + 4-th and
Numnp + 3-th). For each vertex, the spall growth algorithm is ex-
actly the same as the crack propagation algorithm proposed by
Simonsen and Li [30], and we use the same algorithm for crack
growth, which can keep mass and energy conserved.

After carrying out the particle splitting algorithm, the connec-
tivity of meshfree interpolation has to be updated in order to form
a cavity space in meshfree simulation domain. To do so, we can use
the same Parametric Visibility Condition algorithm described in
Section 4.1 to update interpolation field of particles near each
new vertex. Comparing with the visibility condition algorithm for
spall nucleation, here we only need to test the interpolation con-
nectivity between two particles with the line segment that connect
the new vertex and the middle point of new split particles shown
as line segment k � j in Fig. 5.

4.3. Void coalescence algorithm

In this work, the spall void growth is through the process of void
coalescence. In the following, we describe a meshfree void coales-
cence algorithm.

We assume that when the vertex of one spall void propagates to
a vertex of another spall void, these two spall voids will be coa-
lesced to form a bigger void as shown in Fig. 6(a) and (b).

When two spall voids coalescence, the two closest vertexes, the
ith and jth particles in Fig. 6(a), of spall voids will be split into two
particles as shown in Fig. 6(b). The particle split algorithm is sim-
ilar with the spall nucleation algorithm described in Section 4.1.
The physical properties of new two particles will be assigned
according to the following rules:



Fig. 6. The illustration of spall void coolescence algorithm.
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Massnew
i ¼ 1

2
Massold i ¼ 1;2; ð4:19Þ

Volumenew
i ¼ 1

2
Volumeold i ¼ 1;2: ð4:20Þ

The kinematic field variables, such as displacements, velocity, and
accelerations of the two new particles are assigned as:

Dispnew
i ¼ Dispold þ d i ¼ 1;2; ð4:21Þ

Velnew
i ¼ Velold i ¼ 1;2; ð4:22Þ

Accnew
i ¼ 0:0 i ¼ 1;2: ð4:23Þ

After particle splitting, the two dashed line segments, which are lo-
cated in the middle of new split particles in Fig. 6(b), are used to up-
date the interpolation connectivity of the meshfree particles near
the split particles by using the Parametric Visibility Condition algo-
rithm described in Section 4.1. In this particular case, the polygon
cavity in Fig. 6(b) represents a bigger spall void.

To demonstrate the meshfree void nucleation, growth and coa-
lescence algorithm described in this section, a numerical simula-
tion of a flyer/specimen impacting process is carried out to show
how the meshfree spall fracture algorithm to capture the spall frac-
ture phenomena qualitatively. In this example, the dimension of
the target specimen is 50 mm � 7 mm; and the dimension for
the flyer is 50 mm � 2 mm. In this work, the flyer is treated as a ri-
gid body, and the target specimen is modeled as a thermo-elasto-
viscoplastic solid, the detailed formulas of the constitutive model
as well as the material constants are chosen exactly the same as
that in Li and Simonsen [19]. In the simulation, the impact speed
of the flyer is set at 80 m/s. For the spall strength formula, we
choose the experimental date for stainless steel from Antoun
et al. [2], which are: A = 0.65 GPa, m = 0.11; and the critical spall
strength of void nucleation and critical spherical stress of void
growth are simply set as: 2.4e8 GPa the same as in the literature,
which will make voids coalescence easily. The simulation result
is shown in Fig. 7. In the numerical example calculated, there are
237 voids nucleated over the entire process, and these voids merge
together with each other at the growth phase. Finally, all these
individual voids are coalesced into one macros crack. Fig. 7(b)
shows that the stress is released at the crack surface, which implies
that a physical surface separation is formed inside solid success-
fully. This case demonstrates that the proposed meshfree algo-
rithm indeed works well.
5. Numerical simulations

5.1. Simulation model

Numerical simulations have been performed to validate the
method proposed in this work. To compare with the experimental
data, we choose to simulate an impact test problem that was car-
ried out by Kanel [16]. The simulation set-up is the same as the
experiment, and the specimen-flyer impact system is depicted in
Fig. 8. In the experiment, the specimen material is Ti–6Al alloy,
the flyer is an aluminum-alloy plate, and it was launched with
velocity of 600 ± 10 m/s to impact the side edge of the specimen.
To simplify the simulation problem, we set the flyer as a rigid plate,
but its density is still taken the same as the aluminum-alloy plate
used in the experiment. For a high speed contact-impact problem,
the error induced by this simplification is under tolerance level. In
this paper, we do not discuss the meshfree contact algorithm used
in the simulation. The readers who are interested in the meshfree
contact algorithm can consult Li et al. [20] for details. One of the
main reasons for choosing Ti–6Al alloy’s experimental data to com-
pare with the simulation is because its material properties are well
documented in literature.

First, Ti–6Al alloy has been carefully matched with the Johnson–
Cook model by many research groups, e.g. Lee and Lin [18], Meyer
and Kleponis [25], Seo et al. [32]. We choose the latest J–C material
constants for Ti–6Al alloy reported by Dorogoy and Rittel [7]. This
is because they used the shear compression specimen (SCS) in the
experimental test to obtain material parameters. Considering the
fact that the main factor that drive fracture in ductile material is
shear stress, their data is more relevant to this simulation. The
material constants chosen for this simulation are listed in Table 1.
Second, for spall strength calculation, the material constants of Ti–
6Al alloy are taken from the monograph by Antoun et al. [2], which
are listed in Table 2. There is no explicit data reported in literature
for the minimum critical spall strength obtained in shock wave im-
pact experiments (see Eq. (4.1)). However, according to the log–log
line about strain rate-spall strength in Antoun et al. [2] (Fig. 5.3, p.
144), we choice the minimum spall strength for Ti–6Al as 2.3e9 Pa
based on linear extrapolation. Moreover, there is no experimental
data reported about the critical tensile spherical stress, which gov-
erns the spall crack growth too. To obtain the critical tensile spher-
ical stress, in this simulation, first, we simulate the impact system



Fig. 7. A simulation of spall fracture by using meshfree void-growth algorithm.

Fig. 8. The dimension of computation configuration.

Table 1
Material parameters of the Johnson–Cook model for Ti–6Al alloy.

Parameter Value Definition

E 113.8 GPa Young’s modulus
m 0.342 Poisson’s ratio
q 4430 kg m�3 Mass density
A 880 MPa Yield stress
B 695 MPa Strain hardening
n 0.36 Strain hardening index
_�0 1.0 s�1 Reference strain rate

m 0.8 Temperature softening
Cp 526 J (kg K)�1 Specific heat
a 32.0 � 10�6K�1 coefficient of thermal expansion
v 0.9 The fraction of plastic work converted to heat
k 6.7 Wnm � k Thermal conductivity
T0 300.0 K Room temperature
Tm 1900.0 K Melting temperature

Table 2
Spall constants of Ti–6Al alloy.

Parameter Value Definition

A 0.39 GPa Parameter1
m 0.19 Parameter2

Fig. 9. Free surface velocity profile of experimental and numerical result for Ti–6Al
alloy.
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without spall fracture, then at the moment when the spall crack
initiates under the mimic experiment condition, we measured
the numerical tensile spherical stress. The spherical stress mea-
sured in numerical experiment is close to 4.0 GPa. Hence we sim-
ply choice a critical sphere stress (see Eq. (4.1)) as 4.0 GPa.



Table 3
The compare with experiment and simulation.

U0 Um DUfs Up

Value (m/s) Time (ls) Value (m/s) Time (ls) value (m/s) Value (m/s) Time (ls)

Experiment 360.0 2.04 77.0 2.7 283.0 240.0 2.95
Numerical 364.0 2.25 140.0 2.65 224.0 228.0 2.9

1 For interpretation of color in Fig. 10, the reader is referred to the web version of
this article.

B. Ren et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 797–811 807
In the actual meshfree simulation, 12,000 particles are uni-
formly distributed in the whole computational domain. For
12,000 global meshfree interpolation functions, we have used
46,644 Lagrangian quadrature points for numerical integration.
The simulation is conducted by using one blade of a SuperBlade
cluster system with 8 CPU: Intel (R) Xeon (R) E5405@2.00GHZ
(X8), RAM:1.5 GB. The computing response time is 5.0 ls, the com-
puting time is 3.35 h.

5.2. Simulation details

The current experimental approach cannot record the dynamic
history of particles inside a solid at small scale. Therefore, the free-
surface-velocity history at the side edge opposite to the contact
surface edge is widely used to investigate the spall behavior (see
[2,16]) as a means for indirect measurement. It is believed that
the free surface velocity history may provide some clue for the his-
tory of the stress wave inside a solid. After the compressive stress
reaches to the free surface, a tensile stress starts to propagate to-
wards the impact side of the plate. First the free surface velocity
reaches peak point (U0) and begins to unload. When the tensile
stress exceeded spall strength, spall voids begins to nucleate and
accumulate in the damage zone. As the main feature of spall frac-
ture, the damage zone is located inside material specimen, and its
formation is strongly affected by the presence of the boundary, or
in other words, multi-dimensional boundary effect will signifi-
cantly affect shape and location of the damage zone as well as
the void distribution inside the zone.

As the result of complex interaction between free surface and
compressive wave pulses, a compressive disturbance called ‘‘spall
signal’’ appears on the free surface velocity history, (see Fig. 9).
In experimental approach, the DUfs, shown in Fig. 9, is an important
value to determine spall strength:

Ufs ¼ U0 � Um; ð5:1Þ

where, Um is the free surface velocity just before the arrival of the
spall signal.

The experimental data for free surface velocity obtained from
Kanel [16] and the numerical simulation result obtained from
our simulation are compared in Fig. 9. Because the experiment ap-
proach cannot trace the moment of contact, we juxtapose the
experimental curve and numerical curve at the time point where
the compress wave reaches at free surface, i.e., the velocity begins
rising. And in Fig. 9, numerical result is the velocity history of the
middle point of the free surface. The main features of free surface
velocity of experiment and numerical results are compared in Ta-
ble 3, here Up is the peak point of spall signal.

One may find that in the early period before spall void nucleates
(the first wave), there is a small offset or phase error between the
numerical and experimental wave shapes, which result in a 0.19 ls
delay of numerical U0, see Table 3. We think that this error may
come from three sources: (a) the approximation made in the mesh-
free contact algorithm used in the simulation [20]; (b) the phase
error of shock wave simulation due to meshfree spatial discretiza-
tion, and (c) the flyer is taken as a rigid body in numerical simula-
tion. For ultra-high speed contact and impact problems, how to
find a realistic contact force is pragmatic in the current meshfree
algorithm, and it is still a challenge to find an accurate contact
force under such conditions in numerical simulations. On the other
hand, all discretization based numerical methods introduce
numerical pollution when simulating high frequency wave propa-
gations. A manifestation of such numerical pollution is the phase
error of the numerical solution. Thus it is highly possible that in
this case the spatial particle density simply does not have enough
resolution to capture the high frequency oscillation at the shock
front. Last source that may introduce numerical error may be
due to the rigid body modeling of the flyer. That approximation
may also induce phase error in number of different ways for im-
pact and reflection waves during the simulation. The actual error
may be the combination of these three sources and their
interactions.

Physically, the spall fracture is a multiscale problem, though in
this work we only used the average properties of RVE to derive the
macro-scale formulas for spall fractures, this approximation may
lead to differences in Ufs between the numerical simulation and
experimental measurements. From the engineering application
standpoint, the results of numerical simulation and experimental
measurement fit each other well at void nucleation phase, i.e. the
voids nucleate at the right location and right time. During the
ensuing void growing phase, the numerical results do not fit well
with the experimental data. A possible reason for this is because
of that in this work we do not take into account the kinematics
and the dynamics effects of the void growth.

The time sequence of the numerical simulation is shown in
Fig. 10. When the flyer impacts the specimen, a pulse of compres-
sion stress wave (the blue1 region in Fig. 10(a)) is formed by the
contact force. The shock wave propagates towards the free surface,
and it arrives at free surface at t = 2.1 ls (as shown in Fig. 10(b)).
Then the free surface starts to unload, and a reflection tensile wave
(the red region in plots) propagates back to the impact side of the
specimen. That tensile stress nucleate spall fracture at t = 2.35 ls,
shown in Fig. 10(c). In this simulation, the nucleation phase goes
on from 0.3 ls to t = 2.65 ls, as shown in Fig. 10(d) and (e). Then
the spall voids begin to grow under the spherical tensile stress
momentarily, the spall void growth phase begins at t = 2.85 ls and
ends at t = 3.0 ls, as shown in Fig. 10(f) and (g). The final profile of
spall fracture is shown in Fig. 10(h) at t = 5.0 ls.

Zooming in the damage zone, we can find the spall voids are
nucleated where is closed to the top and bottom sides of specimen
in the first, subsequently they tend to form at the middle section of
specimen, as shown in Fig. 11(a) and (b). During the spall voids
growth phase, the volumes of voids increase, and they may coa-
lesce each other to form a bigger void, a detailed morphology is
shown in Fig. 11(c).

Although spall phenomena is a complex multiscale process, and
it is affect by many factors ranging from loading conditions, mate-
rial heterogeneity, to mesoscale microstructure such as grain
boundary, all existing work in the literature point out that the ten-
sile spherical stress is the main factor that drives spall fracture.
Nevertheless, this still cannot explain when and where the spall
void will start to nucleate.



Fig. 10. The dynamics of spall fracture driven by tensile stress,shown as spherical stress.

Fig. 11. Details of spall fracture morphology.
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To discuss the possible mechanism of spall fracture, we mea-
sure and record the history of the spherical stress p of the second
Piola–Kirchhoff stress with time at a material line located in the
middle section of the specimen along the vertical direction, as
shown in Fig. 8 (the dashed line). The results of spherical stress
is illustrated in Fig. 12. In Fig. 8, the contact surface is located at
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horizontal position 0.0 mm, and the free surface is at horizontal
position 11.2 mm. At t = 1.1 ls, Fig. 12(a), we can find there are
several compressive waves (shown as wave I, II and III) inside solid,
which is induced by the dynamical contact process. These com-
pressive wave pulses propagate towards free surface. At
t = 1.7 ls, Fig. 12(b), the front of wave pulse I reaches to the free
surface, and it begins to reflect from free surface, with wavelength
k1, here, the wave pulse II has wavelength k2. At t = 2.4 ls,
Fig. 12(c), the front of wave pulse II reaches to the free surface,
and it begins to reflect. At this time, the wave pulse I has been re-
flected completely, and has begun to propagate towards contact
surface. Therefore, at t = 2.5 ls, Fig. 12(d), there are two tensile
Fig. 12. The spherical stress pr
wave pulses move in opposite directions. The peak values of these
two tensile waves will superpose each other at t = 2.65 ls to form a
high tensile spherical stress plus, Fig. 12(e). This combined high
spherical tensile stress amplitude may initiate the spall fracture in-
side the solid. At t = 2.9 ls, Fig. 12(f), this high tensile zone will be
split by the spall voids.

So far most of the results on spall fracture are based on a postu-
late derived from experimental observation that the spall damage
is induced by the stack of the reflected tensile wave from the free
surface specimen and flyer e.g. Antoun et al. [2]. Based on our sim-
ulation results, we think that the high-speed impact of deformable
objects is a transient event, and the contact time between the flyer
ofile inside the specimen.



Fig. 13. The temperature distribution after spall damage.
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and specimen is finite. The tensile wave from flyer may be hard to
transfer through the interface between flyer and specimen. During
this simulation, we find that the difference of reflection time of
compressive wave I and wave II may generate a high tensile spher-
ical stress plus inside solid. It appears that there are two positive
wave pulses collide as shown in Fig. 12(e), and the combined
amplitude is higher than the initial reflected wave I pulse (see
Fig. 12(d)). Moreover, it appears that the spall voids nucleate at
the location where these ‘‘positive wave pulses’’ collide. First this
phenomenon indicates that the second wave pulse has been ele-
vated into a tensile wave pulse before it even reaches to the free
surface. This phenomenon may be hard to find by experimental
observation because of the limitation of the current experimental
technology. To the best of the authors’ knowledge, this phenome-
non is first reported in numerical simulations.

We tend to believe that the elevation of the second wave pulse
to a tensile wave pulse (before it reaches to the free surface) may
be due to a complex interaction with the reflected first wave pulse.
During this event both its amplitude and its phase may have chan-
ged during a non-linear inelastic wave collision. This sets up a
stage for ‘‘two tensile wave’’ collision, which leads to a new high
on spherical tensile stress in the solid.

In general during plastic deformation, the plastic work converts
to heat that induces heat softening. The temperature profiles of the
specimen are shown in Fig. 13. Fig. 13(a) shows the moment when
the spall damage process nearly finished (t = 3 ls), and Fig. 13(b)
shows the moment when the spall damage has finished for a while
(t = 5 ls). During this period, the high temperature is mainly lo-
cated at the contact surface, and there is no sharp high tempera-
ture region near the spall damage zone, which means that the
plastic deformation may not affect the spall damage much, because
spall fracture is a transient dynamic phenomena, and during the
process, there is no large scale plastic deformation accumulated
at where the spall fracture occurs.

6. Discussions

Simulation of spall fracture is a challenge in computational fail-
ure mechanics. In this work, we have presented a phenomenolog-
ical two-scale micro-mechanics formulation to describe the
kinematics of spall void formation and evolution, and we have
developed a meshfree method to simulate spall void growth and
coalescence.

Comparing with experimental data, the numerical results ob-
tained in the simulation show that the proposed method can sim-
ulate the spall phenomena well.
To describe the complex multi-scale spall fracture, we have first
developed a formula for macro spall strength, which is related to
kinematic measures of micro spall void based on an empirical
equation; then we built the correlation relations between the mi-
cro kinematic quantities of spall void and the macro dynamics
quantities; Second, we have developed an explicit thermal–
mechanical constitutive update with the Johnson–cook model for
the high strain rate ductile deformation; Third, we have proposed
novel meshfree algorithms of spall void nucleation, growth and
coalescence in a solid. These meshfree algorithms can automati-
cally generate cavity or spall void inside a solid based on pre-
scribed physics criteria. Finally, a Ti–6Al flyer/specimen impact
process is conducted to investigate the mechanism of spall frac-
ture. Based on the numerical results obtained, we have found that
there is a strong and complex interaction between the first two
inelastic wave pulses near the free-traction surface. Such an inter-
action will create a collision between the peaks of the first reflected
wave pulse with the elevated second in-coming wave pulse. The
superposition of these two wave peaks creates a maximum tensile
state that may be the mechanism for spall fracture in ductile
materials.

This paper is both an original research and an on-going research
to simulate the spall fracture in ductile materials. There are some
other issues to remain to study, such as the mechanism of spall
void expansion and how to simulate it. In the future work, a meso-
scale to macroscale void growth model is to be developed in three-
dimensional space in order to capture the complete multiscale fea-
tures of spall fracture.
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