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SUMMARY

Recent development in the multiscale method based on the bridging scale concept is presented with an
emphasis on complex material systems. The bridging scale method (BSM) was originally proposed by
Wagner and Liu (J. Comput. Phys. 2003; 190:249–274) as an effective way of treating the interface
in coupled atomistic/continuum simulation. Since its publication, the BSM has become a very useful
paradigm that has been applied to solve a host of problems in mechanical sciences of complex material
systems. In this paper, we present a review on the recent developments. We first describe the application
of BSM to the coupled atomistic/continuum simulation of dynamic fracture. The important extensions
within the framework of space–time method and multiscale non-equilibrium molecular dynamics are
then presented. We then focus on the multiresolution continuum theory that inherits the BSM concept
in the analysis of heterogeneous material structures. Recent work of incorporating statistical factors into
this model based on the concurrent nested homogenization of randomness of the material structures is
highlighted. Finally, we present the use of the bridging scale concept in resolving the electron-mechanical
coupling mechanism. The robustness of the BSM is demonstrated through many benchmark problems and
application examples. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The field of multiscale design for the new generation of material systems is rapidly advancing. In
particular, there is a continuing interest in studying the structure–property relations in engineering
materials with constituents that span over multiple spatial scales. For these type of material systems,
the direct use of simulation tools such as quantum mechanics [1], molecular dynamics [2], or
continuum methods [3] is facing difficulties due to the limited range of scales that each model
is capable of addressing. In contrast, the hierarchical structure of the material often involves
components that are defined at the micro- or even nano-meter length scales [4–8].

To circumvent the computational expense issues, models based on homogenization theory have
been developed. The basic idea is to derive homogenized properties by studying the essential
features of the underlying microstructures [9]. A so-called representative volume element (RVE) is
extracted based on the periodicity of the material structure. The equivalent continuum models are
then developed using a hierarchical approach. In a typical setting, one starts with the finest scale
and proceeds to coarse grain the material behavior at that scale to arrive at the next upper coarse
scale. Through successive up-scaling, the final continuum model is obtained with an embedded
representation of fine scale effects such as those due to dislocation, void nucleation and growth,
grain boundary formation and migration, etc.

While the periodicity assumption has been used as an important condition for deriving the
RVE, it is not always valid when there is localized deformation within the microstructure or new
interfaces are forming due to phase transformation. In these cases, the RVE-based homogenization
approach may result in large discrepancies. As such, the important material behaviors that are
due to the inherent inhomogeneity cannot be fully accounted for. This leads to further errors in
predicting important material properties and performance.

In light of the difficulties associated with the use of the homogenization theory alone, a number
of hybrid approaches that combine direct numerical simulations (DNS) and homogenization theory
have been developed. Typically, DNS will be applied in the regions of the domain where homog-
enization gives poor predictions. Representative examples of this approach include the use of
multiscale Hamiltonian [10], multigrid method [11], Green’s function [12], quasi-continuum (QC)
model [13], generalized Langevin equation [14–16], Arlequin coupling method [17, 18], the bridge-
domain method [19, 20] and many others. Owing to limited scope, we will not present detailed
review on each of the methods. In many of these methods, the atomistic simulation is limited
to particular regions of interest and the coupled analysis is limited to nanoscale structures and
materials (e.g. carbon nanotubes (CNT)) [21, 22].

An alternative approach to consider the heterogeneous material effect is to extend the conven-
tional continuum mechanics theory. A classic example of this ‘top-down’ approach is the incor-
poration of the geometric necessary dislocation effects in the strain gradient theory [23, 24] based
on experimental observations [25]. Because of the intrinsic length scale that is part of the material
model parameter, numerical simulation using strain gradient model does not suffer from the mesh
dependency problem in modeling shear bands and fractures that arises with the use of classical
plasticity models. Such a length scale was also incorporated in the bridging scale method (BSM)
approach developed by Kadowaki and Liu [26] based on the micromorphic continuum theory [27].
While the original work was targeted at modeling localized deformation in granular materials,
further extensions to a three-scale decomposition model have been made in McVeigh et al. [28] in
modeling high-strength steel. More recently, a stochastic multiscale modeling approach [29–34]
has been established.
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The main objective of this paper is to review the BSM and its application to the analysis of
nanostructured and heterogeneous materials. In addition, a general multiscale theory for heteroge-
neous materials, called multiresolution continuum theory (MRCT), has been recently proposed by
Liu and coworkers [35–38] as a complement to the BSM. We will highlight some of the recent new
development of this theory for multiscale material design, including the statistical multiresolution
continuum analysis. The MRCT is based on concurrent nested statistical averaging homogeniza-
tion of the fine scales within a single mesh discretization, and it involves scale coupling modeled
through the introduction of additional degrees of freedom. This theory eliminates the need of wave
elimination techniques that are characteristic of the BSM. Another major new development is the
formulation of the bridging scale concept within the space–time framework and application of the
BSM to the study of non-equilibrium phenomena. Recent developments in these two aspects are
also presented. The remainder of the paper is organized as follows: a review on the BSM is first
presented with a historic account of the development. We then proceed to discuss the application of
this method for modeling material failure. After presenting the bridging scale treatment within the
space–time framework and its extension to the study of non-equilibrium phenomena and hetero-
geneous material design, we focus on the MRCT. Our study based on statistical multiresolution
continuum analysis is highlighted as a new direction of this approach. Finally, coupled electron-
mechanical analysis based on the BSM is discussed. Conclusions are made based on a summary
of the state-of-the-art development and future directions.

2. AN OVERVIEW OF THE INTERFACE TREATMENT IN COUPLED
ATOMISTIC/CONTINUUM SIMULATION

2.1. Governing equations

We consider a system of atoms that are governed by the Lagrangian equations [2]

d

dt

�L
�ṙi

− �L
�ri

=0, i =1,2, . . . ,N (1)

in which, ri = (xi , yi , zi ) is the position vector of atom i , and N is the total number of simulated
atoms. The system’s Lagrangian acquires the form:

L=
N∑
i=1

mi ṙ2i
2

−U (r1,r1, . . . ,rN ) (2)

in which the two terms on the right-hand side give the system’s kinetic and potential energy,
respectively. Combining Equations (1) and (2) yields the equations of motion in the Newtonian
form,

mi r̈i =−�U (r1,r2, . . . ,rN )
�ri

≡Fi , i =1,2, . . . ,N (3)

The force Fi is usually referred to as the internal force, i.e. the force exerted on atom i due
to specifics of the environment it is exposed to. Equation (3) is solved for a given set of initial
conditions to get trajectories of the atomic motion in the simulated system.
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2.2. A brief historic account on interface treatment

As mentioned in the introduction, obtaining direct solution to Equation (3) is what we referred to
as the DNS approach. Performing DNS for complex material system is prohibitally expensive. An
alternative is then to develop hybrid approaches that combine DNS with a coarse-grained approach
such as finite element method (FEM). In this implementation, a key issue is the treatment of
the numerical interface due to the presence of different simulation techniques used in different
domains. Earlier implementation of coupling finite element (FE) with molecular dynamics and
statics is featured by an FEM mesh refinement process to the atomic resolution at this interface.
Correspondingly, the nodal and atomistic DOFs are enforced to be the same at the interface, i.e.

x� =
N P∑
I=1

NI�dI =d� (4)

where x� is the degree-of-freedom of the �th atom and NI� is the shape function defined at the I th
FEM node and evaluated at the location of the �th atom. The terms dI and d� represent the nodal
and atomic degrees of freedom, respectively. The last term is simply the nodal degree-of-freedom
that corresponds to the �th atom. Although the summation in Equation (4) is performed over the
total number of nodes NP, numerical implementation often involves a local sum due to the local
support of the FEM shape function. This approach has been employed in the simulation of brittle
fracture [39–41]. Another major class of method that adopts this approach is the QC method [42].
In the QC method, representative atoms are selected to be the nodes of FEM and full atomistic
resolutions are employed in the regions that are governed by the fine scale physics such as defects,
dislocations and fractures.

Holian and Ravelo [43] reported that the sound wave generated from the crack simulation using
the direct handshake approach makes the prediction unreliable. To resolve this issue, they proposed
to include a viscous damping term in the equation of motion. Compared with the original equation
of motion (Equation (3)), the revised version is given as:

mi r̈i =Fi −�

(
1− T0

T

)
mi ṙi , i =1,2, . . . ,N (5)

Equation (5) can be implemented based on the Berendsen thermostat [44]. Here � is the damping
rate at zero temperature, T0 is the temperature of the thermal bath and T is the instantaneous
kinetic temperature. If Equation (5) is applied to all the atoms within the simulation, it has been
shown that the nature of the crack could switch between brittle and ductile when different values
of � are used. Further extension of this method is presented in [5, 45] in which the viscous damping
is only applied at the interface.

Based on the generalized Langevin method developed by Adelman and Doll [46, 47], Cai et al.
[48] proposed an extension of this approach to couple the atomistic simulation to a linear elastic
system. The goal is to eliminate the wave reflections arising at the numerical interface. In 1D
version, the basic formulation of this method can be expressed as follows:

mi ẍi =−�U
�xi

+
∫ t

0

N∑
j=1

�ij(�)ẋ j (t−�)d�+
N∑
j=1

�ij(�)x j (0)+Ri (t) (6)

in whichU is the system potential. Equation (6) degenerates to the case of pure atomistic simulation
if the last three terms on the RHS of Equation (6) are neglected. The wave reflection is minimized
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mainly through the second term on the right-hand side, which provides energy dissipation through
viscous damping. The term � is called a time-history kernel: it represents the time-history effect of
the atoms in the linear elastic region on the atoms in the simulation region. The third term denotes the
effect due to the initial conditions. The last term mimics the energy exchange between the atomistic
and elastic region due to the random thermal fluctuations. The computational implementation for
Equation (6) can be regarded as a dynamic Green’s function approach in that it seeks to provide the
interfacial boundary conditions for the atomistic simulation by analytically solving the molecular
dynamic equation under linear assumption. E and Huang [49] pointed out that the dynamic Green’s
function derived in [48] is expensive to compute due to its non-local nature in both space and time.
As an alternative, they proposed to minimize the reflection of the wave at the interface R, which
can be defined as the ratio between the incoming and outgoing waves. It was then expressed in
terms of coefficients associated with the frequency � and the wave number �, i.e.

R= R(�,�) (7)

Analytical expressions for linear system were derived based on different orders of expansions
in [49, 50]. The implementation of this interfacial treatment in the coupled atomistic/continuum
simulation setting was demonstrated in [49, 50] in which it was shown that the artificial wave
reflection can be minimized as expected.

3. THE BRIDGING SCALE APPROACH AND EXTENSIONS

3.1. Coarse–fine scale decomposition

While all the approaches outlined in the last section have had some success in designing a seamless
interface, one problem that has not been directly addressed is the multiple spatial and temporal
scales that generally arise from the mechanics or physics of the application. Motivated by this gap,
the BSM was first developed by Wagner and Liu [51] to couple atomistic and continuum scales
in the context of dynamic simulations. The main feature of BSM is its ability to handle high-
frequency wave propagation in dynamic problems. It seamlessly eliminates the spurious numerical
interface phenomena arising at the interfaces between scales that heavily affect other multiscale
methods. One important characteristic of the method lies in the concurrent coupling between the
scales, which means that the solutions of the two scales are assumed to exist simultaneously over
the computational domain, and in a set of back and forth information exchanges between scales,
even if the atomistic calculations are explicitly performed only inside a defined fine scale region.
The fundamental idea of the method is to decompose the total displacement field u(x, t) into a
coarse scale and a fine scale contribution:

u(x, t)= ū(x, t)+ ũ(x, t) (8)

where ū(x, t) is the coarse scale approximation of the solution, whereas ũ(x, t) is called the
enrichment, and is defined as the part of the total solution that has a vanishing projection onto
the coarse scale. The coarse scale solution can be interpolated by basic FE or meshfree shape
functions [52–54].

In an FE sense, the coarse scale solution can be expressed as ū=Nd, where d is an array of
coarse scale FE generalized degrees of freedom and N is a matrix of shape functions evaluated at
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the atomic locations. If ūi represents the interpolation of the coarse scale FE solution d j at a fine
scale nodal location xi through the shape function N j (xi ), the following holds:

ūi =
nc∑
j=1

N j (xi )InDd j (9)

where nc defines the number of nodes in the coarse scale mesh and InD is an identity matrix of
size nD, with nD denoting the number of degrees of freedom per node. The enrichment can be
expanded as ũ=Qq, where q is an array of fine scale degrees of freedom obtained from atomistic
calculations, and Q= I−P, where P is the projection operator that minimizes a selected error
metric, typically the mass-weighted square of the fine scale solution, which is written as

J =
nf∑

�=1
m�

(
q�−

nc∑
i=1

Ni (x�)wi

)2

(10)

where m� is the mass of the � atom, nf is the total number of atoms in the domain and wi are
temporary coarse scale degrees of freedom. Wagner and Liu [51] showed that P=NM−1NTMA,
where MA is a diagonal atomistic mass matrix and M is the consistent FE mass matrix. It is
important to point out that the method can also be used in a purely continuum mechanics scenario
to couple simulations performed on meshes with different levels of refinement [26, 55]. In this
case, the atomistic simulation is replaced by a second FE simulation performed using a fine mesh
and the array q contains the generalized nodal degrees of freedom of the fine scale FE solution.

3.2. Multiscale equations of motion

The coupled equations of motion for the two scales can be derived by constructing the Lagrangian
L, defined as the difference between kinetic and potential energy:

L(u, u̇)=K (u̇)−U (u) (11)

Following Lagrange’s equations:

d

dt

(
�L
�ḋ

)
− �L

�d
= 0

d

dt

(
�L
�q̇

)
− �L

�q
= 0

(12)

The following coupled multiscale equations of motion are obtained for the homogeneous
problem:

MAq̈= f(u) (13)

Md̈=NTf(u) (14)

Equation (13) represents the standard atomistic equations of motion of a molecular dynamics
(MD) system, where q are the displacements of the atoms and f the interatomic forces, calculated
using a potential energy function. This equation is intended to be solved exclusively inside the
designated MD region. On the contrary, Equation (14) that is the coarse scale equation of motion,
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Computational domain Coarse scale Fine scale

= +

f
(b)

f
(b)

Figure 1. Schematic of bridging scales domain decomposition.

is solved with an FE procedure applied everywhere in the domain. The coupling between the two
regions is established through the coarse scale internal force NTf(u). In the region where the MD
solution exists, the FE nodal forces are then calculated by extrapolating the MD forces, which can
therefore be thought of as providing the constitutive model for the FE formulation.

If we assume that the MD solution is available everywhere, then the coarse scale equation
(Equation (14)) becomes redundant, as the total solution u satisfies the same equation of motion of
q, i.e. MAü= f(u), making Equation (13) sufficient to fully capture the fine scale behavior of the
solid over the whole computational domain. The beneficial effects of the coupled scales are evident
when the fine scale solution is calculated only within a small region of the domain (Figure 1).
When the fine scale solution is eliminated from large portions of the domain, the MD displacements
are not available everywhere anymore, and thus it is not possible to calculate the coarse scale
solution through a simple projection of the MD displacements. In this case, the solution of the
FE equations of motion ensures a continuous coarse scale displacement field. In this context, the
domain is partitioned into two regions, �(a)

f and �(b)
f . �(a)

f represents the portion of the domain
where a detailed description is needed. This is the case of regions where localized discontinuities,
such as cracks, inclusions or other non-linearities, are present. This makes it insufficient for the
coarse scale discretization of the equivalent homogenized continuum to capture the behavior of
the solid. �(b)

f is the remaining part of the computational domain. In order to limit the MD region,

a set of impedance forces needs to be applied along the boundaries of �(a)
f to account for the

interactions with the neighboring portion of the domain, as shown in Figure 1. The technique to
eliminate the unwanted degrees of freedom, detailed in [14, 26, 51], exploited the periodic nature
of the crystal structure in the MD region and made use of Green’s function approach for the
derivation of non-reflecting boundary conditions described by Karpov et al. [12]. Based on this
coarse-fine decomposition, Tang et al. [56, 57] have derived higher-order approximations of the
BSM. In addition, a phonon heat bath has been theoretically established that does not require
empirical constants [57–59].

After the condensation procedure, the fine scale equations of motion assume the form:

MAq̈(t)= f(t)+f imp(t)+R(t) (15)

where fimp(t) is an array of impedance forces, resembling the generalized Langevin equation
proposed by Adelman and Doll [46, 47] and used in the method by Cai et al. [48] and R(t) is a
random function that accounts for thermal atomic motion in the coarse scale (this quantity can be
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Figure 2. Schematic of bi-material rod and relative representative volume element (RVE).

neglected for multiscale continuum–continuum coupling in structural applications [26, 55]). The
quantity fimp(t) can be expressed as:

fimp(t)=
∫ t

0
H(t−�)(q(�)− ū(�)−R(�))d� (16)

The quantity H in Equation (16) is called time-history kernel function (or memory kernel
function [60]) and describes the renormalization of the atomic interaction along the boundary of
the reduced MD domain. As pointed out in [26, 51, 60], one of the challenges in the evaluation of
Equation (16) consists of evaluating an inverse Laplace transform, which, in most cases, can only
be carried out numerically. Among the existing methods for the calculation of inverse Laplace
transforms, most authors working on BSM have used variations of the Weeks method [61] based
on expansions in terms of Laguerre polynomials. In order to avoid the complexity of the Weeks
scheme, Farrell et al. [62] have proposed to use the Crump method [63], based on a Fourier series
approximation, and have shown that it requires fewer expansion terms than the Weeks method for
comparable overall accuracy.

3.3. Applications

As a result of the non-reflective boundary conditions implemented at the interfaces, the BSM is
particularly powerful for studying wave propagation problems. The extent of this capability has
been investigated by Kadowaki and Liu [26] and Gonella and Ruzzene [55]. In the latter paper,
the authors have investigated the propagation of axial waves in a bi-material rod with localized
defects. The structure, depicted in Figure 2, consists of a periodic sequence of unit cells with
alternating material properties. A first-order approximation of the dynamic behavior of the rod can
be obtained by considering equivalent homogenized properties defined according to the classical
rule of mixtures:

�H = �1�+�2(1−�) (17)

EH = E1E2

E1(1−�)+E2�
(18)

A defect is introduced in the model in the form of a soft inclusion by reducing Young’s modulus
of one of the material layers. In order to capture the interaction of the propagating wave with the
defect, a fine scale mesh is adopted in a small window corresponding to the neighborhood of the
discontinuity. In this region, the material layers are modeled explicitly. Alongside the fine scale
solution, a coarse scale solution is sought on an equivalent rod, with properties �H and EH , which
is discretized with a low number of elements (Figure 3).
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FINE-SCALE WINDOW

Figure 3. Fine scale window and homogenized model for a biomaterial rod.

Figure 4. Wave propagation in a bi-material rod with soft inclusion. Fine scale solution superim-
posed to coarse scale solution.

An initial Gaussian distribution of displacements is applied to the midpoint of the structure.
The resulting wave field is plotted against time and space in Figure 4 for the time necessary for
the traveling wave to reach the free ends of the rod and travel back.

Figure 4 shows the fine scale solution, which is explicitly calculated in the central region of the
domain, superimposed to the coarse scale solution, which is available everywhere. The purpose
of the plot is to highlight the seamless transition between the scales and show how the spurious
numerical reflections, due to the mismatch in mesh size, arising at the interface between the
scales (marked by the dashed lines) are minimized. The coarse scale simulation provides a global
description of the wave motion in the rod, but is insufficient to capture the details of the wave field
generated by the interaction of the wave with the defect, as the element size in the coarse mesh
is much larger than the size of the inclusion. On the contrary, the fine scale simulation provides
an accurate local representation of the scattering phenomena triggered by the inclusion. A similar
pattern is captured with comparable accuracy when the returning wave travels across the damage
region. The lack of spurious reflections at the interfaces allows a straightforward interpretation
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Figure 5. Total mechanical energy of fine scale region. BSM vs reference solution.

of the actual reflections due to the material discontinuity in the model. This property makes the
method ideal for the simulation of waves in damaged structures for wave-based structural health
monitoring applications. One way to quantify the accuracy of the technique consists of calculating
the total mechanical energy inside the fine scale region and compares it against the same quantity
evaluated through a fully detailed discretization over the whole domain. An example of comparison
is shown in Figure 5. A discussion of the performance of the method for different combinations
of materials and different wavelengths of excitation was given in [55].

Park et al. [15] have used the bridging scale method to investigate the problem of crack
propagation in crystal structures. For this, they have considered a two-dimensional lattice domain
and introduced initial anomalies in the crystal structure to cause initiation and growth of a crack
under the effect of a traction load. In their work, an atomistic simulation was implemented in
the neighborhood of the expected crack opening, while the superimposed coarse scale FE mesh
extended to the two boundary regions, where homogenized material properties were prescribed.
Since the traction loads were applied to the boundaries, where only the coarse scale solution
was available, the disturbance introduced by the load had to travel first through the coarse scale
and then across the interface before reaching the fine scale, where the crack began to propagate.
Snapshots of three successive stages of crack propagation are shown in Figure 6. For sufficiently
large velocities, the crack propagation resulted in complete fracture of the atomic lattice into two
separate sections (Figure 6(c)). The authors of [15] have verified the accuracy of the method by
comparing the multiscale simulation with a reference full MD solution obtained by setting an
atomistic resolution throughout the computational domain. They have found virtually identical
crack propagation speed and considerable agreement between the atomistic processes around the
crack tips predicted by the two methods.

The BSM has also been successfully applied to study the problem of three-dimensional dynamic
crack propagation in FCC crystals [14]. In this problem, the MD simulation was performed using
a modified version of the Lennard–Jones 6–12 potential with a smooth cut-off. The computational
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(a) (b) (c)

Figure 6. Bridging scale 2D modeling of crack propagation: (a) crack initiation phase;
(b) crack growth phase; and (c) separation.

(a) (b) (c) (d)

Figure 7. Successive stages of crack propagation: (a) initial crack; (b) crack growth; (c) onset of crack
branching; and (d) out-of-plane crack branching.

domain was a parallelepiped, which was discretized with a coarse mesh of eight-node hexahedral
elements. In the MD region located in the central part of the domain, a pre-crack was modeled by
prescribing that two adjacent planes of atoms did not interact, such that the crack opened naturally
following a mode-I type failure when a tensile load was applied to the boundaries. The bridging
scale simulation required 1024 eight-node hexahedral elements and 117 121 atoms. In contrast, a
reference solution was obtained through a fully detailed MD simulation involving 225 121 atoms.
The time marching scheme used for the MD simulation had a time step �tMD=0.014, whereas
the time step of the coarse scale update was �tFE=20�tMD. The MD region was bounded by six
faces: two of them were shared with the pure FE region of the domain and were handled through
non-reflective boundary conditions, whereas the other six were taken as free surfaces. The results
of a simulation obtained using the Sandia-developed code Tahoe are shown in Figure 7.

3.4. Extension to space–time formulation

In many applications, the physics of interests are governed by multiple temporal scales as well as
multiple spatial scales. Motivated by this, a space–time version of the BSM has been recently devel-
oped by Qian and Chirputkar [64]. The proposed approach has three key components: the extension
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of the space–time FE method [65, 66] to discrete atomic systems, the multiscale approximation
based on the extended finite element method (XFEM) [67–69] using space–time enrichment, and
coupling with atomistic simulation methods through the BSM.

In the space–time FEM formulation, the approximations are expressed in terms of both space x
and time t . In a general three-dimensional case

u(x, t)=∑
I
NI (x, t)dI (19)

in which NI (x, t) is a set of FE shape functions at nodes indexed by I , and dI is the corresponding
nodal displacement vector. Because of the ability to establish approximations in the temporal
domain through the shape functions, the formulation can be extended to address the problems
that involve multiple time scales. Qian and Chirputkar [64] have further applied the enrichment
approach based on the XFEM [70, 71]. Assuming that 	(x, t) is a certain function that represents
the local physics, the approximation of the displacement based on the enrichment scheme is given
as

uh(x, t)= ūh(x, t)+ ũh(x, t)= ∑
I∈N̄

NI (x, t)dI +
∑
J∈Ñ

NJ (x, t)(	(x,t)−	(xJ , tJ ))aJ (20)

in which NI (x, t) are the regular space/time FE shape functions, x is the material coordinate and
	(x, t) is the enrichment function. Correspondingly, dI is the vector of nodal displacements, and
aJ is the vector of enriched degrees of freedom. The terms ūh(x, t) and ũh(x, t) are the coarse
and fine scale components of the space–time approximation that correspond to their counter parts
on the RHS of Equation (20). This decomposition, which is the same as the one developed in
the original BSM approach (Equation (8)), provides an additional vehicle for incorporating the
important time scales that cannot be accommodated by the semi-discrete method.

The scheme for coupling the extended space–time FEM with molecular dynamics is illustrated in
Figure 8. An overlapping scheme is used in the coupled region. The coupling is implemented in both
the spatial and temporal domains. In the spatial domain, a combination of the projection operator
based on the enriched approximation and the interfacial boundary condition treatment using the
BSM described earlier is implemented. In the time domain, a multi-time-step algorithm is applied
by taking advantage of the stability properties of the space–time formulation. For implementation
details, we refer to [64].

Figure 8. Coupling of extended space–time FEM with atomistic simulations.
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Figure 9. (a) Multiscale discretization for the 1D problem solved using space–time approach and
(b) comparison of the energy history for the 2nd MD region.

The ability of this method in terms of achieving a reflectionless, wave-transmitting and energy
conservative interfacial boundary condition is demonstrated in the following 1D problem shown
in Figure 9(a). The entire domain is discretized using FEs. In addition, two MD regions are
prescribed. A combination of coarse and fine scales is imposed in the first MD region next
to the symmetric axis to examine how the wave propagates into the second MD region as
a result of the developed scheme. For the purpose of verification, the results are compared
with full-scale MD simulations and the standard bridging scale approach without the enrich-
ment. This comparison is summarized in Figure 9(b). One can see that there are big differ-
ences between the results generated with and without enrichment. The amount of energy (plotted
are normalized values) transmitted into the peripheral MD region is extremely low when no
enrichment term is employed. By comparing these results with those from the full-scale MD
simulation, it can be concluded that the wave transmitting boundary condition is successfully
realized.

3.5. Multiscale non-equilibrium simulation method based on the bridging scale concept

Recently, Li and his co-workers have developed a multiscale non-equilibrium simulation method,
or multiscale non-equilibrium molecular dynamics (MS-NEMD) [72–75], which can be used to
simulate a host of non-equilibrium phenomena at small scales. The foundation of the concurrent
multiscale non-equilibrium simulation is the bridging scale decomposition proposed in [51], which
decomposes the discrete atomistic displacement field u into a coarse scale part and a fine scale part
as described by Equation (8). The main ingredients of the proposed MS-NEMD are its multiscale
computation and coupling algorithms. A conceptual illustration of the multiscale framework is
shown in Figure 10. In the proposed MS-NEMD model, it is argued that each coarse-scale FE
node may be viewed as a thermal reservoir, and it represents the center of mass of an ensemble of
atoms. Each set of atoms surrounding an FE node is called a Voronoi cell-ensemble. Since Voronoi
cell or Voronoi tessellation is a dual structure of Delaunay triangulation [76], the cell structure is
related to the FE mesh or discretization (Figure 10).

The classical canonical ensemble is a system embedded into an infinitely large thermal reservoir,
whose temperature remains constant during an equilibrium process. In the MS-NEMD model,
we argue that the temperature of each coarse scale nodal reservoir remains constant during any
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I

Cell c
surrounding 
node I

Figure 10. Coarse-grained finite element mesh and Voronoi cell-ensemble structure. (From Li and Sheng,
‘On multiscale non-equilibrium molecular dynamics simulations’, also in this issue.)

Figure 11. Structure of a distributed Nose-Hoover thermostat network.

time interval that is smaller than the time scale of the coarse grain system, which is chosen here
as the coarse scale time step. Since a Voronoi cell-ensemble is embedded within a coarse scale
nodal reservoir, the motions of atoms in a Voronoi cell-ensemble may reach a local equilibrium
state within one coarse scale time step. We may then call a Voronoi cell-ensemble as a multiscale
canonical ensemble in the sense of local equilibrium approximation. To ensure that each Voronoi
cell-ensemble reaches a local equilibrium state in a coarse scale time step, we introduce a local
Nose–Hoover thermostat in each cell-ensemble. The local thermodynamic temperature for each
cell-ensemble is set as the coarse scale temperature at the governing FE node. Since the coarse scale
temperature distribution is non-uniform and evolving with time, the FE nodal temperature changes
from node to node and from time to time. Therefore, the local thermodynamic temperature is not
uniform among different cell-ensembles and different coarse scale time steps. This requires the
use of a distributed Nose–Hoover thermostat network (Figure 11) to regulate the local equilibrium
state.

In statistical physics, the fluctuation dissipation theorem states that the response of a system
in thermodynamic equilibrium to a small external perturbation is equivalent to its response to
a spontaneous fluctuation. In the MS-NEMD model, the coarse scale thermodynamic tempera-
ture provides the external disturbance through the distributed Nose–Hoover thermostat network,
which drives the system out of equilibrium, and it is equivalent to fluctuations created by random
forces.
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3.5.1. Fine scale NEMD Model. The multiscale displacement decomposition in Equation (8)
implies similar decompositions for the velocity field u̇, and the linear momentum field p, i.e.

u̇= ˙̄u+ ˙̃u and p= p̄+ p̃ (21)

According to the bridging scale formulation [51], the total scale kinetic energy can be decoupled
in terms of p̄ and p̃. This leads to the following multiscale adiabatic Hamiltonian for a single
cell-ensemble c surrounding the FE node I

H adia
c =

nce∑
i=1

1

2mi
p̄i · p̄i +

nce∑
i=1

1

2mi
p̃i · p̃i +U (u) (22)

where nce is the number of atoms in the cell-ensemble c, U (u) is the atomistic potential, p̄i and
p̃i are the coarse scale and fine scale linear momentum vectors of the i th atom, respectively.
Here and in the following the subscript i is used to denote the quantities associated with the
i th atom. Note that each cell-ensemble has only one node, hence, the numberings I and c have
one-to-one correspondence (Figure 11). The two-scale equations of motion are then derived from
Equation (22) as

u̇i = �H adia
c

�pi
= p̄i

mi
+ p̃i
mi

and ṗi =−�H adia
c

�ui
=−�U (u)

�ui
=Fi (23)

˙̄ui = �H adia
c

�p̄i
= p̄i

mi
and ˙̄pi =−�H adia

c

�q̄i
=F j · �q j

�ūi
(24)

where Fi denotes the external force acting on the atom i . From Equation (23), the fine scale
equations of motion may be expressed in terms of ui and p̃i as follows:

u̇i = p̄i
mi

+ p̃i
mi

and ˙̃pi =Fi − ˙̄pi . (25)

To couple the fine scale motions of atoms with the coarse scale heat conduction, we introduce a
local Nose–Hoover thermostat in each cell-ensemble such that the fine scale equations of motion
(Equation (25)) become

u̇i = p̄i
mi

+ p̃i
mi

and ṗ′
i =Fi − ˙̄pi −�cp̃i (26)

∀i ∈ nc, nc={1, . . . . . . ,nce} and �̇c= 1

�c

(∑
i∈nc

p̃i · p̃i
mi

−3nckBTc

)
(27)

where kB is the Boltzmann constant, �c is an auxiliary variable [77–79], �c is the pseudo mass of
�c, and the local thermodynamic temperature Tc for cell-ensemble c is the coarse scale temperature
at the governing FE node I .

3.5.2. Coarse scale model. In the discrete-to-continuum multiscale computations, we want our
coarse scale model to be consistent with the fine scale model. This means that we have to incorporate
atomic information into the coarse scale level. Traditional FE methods do not satisfy this criterion,
since they use empirical constitutive models. In the proposed MS-NEMD model, the coarse scale
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mean field is concurrently solved by the FE method based on a coarse-grained thermodynamics
model. The formulation is based on a coarse-grained Helmholtz free energy. It stems from the
principles described in [80] and is derived with the assumptions of harmonic approximation and
the Cauchy–Born rule. In this paper, we will use the coarse-grained Helmholtz free energy to
derive macroscopic quantities in coupled thermomechanical equations.

Based on the harmonic approximation and the Cauchy–Born rule, the coarse-grained Helmholtz
free energy in a cell-ensemble c may be written as [80]

�c(F̄c,Tc)=U (F̄c)+kBTc
nce∑
i=1

3∑
k=1

log

[
2sinh

(
h̄�ik(F̄c)

4
kBTc

)]
(28)

where h̄ is Planck’s constant divided by 2
; Tc is the coarse scale thermodynamic temperature for
the cell-ensemble c; and �ik are three normal mode frequencies for the atom i , which depend on
F̄c through r̄i� and can be determined via harmonic approximation [81]. Note that in the proposed
MS-NEMD model, Tc is updated based on fine scale atomistic velocities:

Tc= 2

3(nc−1)kB

〈
nce∑
i=1

p̃i · p̃i
2mi

〉
(29)

where < ·> denotes averaging in time. With �c available, we can derive the expressions for the
state variables such as the first Piola–Kirchhoff stress Pc,

Pc(F̄c,Tc)= 1

�c

��c

�F̄c
= 1

�c

{
1

2

nce∑
i=1

nb∑
�=1

	′(r̄i�)
r̄i�⊗Ri�

r̄i�

+ h̄

4


nce∑
i=1

3∑
k=1

coth

(
h̄�ik(F̄c)

4
kBTc

)[ nb∑
�=1

�′
ik(r̄i�)

r̄i�⊗Ri�

r̄i�

]}
(30)

in which �c denotes the volume of the cell-ensemble c. Note that in the proposed MS-NEMD
algorithm, the above transport coefficients will be later updated based on the fine scale computation
via the response theory.

We have also performed the direct NEMD simulation with a prescribed temperature of 200K
at boundary. The results are compared with that of the MS-NEMD simulation with the initial
temperature of 200K. It is found that the direct NEMD simulation fails to predict thermal-activation
of shock wave or dislocation, whereas the MS-NEMD simulation can do so, Figure 12(a) and
(b). By comparing the instantaneous temperature profiles obtained by the two simulations in
Figure 12(c) and (d), it is observed that the instantaneous temperature distribution obtained by the
MS-NEMD simulation exhibits larger fluctuations than that of the direct NEMD simulation.

4. MULTIRESOLUTION CONTINUUM THEORY

A general multiscale theory for heterogeneous materials, called multiresolution continuum theory
(MRCT), has been proposed by Liu and coworkers [35–38, 82]. This theory inherits the idea from
the BSM, but uses a single discretization with the additional scales approximated by additional
degrees of freedom. It is proposed to overcome the limitations of a conventional continuum
approach, existing higher-order/gradient models and direct coupling schemes. This approach is
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Figure 12. Displacement profiles obtained by (a) direct NEMD simulation and (b) MS-NEMD simulation;
instantaneous temperature profiles obtained by (c) direct NEMD simulation and (d) MS-NEMD simulation.

characterized by some key features:

• It allows macroscale properties (e.g. strength, hardness, and toughness) and global structure
performance to be predicted directly in terms of key microstructure parameters, such as the
length scales of inhomogeneous deformation.

• By providing a clear mathematical link between materials microstructure and structural prop-
erties, it can be used to monitor structural health accounting for manufacturing tolerances and
mission-specified operation conditions.

The method is based on a virtual power decomposition performed on multiple nested domains
and applies to materials that feature a highly inhomogeneous deformation at or below the scale of
their RVE, deformation which often results in terminal strain localization.

4.1. General theory

The conventional homogenization approach requires that the continuum virtual power density field
�p at a material point (x) in the homogenized domain can be expressed as

�phom(x)= 1

V0

∫
V0

�pm dV0= 1

V0

∫
V0
rm :�Lm dV0=r(x) :�L(x) (31)
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where V0 is the volume of the RVE centered at the continuum point x, rm and Lm are local stress
and velocity gradient fields, r and L are the average stress and velocity gradient within the RVE,
and the last equality follows from the Hill–Mandel lemma [83]. In the multiresolution theory,
the Hill–Mandel approach is extended to account for both homogeneous and inhomogeneous
contributions, so that:

�p(x)=�phom(x)+�pinh(x) (32)

where the inhomogeneous term is defined as the difference between the average virtual power
density at the inhomogeneous deformation scale V1 and the average virtual power density at the
RVE scale:

�pinh(x)= 1

V1

∫
V1
(rm :�Lm)dV1−r(x) :�L(x)= 1

V1

∫
V1
(rm :�Lm−r(x) :�L(x))dV1 (33)

The inhomogeneous power density �pinh can be rewritten in terms of the local inhomogeneous
velocity gradient Lm−L as

�pinh(x)= 1

V1

∫
V1
bm : (�Lm−�L(x))dV1 (34)

where the local microstress bm is introduced as the power conjugate of the local velocity gradient
Lm−L, in order to enforce the following power equivalence:

bm : (Lm−L(x))=rm :Lm−r(x) :L(x) (35)

It is furthermore assumed that the local velocity gradient Lm varies linearly inside V1 as

Lm ≈ 1

V1

∫
V1
Lm dV +

(
1

V1

∫
V1
Lm

↼∇ dV

)
·y=L1(x)+G1(x)·y (36)

where y is the local position with respect to the center of V1 and L1 and G1 are higher-order
continuum measures corresponding to volume averages of the local velocity gradient Lm and the

spatial gradient of the local velocity gradient Lm
↼∇, respectively. Upon substitution of Equation (36)

into Equation (35), the inhomogeneous virtual power term is rewritten as

�pinh(x)=b1(x) : (�L1(x)−�L(x))+ b̄1(x)...�G1(x) (37)

where b1 is a continuum microstress and b̄
1

is a continuum microstress couple, respec-
tively, defined as:

b1(x)= 1

V1

∫
V1
bm dV1 (38)

b̄
1
(x)= 1

V1

∫
V1
bm⊗ydV1 (39)

In conclusion, the total virtual internal power density is written as:

�p=r :�L+b1 : (�L1−�L)+ b̄1...�G1 (40)
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The key feature of this approach is that the characteristic length-scale information is automat-
ically embedded in the formulation through the averaging operations in Equations (38) and (39).
An extension of this formulation has been proposed by Vernerey et al. [35] to account for the
existence of multiple nested scales of inhomogeneous deformation. This formulation introduces a
microstress and a microstress couple at each scale of deformation, such that the internal power
density is a summation over all the inhomogeneous contributions:

�pint=r :�L+
N∑

n=1
(bn : (�Ln−�L)+ b̄n ...�Gn) (41)

where the following generalizations of Equations (38) and (39) are used:

bn = 1

Vn

∫
Vn
bm dV (42)

b̄
n = 1

Vn

∫
Vn
bm⊗ydV (43)

4.2. Multiresolution governing equations

The virtual internal power is obtained by integrating the power density over the entire domain

�pint=
∫
V

{
r :�L+

N∑
n=1

(bn : (�Ln−�L)+ b̄n ...�Gn)

}
dV (44)

The virtual kinetic power is based on the following extension of the expression presented in
[27] to multiple scales [35]:

�pkin=
∫
V

{
�v̇ ·�v+

N∑
n=1

(cn ·In) :�Ln
}
dV (45)

The expression in Equation (45) introduces an nth-scale microacceleration cn and a second
moment of density In , respectively, defined as

cn = L̇n+Ln ·Ln (46)

In = 1

V n

∫
Vn

�nyn⊗yn dV (47)

where �̄n and �n = �̄n− �̄n−1 are the microscopic density and the relative density of the nth scale,
respectively. Lastly, the multiscale external virtual power is obtained by extending the conventional
external power expression:

�pext=
∫
V

{
b ·�v+

N∑
n=1

Bn :�Ln
}
dV +

∫
�t

{
t·�v+

N∑
n=1

Rn :�Ln
}
d� (48)

where b and t are the conventional continuum body force and traction, whereas Bn and Rn are
the corresponding multiscale terms. Similar to a conventional continuum, where applying a body
force b or a surface traction t drives a velocity gradient L in the solid, in this formulation the
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body couple stress Bn and double traction force Rn will establish the inhomogeneous velocity
gradient Ln−L in the domain. By application of the divergence theorem, and making use of the
arbitrariness of the variations �v and �Ln , it is possible to derive a strong form of the multiscale
equations of motion [37]: (

r−
N∑

n=1
bn
)

·∇+b = �v̇ in V

b̄
n ·∇−bn+Bn = c ·In in V

(49)

with relative multiscale boundary conditions

n ·
(
r−

N∑
n=1
bn
)

= t on �t

n · b̄n = Rn on �Rn

(50)

where �t and �Rn are the boundaries of the RVE and of the nth volume, respectively. These
multiscale equations can be solved numerically through an FE technique involving generalized
multiscale nodal degrees of freedom [35].

4.3. Multiresolution constitutive relations

In order to solve the multiresolution continuum equations, the following constitutive relations are
required:

ṙ= ṙ(L) ḃn = ḃn(Ln−L) ˙̄bn = ˙̄bn(Gn) (51)

When dealing with the microscale constitutive relationship, the inhomogeneous rate of defor-
mation Dn−D is considered (i.e. the symmetric part of the inhomogeneous velocity gradient

Ln−L). Developing higher-order constitutive relationships such as ˙̄bn(Gn) has been one of the
key challenges of second gradient methods.

While macroscopic constitutive models for elasticity and plasticity are fairly straightforward,
many of the efforts in [36–38, 84] have been directed towards the tougher goal of developing the

higher-order constitutive models ḃ
n
(Ln −L) and ˙̄bn(Gn). The details of this part of the formula-

tion are summarized effectively in [37] and will not be reported here. Nevertheless, it is worth
pointing out a few unique aspects of the method with respect to the derivation of the microscopic
constitutive equations. Each of the constitutive models in Equation (51) can be calibrated from
refined computational models of the microstructure through averaging operations performed at each
scale Vn within the selected RVE. The main steps of the stress/strain calculation and calibration
procedure at each microscopic scale are listed below:

• A conventional RVE (macroscopic volume) is defined and loaded under several boundary
conditions.

• Average stress and strain measures are recorded and used to calibrate the macroscale consti-
tutive models.

• Regions of highly inhomogeneous deformation are identified in the RVE. An appropriate
averaging volume is selected at the scale of this microscopic deformation.
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Figure 13. Setup for shear band problem. (Reprinted from [37], copyright 2008,
with permission from Elsevier.)

• A relative strain measure is calculated as the difference between the average strain inside the
local volume and the one inside RVE.

• The corresponding local average stress is obtained through a power equivalence and averaged
over the volume.

• The relationship between relative strain and microstress is calibrated through an appropriate
constitutive model.

• The average strain gradient and the corresponding average microstress moment are computed
within the inhomogeneous averaging volume and calibrated.

4.4. Multiresolution analysis of adiabatic shear band

Over the past few years, the multiresolution theory has been applied to a number of topical
problems in mechanics. McVeigh and Liu have used this method to study, among other problems,
the formation and propagation of adiabatic shear band in steel alloys [37]. The multiscale nature of
shear band phenomena makes them an excellent benchmark problem, as the deformation within the
shear band is highly inhomogeneous and cannot be properly captured through a standard single-
scale elasto-plastic model. The problem was set up as a two-dimensional plane-strain problem,
as proposed by Medyanik et al. [85] and recalled in Figure 13. The plate was modeled with a
macroscopic notch featuring a microscopic pre-crack at the notch tip.

In the neighborhood of the pre-crack, the mesh was chosen such that the elemental size was
small enough to capture a shear band of the order of tens of microns, consistently with values
commonly reported in the literature [86]. The macroscale constitutive law of the steel-alloy followed
the Bammann–Chiesa–Johnston model, whose constants were calibrated to an empirical rate and
temperature-dependent Johnson–Cookmodel [85]. The plastic part of the BCJ model also accounted
for microvoid damage through microvoid damage equations developed using the computational
cell modeling analysis of McVeigh et al. [87].

Since the macroscopic plastic stress–strain curve of the material showed a hardening region
followed by instability and by a softening region, McVeigh et al. [37] have implemented a multires-
olution scheme with two embedded length scales: the hardening length scale lh , related to the grain
size, and the softening scale lv , dictated by the microvoid spacing. In order to test the validity
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Figure 14. Conventional continuum and multiresolution simulations of shear band: Plastic strain. (Reprinted
from [37], copyright 2008, with permission from Elsevier.)

of the method, the problem was solved both using conventional continuum as well as MRCTs.
The simulation was performed both for adiabatic temperature rise and in the presence of heat
conduction. The plastic strain contours are plotted in Figure 14.

The plastic strain across the shear band in the y-direction is plotted in Figure 15. It can be noted
that, in the case of multiresolution, the deformation occurring during work hardening is relatively
homogeneous. After nucleation is reached, the deformation localizes to the embedded scale lv.
McVeigh et al. pointed out that this is consistent with the physical interpretation of shear band,
as reported, for instance, in [86]. The post-instability localization occurred at the length-scale lv

and spread over several elements. In contrast, it can be seen that conventional continuum localized
the deformation in the central element of the domain in an unphysical manner. This contrast is
particularly evident in the case of adiabatic shear band.

4.5. Multiresolution analysis of fracture in high-strength steel

The multiresolution theory has also been applied by Vernerey et al. [36], Siad et al., [88] and
McVeigh and Liu [89] in the analysis of ductile fracture processes. In Vernerey et al. [36], they
considered high-strength steels with two populations of hard particles distributed at two distinct
length scales in an alloy matrix. The distinct role of primary and secondary particles in ductile
fracture phenomena can be deduced by observation of the fracture surface. Because bonding at
the particle–matrix interface is stronger for secondary than for primary particles, nucleation, and
growth of voids from primary particles occurs first. Once the voids reach a critical size, the local
plastic strains lead to nucleation of microvoids at the sites of secondary particles, which eventually
grow into a ‘void sheet’. Finally, failure occurs when the microvoids coalesce (Figure 16).
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Figure 15. Conventional continuum and multiresolution simulations of shear band: values of
plastic strain in the y-direction across the shear band. (Reprinted from [37], copyright 2008,

with permission from Elsevier.)

Figure 16. Stages of ductile fracture in high-strength steels. (Reprinted from [36], copyright 2008,
with permission from Elsevier.)

In order to tackle this problem, a three-scale multiresolution formulation has been implemented.
The macroscale is the scale of the specimen, the microscale is the scale determined by the primary
particles and the sub-microscale is associated with the secondary particles. The three-scale model
was applied to calculate the plastic strain field in a specimen in tension under plane-strain conditions,
as shown in Figure 16. In order to trigger the localization, an imperfection was introduced at the
center of the domain by reducing the yield stress of the central element by 5%. The symmetry of the
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Figure 17. Geometry, boundary conditions and finite element discretization of the tensile specimen.
(Reprinted from [36], copyright 2008, with permission from Elsevier.)

body was exploited to reduce the computational domain to a quarter cell. The FE mesh, consisting
of 4121 quadrilateral elements having size comparable to the length scale of the secondary particles,
is shown in Figure 17, together with the relative boundary conditions.

The evolution of the effective plastic strains at the macro, micro and sub-micro scales, shown
in Figure 18, highlights the existence of three successive stages of material failure. The first
stage corresponds to material instability due to the imperfection. The interaction between the
damaged zone and the free surface results in a band of high plastic strain, with width dictated
by the size of the primary particles, which in return determines the nucleation of voids from the
primary particles. As the damage grows, the plastic strain in the shear band increases. Owing to
the large shear strain levels near the free boundary, the criterion for the nucleation of secondary
particles is first met in this region of the domain, resulting in a microstress instability that grows
from the free boundary towards the center. This inner shear band due to microvoid growth has
a width that is related to the size of the length scale of the sub-microscale. The final stage
of the process is reached when the microvoids coalesce. In the multiscale model, microvoid
coalescence can be observed to appear within the microshear band in the bottom right picture of
Figure 18.

4.6. MRCT based on the Virtual Atom Cluster model

In the methods described earlier, the multiscale contributions to the virtual power are given in
a continuum mechanics framework. However, the hierarchical or concurrent multiscale theories
may also be used to examine a continuum and an atomic scale simultaneously through a coarse
graining or atomic averaging theory. The Virtual Atomic Cluster (VAC) theory [63] works along
these lines. Motivated by the discrepancies between the basic features of continuum and atomistic
systems, the ‘VAC’ model has been developed by Qian et al. [21, 90]. The model is proposed
as an effective representation of the interaction at the atomic scale and can be linked to coarse
scale simulation methods such as meshfree or FEMs. The model is coarse grained and therefore
ensures scalability at the numerical implementation level. However, as the model representation
is discrete, continuum concepts such as strain and stress are completely removed. Furthermore,
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Figure 18. Evolution of plastic strain: (a) macroscale; (b) microscale; and (c) sub-microscale. (Reprinted
from [36], copyright 2008, with permission from Elsevier.)

the model is also built based on the underlying inter-atomic mechanics, as in the crystal elas-
ticity approach. This consistent link guarantees the accuracy in describing the mechanics of the
nanostructure.

Figure 19 illustrates the steps required to construct the VAC for a graphene sheet. A VAC is the
minimum set of atoms that forms a cluster fully representing the energy density, and can therefore
be extracted from the lattice structure. The original molecular structure is then transformed into
a structure of the same geometry with continuous energy density distribution. The energy density
corresponding to any point within the geometry is represented by a VAC. The word ‘virtual’ comes
from the fact that the VAC does not have to correspond to the physical atoms, and is thus regarded
as a virtual representation.

Based on this model, one could replace the original molecular structure with a virtual structure
of the same geometry but with distributed energy density. The energy density at any point within
this structure is represented by a cluster of atoms, as shown in Figure 19. The cluster is chosen as
a basic representation of the energy density, which ensures the equivalence of the energy between
the molecular and virtual structures.

As shown in Figure 19, the discrete summation of the potential energy defined in the original
molecular structure is now replaced with a continuous integral based on the use of the VAC
model. In Figure 19, 	i represents the potential energy of each atom and 	� is the distributed
energy density. The use of 	� allows the use of arbitrary quadrature in the case of numerical
implementation. The number of quadrature points can be far less than the actual number of atoms.
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Figure 19. Steps to build the proposed VAC model for graphene sheet. The molecular model is converted
to a structure of the same geometry with distributed energy density represented by VAC.

The variation of the internal energy density can then be evaluated by imposing the VAC model at
each quadrature point. The VAC model in Figure 19 consists of four atoms, therefore

�	� =
4∑

�=1

�U
�u�

·�u� =∑
I

(
4∑

�=1

�U
�u�

NI�

)
·�dI =

∑
I
f�I ·�dI (52)

in which u� is the displacement vector defined at atom �, and is interpolated by meshfree shape
function NI�, i.e. u� =∑I NI�dI and dI is the displacement vector that is defined at the node.
The contribution to the nodal internal force in the FEM/meshfree formulation now simply reads

Fint
IG =wGf�I (53)

in which I is the index for the computational nodes and G the one for quadrature points, w is the
weighting function corresponding to the quadrature points.

A multiscale VAC model can be developed by separating the material into two regions, �0 and
�1. The domain �1 represents the region where homogenization theory is invalid, e.g. at a material
interface or strain localization region. The scale zero internal power is computed as a homogenized
continuum, whereas the scale one power is written in terms of the discrete bond energies within
the DNS region �1. The variational internal power density at any position can now be written in
terms of a sum over the virtual atoms:

�p1int(u
1)= �	�(u

1)

�u1
·�v1=

4∑
�=1

�	�(u
1)

�u1�
·�v1� (54)

where u1� is the displacement evaluated at the atomic position �. The total variational internal
power can now be written as

�p1int=
∫

�0
r0 :�L0 d�+

∫
�1

∑
�
f1� ·�v1� d� (55)

where

f1� = �	�(u
1)

�u1�
(56)
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In the hierarchical approach, the variational internal power is:

�p1int=
∫

�
r0 :�L0 d�+

∫
�1

∑
�
f1� ·�ṽ1�d� (57)

where ṽ1� is the relative velocity at scale 1 evaluated at the VAC atomic position �. We see that
Equation (57) provides a mixed representation in that it adopts both continuum and atomistic
measures. Once this term is formulated, it replaces the corresponding in the virtual internal power in
Equation (44). The MRCT based on VAC model has been implemented in [91]. It has been shown
that the model provides a consistent link between the continuum and atomistic representation.

4.7. Stochastic multiresolution continuum analysis

In this section, we outline a new aspect of the multiresolution continuum analysis that is imple-
mented through integration with stochastic analysis. Stochastic multiscale analysis is needed to
assess the behavior of material from a point of view that accounts for the inherently random
nature in material microstructure, which has a direct influence on material constitutive relations
and therefore material performance. In particular, a microheterogeneous material that may appear
homogenous at the macroscale contains local heterogeneity that has a significant impact on mate-
rial behavior such as stress distribution, crack propagation path, and failure. A possible procedure
of stochastic multiresolution continuum analysis [92] is presented in Figure 20. The key feature is
the establishment of ‘equivalent’ stochastic constitutive relations to replace the expensive DNS of
statistical cell models. To account for the randomness in the microstructure, samples of RVE cell
model are first generated based on the statistical characterization of the material microstructure.
For each sample of RVE cell model, parameters (hn) of constitutive models at different scale levels
n are identified (calibrated) by fitting the selected constitutive model to match with the simulation
results. During this process, the average stress (r) and strain measure (L) associated with the
deforming RVE are used to curve-fit a macroscopic constitutive model. To evaluate microscope
constitutive relations, the RVE model is examined to first identify regions where the deformation
is strongly inhomogeneous. Inhomogeneous deformation generally arises due to the interactions
between the microstructural features. A relative strain measure (Ln−L) is computed as the differ-
ence between the average strain in the inhomogeneously deforming region and the average RVE
strain. The microstress field (bn) within the inhomogeneous averaging volume is then computed
via a power equivalence relationship as introduced in Section 4.3. This field is averaged over
the inhomogeneous averaging volume to find the continuum microstress. Next, the relationship
between the relative strain and continuum microstress is curve-fitted to the chosen constitutive
model. The average microstress moment (b̄

n
) is computed within the inhomogeneous averaging

volume. The relationship between the strain gradient and microstress moment is then curve-fitted
to an appropriate constitutive model. The proceeding steps are repeated for each sample of RVE
cell model. The calibrated parameters (hn) in the constitutive models obtained based on all samples
of the RVE cell model are then used to estimate the statistics and distribution of each parameter
h as well as their correlations. Finally, the stochastic constitutive relations will be predicted based
on the chosen constitutive models and the statistical descriptions of all hn .

As demonstrated in [29], correlations of constitutive parameters hn often cannot be ignored due
to the strong correlations of material properties, e.g. a porous steel alloy with a large ultimate
tensile strength Suts also undergoes a high coalescence stress Scoal as shown in Figure 21(a). By
considering the correlations of material properties in the form of the correlations of constitutive
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Figure 21. Demonstrative example of stochastic constitutive relation. (Reprinted from [29], copyright
2008, with permission from Elsevier.)
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parameters h, it shows in Figure 21(b) that the predicted set of (stochastic) constitutive relations
matches very well with the RVE simulation results.

Statistical analysis and representation of the correlated constitutive parameters is not a trivial
task because most of the existing methods only consider the first-order marginal probability density
function (PDF) and the pairwise correlation [29]. When a high-order joint marginal PDF needs to
be used for characterizing the uncertainty associated with a set of stress–strain curves, alternative
uncertainty representation methods such as the polynomial chaos expansion [93] and the Copula
method [94–96] can be considered. Our recent study [97] demonstrated the pros and cons of
these alternative techniques for capturing high correlations considering both accuracy and ease of
implementation.

5. COUPLING WITH QUANTUM MECHANICAL SIMULATIONS

The importance of employing the quantum-mechanical description for resolving the nanomechanics
has long been realized by the computational mechanics community. We start our discussion by
first introducing Dirac’s notation of the wave function, i.e. 〈�| and |�〉, which are referred to as
the ‘bra’ and ‘ket’ symbols, respectively. They shall satisfy

〈�|�〉=
∫

�∗�dV =
∫

|�|2 dV =1 and 〈�|H |�〉=
∫

�∗H�dV (58)

in which superscript ∗ gives the complex conjugate, and H is typically the Hamiltonian (total
energy) operator for the specific system. |�|2 in Equation (58) gives the PDF for finding the
corresponding particle in space. Based on Dirac’s notation, the Schrödinger equation for a system
is given as

H |�〉=ε|�〉 (59)

in which the Hamiltonian operator is H =−(h̄/2m)∇2+U with h̄ being Planck’s constant divided
by 2
, m the particle mass, ∇ the gradient operator (this first term denotes the kinetic energy
operator) and U the potential energy function/operator. The major task of the computation is then
to solve the eigenvalue problem in Equation (58) for eigenvalues ε and eigenfunctions |�〉.

A comprehensive review on the techniques and related references for solving the Schrödinger
equation can be found in [4, 60, 98]. In this section, we focus on outlining the recent efforts
in coupling the quantum-mechanical methods with other coarse-grained approaches. We have
excluded many methods that are developed to accelerate the computational speed by developing
parameterized empirical models through tight-binding or molecular dynamics due to our limited
scope. There are also large amount of work on using FEM shape functions as basis for ab initio
calculations. We refer to [60, 99, 100] for in-depth discussions and some of the recent development
using enrichment approximations based on extended FEM can be found in [101]. Our focus in this
section will be on the coupling between the numerical solution to the Schrödinger equation and
other modeling and simulation schemes that are developed in the context of continuum mechanics.
We note that there are more variety and flexibility in developing the coupling approach because of
the additional consideration of the electronic degree of freedom. In the following, we first present
several methodologies and then we will discuss our efforts in developing a multiscale concurrent
approach.
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5.1. An overview of methods of quantum-mechanical coupling

Abraham et al. [10, 102] have implemented a direct coupling approach in which the FE, molecular
dynamics, and tight-binding methods were performed simultaneously. Because of the differences
in the length scale and the details of the solution they obtain, each simulation was performed
on a different region of the domain, with a coupling imposed in ‘handshake’ regions where the
different simulations overlapped. A classic example is the simulation of the crack propagation in
brittle material [102]. The rationale for using a semi-empirical quantum mechanical-based method
such as the Tight Binding (TB) approach is for modeling the debonding process that leads to the
initiation and propagation of the crack. Hence, TB was implemented at the crack, and the MD
was used near the crack surface. The surrounding medium away from this region was treated with
FE. The interface between TB and MD, and MD and FE was implemented through a hand-shake
scheme. This method has also been used by Nakano et al. in large-scale simulations of fracture
[103]. Rafii-Tabar et al. [104, 105] have presented a related method combining FE and MD for
the simulation of crack propagation. A further development that is along the same line is the
coarse-grained molecular dynamics [106, 107].

Gavini et al. [108–110] have integrated the QC method with the orbital-free density functional
theory. The method, which was referred to as QC/OFDFT approach, inherited some of the basic
features of the QC method in terms of ability to transitioning between coarse and fine scale
representations. An important extension made in this implementation was the coarse-graining of
the quantum-mechanical OFDFT description. The variational principal was formulated in which
the energy functional was minimized with respect to the square root of the electronic density and
nuclei positions. Therefore, the method was aimed at resolving the ground state electron density
and equilibrium configuration. Owing to the fact that the method is not limited to the periodical
boundary conditions, the quantum-mechanical calculations are performed in the real space. Recent
application of this approach can be seen in [111, 112].

The QC implementation of the OFDFT method employed a real-space technique and does not
rely on the periodicity assumption. On the other hand, the solution to the Schrodinger equation
for a periodical solid can also be of interest in a general context. Such a solution procedure
usually involves the use of Bloch’s theorem that takes into account the periodicity and leads to
the calculation of the electronic structure that is confined to a representative unit cell. From the
application point of view, it is desirable to directly built a coarse-grained material/structure model
based on such representation, which serves as a link to the underlying ab initio models for the
general analysis that are governed by electron-mechanical coupling effects. Use of such an approach
is well justified by the concurrent nature of the coupling between mechanical deformation and
electrons, as well as the important features that go beyond the descriptions by phenomenological
or empirical-based approaches. Examples include non-convexity, non-linear elastic effect, and
complex energy landscape, etc.

5.2. A multiscale concurrent approach to electron-mechanical coupling

While most of the ab initio analysis based on Bloch’s theorem is carried out on the undeformed
configuration, extension of this to a deformed configuration can be made if the local homogeneous
deformation, or equivalently the Cauchy–Born hypothesis still holds. Under this assumption, one
can show that the periodic arrangement of the lattice is preserved in the local sense. One could,
therefore, extract a local representation of the unit cell upon which the quantum-mechanical
calculation will be performed. These calculations are usually performed in the wave number space
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as it produces the band structure and Density of States that are important for evaluating the physical
properties. As the size of the unit cell is much smaller than that of a global problem and involves
much less number of degrees of freedom for the electrons, the computational saving achieved
from the periodical assumption is thus enormous. More substantial savings can be achieved by
combining this with FEM calculations.

Earlier development along this direction yields a hyperelastic model by introducing the depen-
dence of the potential energy density functional on the deformation gradient. For instance, Tadmor
and colleagues [113] have integrated the TB approach with QC model and focused on the mechan-
ical analysis of complex crystals such as Silicon. Their model also included the inner displacement
effect. The use of TB model rather than an empirical potential is justified by its ability to eliminate
the non-physical local minimum resolved from the latter. By solving a continuum crystal elasticity
model [114] derived from the Tersoff–Brenner potential, Liu et al. [115] studied the influence of
mechanical deformations on the electronic properties of CNTs using the TB approach. They have
reported interesting transition between metallic and semi-conducting behavior in CNT structures
when tension or twist is introduced. A further study of electrical transport for deformed CNT using
the same model was discussed by Johnson et al. [116]. The works by Liu et al. [115] and Johnson
et al. [116] have focused on solving multi-physics constitutive equations.

A multiscale concurrent approach was recently proposed by Qian et al. [22]. In this approach,
the tight-binding approach was integrated with the virtual atom cluster model developed earlier. An
important distinction compared with the earlier approach was that the Cauchy–Born hypothesis was
not introduced and correspondingly no stress–strain relation was being evaluated. The information
passage between the TB and FEM (or meshfree) calculation was carried out directly through the
VAC model. The implementation enabled the use of existing TB and FEM packages without much
modification. The specific implementation is discussed in the following.

5.2.1. An introduction to the tight-binding method. As a semi-empirical approach, the tight-binding
method expresses the solution to the i th eigenfunction |�i 〉 as a linear combination of the basis
functions, i.e.

|�i 〉=
ne∑
j=1

cij|� j 〉={c}Ti {|�〉}=cTi {|�〉} (60)

in which ne is the number of base functions, cij is the linear coefficient to be determined and
|� j 〉 is the corresponding j th base function with j ranging from 1 to ne. The choice of the basis
function is typically from the so-called one-electron solutions. Based on this, the Schrödinger
equation becomes

H
ne∑
j=1

cij|� j 〉=εi

ne∑
j=1

cij|� j 〉 (61)

Following the variational principle, Equation (61) is pre-multiplied by the base function 〈� j ′ |
for j ′ =1, . . . ,ne. For each j ′,

〈� j ′ |H
ne∑
j=1

cij|� j 〉=εi〈� j ′ |
ne∑
j=1

cij|� j 〉 (62)
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We define Hj ′ j =〈� j ′ |H |� j 〉 and S j ′ j =〈� j ′ |� j 〉, Equation (10) can be rewritten as:

ne∑
j=1

Hj ′ j cij=εi

ne∑
j=1

S j ′ j cij (63)

Generalizing Equation (63) for all the choices of j ′ leads to eigenvalue problem

Ĥci =εiSci (64)

in which Ĥ is called the transfer integral or Hamiltonian matrix with element Hj ′ j and S is called
an overlap integral matrix with element S j ′ j . In the tight-binding method, the transfer and hopping
integrals are evaluated using empirical forms. The eigenvector ci contains all the linear coefficients
cij to be solved for the i th eigenvalue. The computational cost in solving the eigenvalue problem
is on the order of O(n3e ) in which ne is the total number of electronic basis functions used, thus
it is computationally intensive.

5.2.2. The multiscale concurrent model based on VAC. For nanocrystals that demonstrate period-
icities in the lattice structure, the computational cost associated with solving Equation (64) can be
greatly reduced by employing the Bloch theorem [117] . Based on this theorem, the base solution
to the Schrödinger equation for a periodic potential can be expressed as the product of a plane
wave eik·r with a function that has the periodicity of the lattice. (For detailed proof, see Kittel
[118].) Here the wave vector k is related to the periodicity of the unit cell for a particular problem.
Using i as the index of atom within the unit cell and � as the index for orbital, we express the
basis as:

|�i�(k,r)〉= 1√
Ncell

∑
I
eik·(RI+gi )|	�(r−RI −gi )〉 (65)

Here |�〉 is the one-electron base function, k is the wave vector, Ncell is the number of the
translational unit cells, RI is the coordinate of the I th unit cell, gi is the position of the i th atom
within the unit cell and r is the spatial coordinate upon which the base function |�〉 is being
evaluated. The exponential function reflects the periodicity argument from the Bloch theorem.

The TB approximation is now

|�(k,r)〉=∑
i�
Ci�|�i�(k,r)〉 (66)

Following the same variational principle, we derive the eigenvalue problem

〈� j�(k,r)|H∑
i�
Ci�|�i�(k,r)〉=ε〈� j�(k,r)|∑

i�
Ci�|�i�(k,r)〉 (67)

and secular equation for determining the linear coefficients

|〈� j�(k,r)|H |�i�(k,r)〉−ε〈� j�(k,r)|�i�(k,r)〉|=0 (68)

The size of the eigenvalue problem associated with Equation (68) can be greatly reduced by
invoking Bloch’s theorem. First of all, Equation (68) will be sparse and banded due to the fact that
the interaction will be limited to the nearest neighbor. With Bloch’s approximation, it can be shown
at the base orbitals for different atoms will be the same as if they are in the same symmetry group.
The combination of these two properties leads to a block diagonal matrix from Equation (68).
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Instead of solving the original eigenvalue problem associated with a global matrix, the final matrix
size for the reduced problem corresponds to the total number of electronic wave base functions
that are involved in the unit cell. For problem involving CNT, we have incorporated the helical
symmetry in the approximation of the base and have used the sp3 orthogonal tight-binding model.
This leads to an 8×8 matrix being solved for the eigenvalue problem.

Once the eigenvalue problem is solved, we have |�(l)(k,r)〉=∑i�C
(l)
i� |�i�(k,r)〉 with ε(l) being

the lth eigenvalue and C (l)
i� the eigenvector. We then evaluate the potential energy of the i th atom

in the unit cell as

	i =
1

2

∑
j

[
2
∑
k

HOMO∑
l=1

〈�(l)(k,r)|H (rij)|�(l)(k,r)〉+E ion(rij)

]
(69)

in which HOMO stands for the highest occupied molecular orbital. The factor of 2 comes from the
Pauli exclusion principle and 1

2 from the splitting of the bonding energy. The term E ion represents
the effect due to ion–ion repulsion and is expressed in an empirical form.

From Equation (69), it can be seen that one also needs to obtain the derivative of the total
energy with respect to the spatial coordinates, in order to resolve the electron-mechanical coupling
using the VAC model. The contribution from the TB model is obtained by further applying the
Hellmann–Feynman theorem [119],

�	i

�x
= 1

2

∑
j

[
2
∑
k

HOMO∑
l=1

〈
�(l)

∣∣∣∣�H (rij)

�x

∣∣∣∣�(l)
〉
+ �E ion(rij)

�x

]
(70)

For the lth eigenvalue,

〈�(l)|H (rij)|�(l)〉= 1

N

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C∗
i,s

C∗
i,x

C∗
i,y

C∗
i,z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

T

Ti HijT
T
j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C j,s

C j,x

C j,y

C j,z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

·eik·(RK+gl ) (71)

in which {Ci,s Ci,x Ci,y Ci,z} and {C j,s C j,x C j,y C j,z} are lth eigenvectors and superscript *
gives their complex conjugate.

Once the potential energy and inter-atomic force are resolved, the implementation of the VAC
model is the same as outlined earlier. Detailed implementation is described in [22].

In the following, we demonstrate the application of the multiscale concurrent model for analyzing
the electron-mechanical coupling in CNT structures. Based on the chiral index (n,m), we consider
three types of CNTs: zigzag (m=0), armchair (n=m) and chiral (not zigzag or armchair). Detailed
structure definition based on chiral index can be seen in [98]. Figure 22(a) illustrates the coupling
based on VAC in which the original molecular structure is replaced using meshfree representation
[120]. All the tubes are fully relaxed and then are subjected to tension or bending. The loads are
applied incrementally so that at each step we are able to resolve the electronic band structure and
extract the corresponding electronic properties.

For tension, a linear relation between the band gap Eg and applied tensile strain is observed in
all the tube from Figure 22(b). From the theoretical analysis based on zone-folding approach, it
is known that Eg =0 if mod(n−m,3)=0 at zero strain. However, our simulation shows that this
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Figure 22. (a) From molecular model to FEM/Meshfree model using VAC and (b) computed band gap
as a function of the tensile strain for a number of single-walled CNTs.

is not the case for tube with small radius, e.g. finite band gap is observed in (9,0) and (6,3) as
shown. These are the indications of effects of curvature-induced relaxation and rehybridization.
The armchair tube, on the other hand, retains a zero band gap at all strains. This is due to the
fact that the symmetry properties of the armchair tube are not altered by the applied tension and
therefore it remains metallic under deformation. At finite strain, we see that the change in the
band gap is not trivial for all the tubes. In particular, we observe the switch between a finite
band gap and zero band gap, such as those in (8,0), (9,0) and (8,4) tubes. This is an indication
that these tubes could switch from semi-conducting to metallic or vise versa by simply applying
tension. The electron-mechanical coupling and sensitivity revealed from this model is significant
for applications such as sensors and actuators.
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Figure 23. The I-V relation for a (9,0) tube at different tensile strains.

The electric transport properties can be computed from the electronic band structures at different
tensile strains. In Figure 23, we plotted the I-V curve that is derived from the Landauer–Buttiker’s
formula [121]. The currents plotted are in the unit of 77.48×10−6A. We see that at small voltage
(<4V), the I-V curve is not sensitive to the tensile strain. Large discrepancies are observed,
however, at large strains. Overall, the applied tension reduces conductivity. At high strain values,
we see that the values of the current seem to be converging to a constant. This is an indication on
the saturation of the available conducting channel. The specific saturation current is dependent on
the chiral index.

We proceed to look at the effect of the bending deformation. Five tubes with different types
of chirality indices are considered, i.e. (10,10), (9,0), (10,0), (12,3), and (10,5). An incremental
bending angle of 0.25◦ per step is imposed on each side until a final bending of 10◦ is reached
(Figure 24 shows the bending deformation for a (10,0) tube.). We chose a sensitivity index, which
is obtained by dividing the band gap change by the incremental bending angle. For all the five
tubes tested, we find that this sensitivity index is less than 0.05 eV/degree. We further illustrate
using (9,0) tube as an example. We show in Figure 25 the I-V curves obtained at zero bending
and 20◦ total bending angle. The two curves essentially overlap. The difference between the two
is plotted as a solid line, which shows a very little difference. This low sensitivity indicates that
the bending has little effect on the electronic structures.

6. CONCLUSIONS

We have presented an overview of multiscale models for complex material systems with a special
emphasis on the link between quantum-mechanical model to multiscale statistical continuummodel.
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Figure 24. The bending deformation in a (10,0) tube resolved from the multiscale concurrent model.

Figure 25. The I-V curve for a (9,0) tube at different bending angles.

Compared with many of the other methods that have been developed, we show the unique advantage
of the bridging scale concept, which enables effective separation of the physical variables that are
defined at their relative spatial and time scales. This also leads to a unique decomposition of the
momentum and energy representations and serves as a stepping stone to some of the extensions
described in this paper.

Several applications of the BSM have been presented. First, we have discussed the application of
the bridging scale concept in the modeling of wave and dynamic crack propagation.We have shown
that the spurious effect associated with wave-reflecting boundary conditions can be effectively
eliminated in the simulation of crack growth and branching. An extension aimed at integrating this
concept with a space–time formulation has also been demonstrated. This effectively provides a
framework for dealing with multiscale phenomena in both spatial and temporal domain. The ability
of this approach to achieve non-reflective and wave-transmitting boundary condition is illustrated.
Another important extension is made to apply the bridging scale decomposition to non-equilibrium
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phenomena. We have shown that this method is more reliable in its ability to capture thermally
activated shock waves or dislocations in comparison with the conventional molecular dynamics.

We then focused on the MRCT, based on a multiscale virtual power decomposition. A length
scale is associated with the definition of the virtual power terms at each scale. As a result, a set
of multiresolution governing equations can be derived that reflect the average response as well
as the inhomogeneous effects. The application of this methodology has been illustrated through
the analysis of adiabatic shear band and fracture in high-strength steel. We have further shown
that a non-local representation based on the virtual atom cluster model can also be introduced for
multiresolution of heterogeneous materials. While the procedure is similar, a key difference is the
non-local representation of the cluster model and therefore the intrinsic length scale is already
built-in. Motivated by the random nature of the material structure, we have shown an extension of
this approach, by incorporating statistic analysis in the multiresolution continuum model. This has
been implemented by establishing equivalent stochastic constitutive models as an alternative to the
DNS approach, which can be very expensive. This methodology allows establishing a link between
the correlation of the material properties and the stochastic nature of the constitutive behavior.

Finally, we have discussed the development of a coarse-grained quantum-mechanical model
aimed at predicting the electron-mechanical coupling in nanostructured materials, whereas
achieving significant reduction in the computational expense through the introduction of a local
model. Using CNT as an example, we have shown that the sensitivity of the electronic structure
is highly dependent upon the deformation mode. In certain cases, an interesting switch between
semi-conducting and metallic behavior has been observed.

In conclusion, recent efforts in developing multiscale methods based on the bridging scale
concepts have been presented. The overview on the approaches aiming at linking multiple spatial
and temporal scales has shed new lights on a number of important applications in the field
of nanomechanics. Nevertheless, building a truly seamless design environment is still an open
subject with many questions that remain to be answered. While it is not surprising that the topics
of mechanics have been frequently brought up in many nanotechnology applications, there is
increasing consensus that studying these topics will unavoidably involve other disciplines. Some
of the applications presented in this paper clearly show this trend and demonstrate the importance
of understanding these phenomena and the related mechanisms at different levels.
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