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a b s t r a c t

A meshfree method and (the related) a specified crack growth algorithm are used to simulate plugging
fracture during high-speed impacts. In particular, we are simulating ballistic penetration of a steel plate,
which is a ductile failure process involving projectile and target collision, contact, and subsequent projec-
tile penetration companied plugging fracture inside steel plate. We have developed and implemented an
explicit meshfree Galerkin formulation, which is capable of capturing ductile fractures during finite
inelastic deformation. The developed meshfree computational procedure has the following features:
(1) it has an effective dynamic meshfree contact algorithm that is suitable for high-speed impact; (2)
it can deal with thermal–mechanical couplings, and the stability of coupled thermal–mechanical motion
is guaranteed by an adiabatic split algorithm that integrates adiabatic heating and heat diffusion sepa-
rately; (3) it has an automatic crack growth algorithm that can simulate the whole lifespan of crack
growth including crack nucleation, propagation and arrest; (4) to compute the rate-dependent material
responses, a modified forward Euler tangent algorithm is adopted in constitutive update process for the
nonlinear thermal–mechanical inelastic constitutive relation that takes into account damage evolution.
Results of a numerical simulation of plugging fracture due to projectile/target impact are presented,
and they compare well with experimental data.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Ductile material failures during high-speed impact and penetra-
tion have been a main concern in designing armored vehicles, sea
vessels, and their reliability analysis. Most high-speed impact/con-
tact problems are involved finite deformation and subsequently
material and structural damages induced by high strain rates and
shock waves. To accurately predict such physical process and to
precisely quantify the thermal–mechanical field variables are the
key for novel material and structure designs.

In recent years, there have been some studies on numerical sim-
ulations of high-speed impact and contact problems in the litera-
tures, such as simulations of vehicle crashworthiness, e.g. [5,17,1],
and ballistic impact and penetration, e.g. [12,9–11,35,24]. However,
most of these simulations have remained in the stage of academic
research. To capture the dramatic changes and evolution in struc-
ture geometry and material constitutive relations during high-
speed impacts and to accurately predict ductile failure process have
remained to be challenges of computational failure mechanics.

During impact and penetration process, a ductile solid will be
undergoing severe local deformation with extremely high strain
rates and high temperature, which lead to material damage and
fracture. These pose serious challenges for computational study,
for instance, how to simulate crack growth in ductile materials.
Although there are some techniques developed in finite element
methods such as the automatic remesh technology by Wawrzynek
and Ingraffea [30], finite element based methods seem not to be
very successful in ductile fracture simulations. This is because
the ductile fracture is a thermodynamically irreversible process,
which prohibits artificial numerical unloading. On the other hand,
meshfree interpolations have flexibility to adapt computational
domain with evolving topological structure without numerical
unloading. Recently, there have been quite a few research works
using meshfree methods to simulate crack growth, e.g.
[6,7,14,26] among others. In particular, Li and his co-workers have
developed a meshfree crack growth algorithm specifically suitable
for ductile fracture [22,27,28]. In this work, we want to extend the
meshfree failure algorithm to simulate plugging failure formed by
crack propagation during high-speed impact and contact. To do so,
we have to address a number of technical issues: (1) Physically, the
plugging fracture induced by high-speed impact is initiated by
two-body or multi-body contacts. Although, the impact/contact
algorithm has been well developed in finite element method, there
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are still many pragmatic issues for the meshfree contact impact
algorithm and its actual implementation. In this work, based on
general philosophy of master/slave slide interface algorithm from
finite element method, a master/slave contact algorithm is devel-
oped to fit to meshfree computations. (2) During high-speed im-
pact, a large amount of heat will generated nearby the failure
area by plastic work accompanied by heat conduction; the ther-
mal–mechanical coupling will cause thermal softening and mate-
rial instability, which manifests as micro void formation and
coalescence, subsequent macro material damage and fracture. To
model such complex constitutive behaviors, we adopt the John-
son–Cook model in constitutive modeling, and use a modified for-
ward Euler one step time integration in constitutive update based
on a tangent modulus method by Peirce et al. [25]. Although the
Johnson–Cook model is a thermal-related model, the heat conduc-
tion process is considered by many researchers. In this work, fully
coupled thermal–mechanical equations of motion are considered
with heat conduction, large scale yielding, and finite deformation.
To ensure the numerical stability, an operator splitting algorithm is
adopted to update thermal–mechanical constitutive and to inte-
grate the weak form of heat conduction equation.

The paper is organized into six sections: in Section 2, we shall
present a complete meshfree Galerkin weak formulation, its inter-
polation and constitutive update; in Section 3, we shall discuss the
meshfree impact/contact algorithm, and in Section 4, we shall out-
line a meshfree crack growth algorithm. The results of the plugging
fracture simulation are presented in Section 5, and a few remarks
are made in Section 6.

2. Meshfree Galerkin formulation with the Johnson–Cook
model

2.1. Basic formulas

To fix notation, we firstly describe basic kinematic definitions
that will be lately used in the constitutive update. Initially at
t = t0, the meshfree particle position in the reference configuration
is denoted by X. In the current configuration at time t = tn, the po-
sition of the same meshfree particle is denoted by x = /(X), where
/ is the deformation map. The deformation gradient is then de-
fined as:

F ¼ @x
@X
¼ xi;Jei � EJ ð2:1Þ

where ei denote the coordinate basis vectors in the current config-
uration, and EJ denote the coordinate basis vectors in the reference
configuration. The velocity gradient in the current configuration is,

‘ ¼ @v
@x

ð2:2Þ

It can be split into two parts, a symmetric part and an anti-symmet-
ric part as the rate of deformation and the rate of spin:

‘ ¼ dþw ð2:3Þ
d ¼ ð‘þ ‘TÞ=2 ð2:4Þ
w ¼ ð‘� ‘TÞ=2 ð2:5Þ

In this paper, a total Lagrangian approach is adopted to represent
the finite deformation of solid. Therefore, ‘ should be expressed in
term of the deformation gradient:

‘ ¼ _F � F�1 ð2:6Þ

where _F ¼ @v
@X.

Finally, the rate of deformation and the spin tensors can be ex-
pressed in terms of deformation gradient in reference
configuration:

d ¼ ð _F � F�1 þ F�T � _FTÞ=2 ð2:7Þ
w ¼ ð _F � F�1 � F�T � _FTÞ=2 ð2:8Þ

The Jaumann rate of Kirchhoff stress is defined as:

s
O

¼ _s�w � sþ s �w ð2:9Þ

Define a deviatoric stress tensor s as:

s ¼ s� 1
3
ðs : IÞI ð2:10Þ

where I is the second order unit tensor.
The von Mises effective stress can be defined as:

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2

s : s

r
ð2:11Þ

The accumulated effective plastic strain is

�e ¼
Z t

0

_�edt ð2:12Þ

where _�e is the rate of effective plastic strain.

2.2. Thermal–mechanical coupling

The high-speed impact process will produce enormous plastic
deformation, and in turn the material plastic flow will generate a
large amount of heat at some local area. In some spatial points,
the temperature can sharply increase up close to melting temper-
ature. For instance, this may happen at the tip of Adiabatic Shear
Band in less than 200 ls [36,37]. Therefore the effects of ther-
mal–mechanical coupling and heat conduction cannot be ne-
glected in high-speed impact simulations. In this work, a fully
coupled thermal–mechanical impact problem with inelastic dam-
age evolution is considered.

By the virtual power principle, the weak formulation of balance
of the linear momentum can be written as:Z

X0

P : dFdX ¼
Z

CT
0

T � dudS�
Z

X0

q0
@2u
@t2 � dudX ð2:13Þ

where P denotes the nominal stress, which is the transpose of the
first Piola–Kirchhoff stress, and it can be related to the Kirchhoff
stress as s = PFT; and CT

0 denotes the traction boundary where the
traction force T is prescribed. The above weak form formulation is
obtained by integration by parts of the balance equation of linear
momentums.

Considering the heat generation and conduction process, the
strong form of energy equation can be written as:

q0Cp
@T
@t
¼ vs : dp þrXðJF�1 � K � F�T � rXTÞ 8X 2 X0 ð2:14Þ

where T is the temperature, v denotes the fraction of plastic work
converting to heat, rX is the gradient operator in reference config-
uration, Cp is specific heat. For isotropic heat conduction, the heat
conductivity tensor K ¼ jI, where j is the conductivity coefficient.
dp is the plastic rate of deformation.

In general, the simulation of such coupled thermo-mechanical
problem is a complex and difficult process. An effective integration
scheme to solve such coupled thermal–mechanical equations is so-
called operator splitting method, which is proposed by Armero and
Simo [2]. In their scheme, a fractional time step method is adopted
that is associated with an operator split of a fully nonlinear ther-
mal–mechanical system into an adiabatic heat generation phase,
followed by a heat conduction phase at the fixed configuration. Fol-
lowing the same procedure, the strong form energy balance equa-
tion may be also divided into the heat generation part and the heat
conduction part:
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q0Cp
@T
@t
¼ vs : dp ð2:15Þ

and

q0Cp
@T
@t
¼ rXðJF�1 � K � F�T � rXTÞ ð2:16Þ

For adiabatic heating, the least square weighted residual equation
is:Z

X0

q0Cp
@T
@t

dT dX ¼
Z

X0

vs : dpdT dX ð2:17Þ

In this work, the material modeling is accomplished by adopting a
thermal–mechanical coupled Johnson–Cook model. For this model,
we can show that:

vs : dp � v�s � _�e 8x 2 XðtÞ ð2:18Þ

The weak form of heat conduction equation is:Z
X0

q0Cp
@T
@t

dT dX ¼
Z
@X0

JðF�1 � K � F�TrXTÞ � NdT dS

�
Z

X0

JðF�1 � K � F�TrXTÞrXðdTÞdX ð2:19Þ

The first term of the left-hand side of above equation is the bound-
ary heat dissipation. Because the response time for high-speed im-
pact/penetration only last for a few milliseconds; and normally the
heat generated inside solid does not have enough time to dissipate
into the ambient environment. For simplicity, we may ignore the
part of heat that dissipates into the surrounding environment.
Hence, the weak form of heat conduction equation becomes:Z

X0

q0Cp
@T
@t

dT dX ¼ �
Z

X0

ðJF�1 � K � F�TrXTÞrXðdTÞdX ð2:20Þ

Finally, the energy balance equation including heat generation and
conduction becomesZ

X0

q0Cp
@T
@t

dT dX ¼
Z

X0

v�s _�edT dX�
Z

X0

ðJF�1K

� F�TrXTÞrXðdTÞdX ð2:21Þ

2.3. Thermal–mechanical meshfree formuluation

The weak forms of balance of linear momentum, heat genera-
tion, and heat conduction are expressed in Eqs. (2.13) and (2.21).
The corresponding boundary conditions in referential configura-
tion are,

P �N ¼ T0 8X 2 Ct ð2:22Þ
u ¼ �u 8X 2 Cu ð2:23Þ

Here, Ct and Cu denote the traction boundary and essential bound-
ary, and N is the unit normal vector of Ct.

It should be noted that the meshfree interpolation used here is
not able to represent boundary data via boundary value interpola-
tion. Therefore, an extra term appears in the weak form Eq. (2.13)Z

Cu

T0 � dudCX ð2:24Þ

because du – 0 "X 2 Cu. On how to estimate this term and enforce
the essential condition for meshfree methods, the readers is re-
ferred to Li and Liu [18].

By meshfree discretization, the temperature field may be inter-
polated by a temperature array of all particles:

T ðtÞ ¼ fT1; T2; . . . ; TnpgT ð2:25Þ

The displacement and temperature fields can be approximated by
the meshfree interpolation,

uhðX; tÞ ¼
Xnp

I¼1

NIðXÞUIðtÞ with UIðtÞ ¼ fUI1;UI2;UI3gT ð2:26Þ

duhðX; tÞ ¼
Xnp

I¼1

NIðXÞdUIðtÞ ð2:27Þ

ThðX; tÞ ¼
Xnp

I¼1

NIðXÞTIðtÞ ð2:28Þ

dThðX; tÞ ¼
Xnp

I¼1

NIðXÞdTIðtÞ ð2:29Þ

The weak form Eq. (2.13) will then lead to a set of discrete dynam-
icsal equations:

M
d2u

dt2 ¼ fext � f int ð2:30Þ

The conventional row-sum lumped mass matrix M is adopted for
explicit time integration scheme, and the external and internal force
arrays are calculated as follows:

fext
I ¼

Z
CT

TiðX; tÞNIEi dS ð2:31Þ

f int
I ¼

Z
Cx

Ph
iJ
@NI

@XJ
Ei dX ð2:32Þ

where Ei is the unit vector of referential coordinate.
Then the energy balance equation (2.21) becomes

Cp � _T ¼ G�H � T ð2:33Þ

where Cp is defined as the specific thermal mass, G is the matrix re-
lated to heat generation due to plastic strain, H is the matrix related
to heat conductivity:

Cp ¼ ½CpIJ�; CpIJ :¼
Z

XX

q0CpNIðXÞNJðXÞdXX ð2:34Þ

G ¼ ½GIJ�; GIJ :¼
Z

XX

v�s _�eNIðXÞNJðXÞdXX ð2:35Þ

H ¼ ½Hij�;

Hij :¼
Z

XX

jF�1
I‘ ðXÞF

�T
‘J ðXÞNi;JðXÞNj;IðXÞdXX ð2:36Þ

where XX is the integration weight for each particle in the back-
ground grid.

In this paper, the shape function of the Reproducing Kernel Par-
ticle Method (RKPM) is chosen as the meshfree interpolation func-
tion NI(X) (see [23]). The RKPM shape function may be viewed as
an enhanced version of the original SPH shape function. The basic
ideal of RKPM is to construct a proper kernel function by ‘correct-
ing’ the original SPH kernel function, wðX� XÞ, to satisfy the parti-
tion of unity condition so that the rigid body motion and linear
deformation can be correctly represented. The RKPM interpolation
function can be represented as:

uhðX; tÞ ¼
Z

X
CðX;XÞwðX� XÞuðXÞdXX ð2:37Þ

Here, the original kernel function wðX� XÞ is obtained by a Carte-
sian product of the one-dimensional cubic spline function (see
[23]), and CðX;XÞ is called the Correction function:

CðX;XÞ ¼ bTðXÞpðX;XÞ ð2:38Þ

In above formulation, pðX;XÞ could be any suitable basis function.
In this paper, we choose the first order polynomials or bi-linear
polynomials as the basis function:
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pTðX;XÞ ¼ ½1; x� x; y� y; ðx� xÞðy� yÞ� ð2:39Þ

and b(X) is a coefficient vector, it is determined by the reproducing
condition [23], which will leads to the following vector equation:

bðXÞ ¼M�1ðXÞpð0Þ ð2:40Þ

where

MðXÞ ¼
Z

X
pðX� XÞPTðX� XÞwðX� XÞdXX ð2:41Þ

pTð0Þ ¼ ½1;0;0;0� ð2:42Þ

Assume that in the domain X there is a valid particle distribution by
np particles. The RKPM kernel function is compact supported, final-
ly, the kernel integration, Eq. (2.37), can be discretized to form a
numerical interpolation:

uhðX; tÞ ¼
Xnp

I¼1

CðX;XÞwðX� XÞUIðtÞDVI ð2:43Þ

¼
Xnp

I¼1

NIðXÞUIðtÞ ð2:44Þ

where DVI is integration weight and finally, the RKPM interpolation
function is then defined as:

NIðXÞ ¼ CðX;XÞwðX� XÞDVI ð2:45Þ

2.4. Constitutive model

During high-speed impact, the propagation of shock wave in-
duces high strain rate plastic deformation, and most of the plastic
work will convert to heat [29], and consequently it leads to mate-
rial softening. Hence, the mechanical response of material is a rate-
dependent thermal–mechanical phenomenon. In this paper, a tan-
gent model proposed by Peirce et al. [25] is adopted to update the
constitutive relation. This method is used by Li et al. [22] firstly, in
this paper, we re-derived the formula and correct some errors in
the paper by Simkins and Li [28].

For ductile fracture problem, the total deformation may be
decomposed to three parts: elastic, plastic, and thermal part:

d ¼ de þ dp þ dT ð2:46Þ

A rate form constitutive equation is used:

s
r
¼ C : de ¼ C : ðd� dp � dTÞ ð2:47Þ

In case of isotropic hardening:

dp ¼ _�en̂ ð2:48Þ
where n̂ is the normal of deviatoric stress:

n̂ ¼ 3
2�s

s ð2:49Þ

In adiabatic heating, the rate of deformation induced by thermal ef-
fect is

dT ¼ a _TI ð2:50Þ

where a is the coefficient of thermal expansion, and I is the second
order unit tensor.

Based on the Johnson–Cook model [15,16] the plastic strain rate
_�e is calculated as follows:

_�� ¼ _�0 exp
1
C

sY

gð��; TÞ � 1
� �� �

ð2:51Þ

gð��; TÞ ¼ ½Aþ B��n�½1� T m� with T ¼ T � T0

Tm � T0
ð2:52Þ

where _��0 is a referential strain rate, normally, we choose it as
1.0 s�1, n and m are strain hardening and thermal softening param-

eters, T0 is the room temperature, and Tm is the melting
temperature.

In usual explicit time integration, the basic field variables such
as stresses, strains are calculated explicitly based on the informa-
tion of the previous time step as computation progresses. To en-
hance the accuracy of the time integration, we adopt a fractional
time increment scheme that evaluates the time derivatives of field
variables at a time instance tn+h that is between tn and Tn+1. To illus-
trate the procedure, we discuss how to update the Kirchhoff stress
s from t = tn to t = tn+1,

snþ1 ¼ sn þ _shDt ð2:53Þ

where _sh is the Kirchhoff stress at predicted step th, h 2 [0,1]. From
Eq. (2.9), we obtain,

_sh ¼ s
r

h þwn � sn � sn �wT
n ð2:54Þ

From Eq. (2.47), s
r

h can be written as:

s
r

h ¼ C : ðdh � _��hn̂h � a _ThIÞ ð2:55Þ

To reduce the complexity of the computational algorithm, while
computing the energy equation at a quadrature point, we first con-
sider adiabatic heat generation:

_Th ¼
v

qCp
�s _�eh ð2:56Þ

Following the spirit of the tangent modulus method proposed by
Peirce et al. [25], we consider,

De ¼ Dt _��h ¼ Dt½ð1� hÞ _��n þ h _�enþ1� ð2:57Þ

Here De can be approximated by Taylor expansion

D�� ¼ _��tDt þ hðDtÞ2 @ _��
@��

�����
t

_��h þ
@ _��
@sY

�����
t

_�sh þ
@ _��
@T

�����
t

_Th

" #
þOðDt3Þ ð2:58Þ

hence

_��h ¼ _��t þ hðDtÞ @
_��

@��

�����
t

_��h þ
@ _��
@sY

�����
t

þ @
_��

@T

�����
t

_Th

" #
þOðDt3Þ ð2:59Þ

where

@ _��
@��
¼ _�� � 1

C
�s

g2ð��; TÞ

� �
@g
@��

� �
ð2:60Þ

@g
@��
¼ Bn��ðn�1Þð1� T mÞ ð2:61Þ

@ _��
@sY
¼

_��
Cgð��; TÞ ð2:62Þ

@ _��
@T
¼ _�� � 1

C
�s

g2ð��; TÞ

� �
@g
@T

� �
ð2:63Þ

@g
@T
¼ � mT m�1

ð1� T mÞðTm � T0Þ
gð��; TÞ ð2:64Þ

In finite deformation,

_�s ¼ n̂ : s
r

ð2:65Þ

then we have,

_�sh ¼ n̂h : fC : ðdh � dp
h � dT

h Þg ¼ n̂h : fC : dh � _�ehC : n̂� av
qCp

�s _�ehðC : IÞg

ð2:66Þ

Denoting

Ph ¼ C : n̂h and Ah ¼ n̂ : C : n̂ ð2:67Þ
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_�sh can be derived as,

_�sh ¼ Ph : dh � _��hAh �
3Kav
qCp

�sh
_��htrðPhÞ ð2:68Þ

By inserting Eqs. (2.56) and (2.68) to Eq. (2.59), we can obtain the
following equation:

_��h ¼
_��t

1þ n
þ n
ð1þ nÞHh

Ph : dh ð2:69Þ

where

Hh ¼ Ah þ
3Kav
qCp

�shtrðPhÞ �
@ _��=@��
@ _��=@ �sh

þ v�sh

qCp

@ _��=@T

@ _��=@ �sh

 ! !
ð2:70Þ

and

n ¼ ðhDtÞ @
_��

@�sh
Hh: ð2:71Þ

Finally, the Jaumann rate of the Kirchhoff stress (Eq. (2.55)) can be
obtained as,

s
r

h ¼ C

: dh �
_��t

1þ n
þ n
ð1þ nÞHh

Ph : dh

 !
Ph þ

3Kav�sh

qCp
I� I

� �
ð2:72Þ

3. An efficient meshfree contact algorithm

Contact between different objects or different parts of one ob-
ject is an important technical problem that exists in many engi-
neering applications. From the perspective of computational
mechanics, this is a special nonlinear problem with unknown con-
tact boundary and reaction force. In conventional finite element
method (FEM) (e.g. [4]), there are two main approaches to simulate
contact and impact processes. The first approach is based on the
variational method, for example the Lagrangian multiplier method,
or the augmented Lagrangian multiplier method, which enforces
the exact impenetrability condition; The second approach is the
penalty method, even though the penalty method has been used
in many commercial FEM software, it has some inherent shortcom-
ings, such as the penalty factor is set by users subjectively, there-
fore the contact force may not be accurate and precise due to the
arbitrariness of pre-set penalty factor. In general, the first approach
is suitable for computing static or quasi-static contact, and the
penalty method, the second approach, is more suitable for dynamic
impact/contact problems.

Li et al. [19,20] have proposed a meshfree contact detection
algorithm, it works well for meshfree simulations. In this paper,
combining with the meshfree detection algorithm, we propose a
coarse-to-fine meshfree contact algorithm for meshfree simulation
to increase its efficiency, this method is based on the penalty meth-
od for dynamic simulations with explicit time integration, and it is
adaptive for high-speed impact problem, and moreover it is very
easy to be implemented.

3.1. Representation of contact systems

For a pair of interaction objects, we call the potential contact
surfaces of two objects as master/slave sliding interfaces. Intui-
tively, the slave body is the object that initiates the contact, how-
ever, in this definition, the designation of master body and slave
body can be interchanged. Initially, the contact surfaces are sepa-
rate, in case of contact, there will be moment and energy trans-
fered between two objects along the interface.

Normally, the continuous contact process can be simplified as
the interaction of particles in slave sliding interface and surfaces

grid in master sliding interface. Under this context, the term ‘‘par-
ticle” denotes slave particle, and the term ‘‘surface element” de-
notes master surface element, in 2D problems, we simply call it
as master segment. Comparing with FEM, in meshfree method, a
continuous object is first discretized into a set of particles, and then
an interpolation field can be established based on the set of parti-
cles. Therefore, for meshfree methods, additional care is needed in
order to identify master segments. For the case of self-contact, the
slave nodes and master segments can locate in the same surface.
For the two objects contact system, a typical contact process is
illustrated in Fig. 1. Here the slave sliding interface is denoted as
curve cAB, and master sliding interface is curve cCD.

3.2. Geometric searching

To detect contact, we first check the geometric penetration sta-
tus between a slave particle and a master surface (segment). To do
so, we have to find the relative position between each master seg-
ment for a given slave particle. As shown in Fig. 1, at the current
configuration (t = tn), the slave body is in contact with master body,
but the contact position is unknown. To find contact position, we
propose the following geometric searching algorithm to calculate
the relative spacial position between a master/slave pair. A two-
step search strategy (coarse to fine) is adopted here to accelerate
computation efficiency.

3.2.1. Global searching
In the first phase, a preliminary test is carrying out between

every slave particles and master particles to find the closest
slave/master particles pair by spatial distance of these two parti-
cles, which is recorded in the closest particles pair array:

a½i� ¼ krijkmin; i 2 1;2; . . . ;ns; j 2 1;2; . . . ;nm ð3:1Þ

In above equation, i means the ith slave particle and j means the jth
master particle, ns and nm are the total number of master and slave
particles.

3.2.2. Local searching
During a dynamic contact process, if a slave particle start to

penetrates a master segment, the potential master segment must
contains a master particle that is closest to the slave particle, and
for fixed slave particle, this master point has been identified as ar-
ray a[i].

However, in 2D case, a master particle connects two master seg-
ments. The corresponding slave particle can only penetrate one of
them. To find out which master segment this slave particle may
penetrate, we then conduct a local research. For the master seg-
ment and slave particle system shown in Fig. 2, the projection vec-
tor of the slave node to the master segment can be calculated as,

k ¼ S � t ð3:2Þ

In above equation, S = rsj � rmm, rsj and rmm denote the posi-
tion of jth slave and mth master particle pair at ith time step; t is
the tangent vector of master segment, and t = rmm � rmm�1, where
rmm�1 denote the master particle that connect to rmm.

The contact of the two bodies is possible, if

0 < k < 1: ð3:3Þ

If contact is possible, the master segment between rmm and rmm�1

will be in contact with the slave particle j, with position vector rsj. It
is possible that the jth slave particle may penetrate this segment. It
may be noted that when k = 1, the slave particle may penetrate two
master segments, and one can choose any of the two master seg-
ments to proceed further. However, in a dynamic contact process,
this case rarely happens for every time steps.
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The above two steps searching algorithm can find and match
master segment/slave particle pairs accurately. Comparing with lo-
cal searching, the global searching computing is much more time
consuming. However, in an explicit dynamic simulation, the defor-
mation of configuration of solid is small during one time step,
therefore, we do not need to change the initial master segment/
slave particle pairs until the local searching has failed. An alterna-
tive meshfree contact algorithm is also available as described in Li
et al. [19,20].

3.3. Penetration condition

Now we are at the position to address how to implement the
penetration condition between the slave particle and the related
master segment. To quantify the penetration characteristics, we
calculate the normal gap and tangential velocity between a slave
particle and master segment. Assume that the current positions
of the slave particle and the related master segment are known
as shown in Fig. 3. The penetration depth can be calculated as
follows:

gj ¼ ðrsj � rmmÞ � nm ð3:4Þ

where ni is the out normal of the master segment. The penetration
condition can be further evaluated by checking the value of gj:

gj

> 0; Separation; no interaction
¼ 0; Contaction; no interaction
< 0; Penetration; interaction

8><>: ð3:5Þ

The tangential velocity that the slave particle projects to the master
segment will be,

vt
j ¼ vs

j � tm ð3:6Þ

where vs
j means the velocity of jth slave particle and ti denotes the

unit tangent tensor of master segment:

tm ¼
rmm � rmm�1

krmm � rmm�1k
ð3:7Þ

3.4. Contact force

After contact-detection searching, the inter-penetration parts
between two contact objects can be identified by the condition
gj < 0. The contact force can then be calculated by reinforcing the
impenetrability condition. The contact force is calculated by elim-
ination of virtual penetration. In this work, the normal and tangent
contact force are obtained as the physical force that will ‘‘push
back” the penetrated salve particle out of the surface master seg-

Fig. 1. Two objects contact system.

Fig. 2. Slave particle/master segment system.
Fig. 3. The penetration condition of master/slave pair.
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ment in one time step. If central difference time integration
scheme is used, the normal contact force can be obtained as:

Fn
j ¼

2Msjjgjj
Dt2 nm ¼ f n

j nm ð3:8Þ

where Dt means the amount of one time step. Msj is the mass of jth
salve particle which penetrate through the master segment with gj

distance.
In Fig. 3, when the jth slave particle have been ‘‘push back” back

to the surface of master segment, its tangent velocity will induce
friction force. In this work, the classical Coulomb friction model
is adopted [8] to calculate friction force.

Considering the stick condition, the friction force will be:

Fnstick
j ¼ �Msj

Dt
vt

j ð3:9Þ

Based on the Coulomb friction theory, the tangent friction force im-
posed by master segment to slave particle can’t exceed the static
friction force limit. After that, the kinetic slip friction force should
be calculated by:

Fnslip
j ¼ �jlkf n

j j
vt

j

kvt
jk

ð3:10Þ

The above interaction forces are imposed to the slave particle
directly. It should be noted that in meshfree simulations the force
acting on an individual slave particle (primary particle) must be re-
distributed to all other slave particles inside the domain of influ-
ence of that slave particle, and the redistribution weight may be
proportional to the inverse distance between the primary slave
particle and the slave particle that the force is redistributed to.

4. Meshfree crack growth algorithm

In traditional FEM simulations, a popular approach for crack
growth is the so-called element erosion technique, e.g. [13], which
simply discard or ‘‘kill” the elements along the crack path. The con-
sequence of such operation is the loss of element mass, energy,
momentum, etc., which will result the loss of accuracy. Moreover,
the killing element procedure cannot automatically form traction-
free surface as newly-formed crack surface. From this perspective
the meshfree method has its unique advantage for crack growth
and crack surface representation. Belytschko et al. [7] first devel-
oped a so-called visibility condition algorithm that can provide
an automatic adaptation of topological connectivity map among
meshfree particles. Based on it, Li and Simonsen [22] have devel-
oped a meshfree crack growth algorithm that has been successfully
used in simulations of ductile fracture.

However, in the previously published work, the cracks are pre-
configured in the testing specimen, and during simulations, the
cracks are kept in a state of evolution or propagation from the ini-
tial pre-notches. This setting provides an effective means to test
the validity of proposed meshfree visibility condition algorithm,
but in the real contact/impact process, when, where, and how
the cracks grow are unknown at their initial phase. In a real frac-
ture process, there are three phases in the whole process of crack
growth: nucleation, propagation and arrest. In this work, based
on the visibility condition algorithm, we propose a meshfree algo-
rithm to simulate the all three phases of crack growth in the whole
ductile fracture process automatically.

4.1. Crack nucleation

A crucial step to simulate crack nucleation and propagation in a
numerical computation is how to represent the evolving crack sur-
face and automatically adjust interpolation field around growing
crack tip. This process is not only a re-interpolation scheme, but

also a process of how to model the material re-configuration. For
a high-speed impact induced plugging fracture problem, the cracks
will nucleate at the contact surface, and go through out until they
reach the opposite side of specimen. Comparing with the normal
crack which has two crack tips, that means it has two potential
propagation directions, shown as Fig. 4(a), the crack of plugging
fracture only has one crack tip, i.e., one propagation direction,
Fig. 4(b). In these pictures, each dashed circle contains one crack
tip,i.e., the potential propagation direction of that crack tip. To
plugging fracture, there are two one-tip-cracks, which should be
nucleated at the contact surface. Using the master/slave contact
algorithm described in Section 3, the cracks should always be
nucleated at one of the slave particles.

The crack nucleation and growth is determined by a specified
criterion, such as the damage criterion or the strain intensity factor
criterion. For example, if the accumulating damage value D is cho-
sen as the index of crack nucleation and growth criterion, which is
based on a specified model, such as the Johnson–Cook model. To
nucleate a new crack tip, in each time step, we apply the criterion
Dc to every salve particles that is defined by the contact/impact
algorithm. Once the damage value Di which is attached to one of
those particles, Pi, exceeds the crack growth criterion Dc, particle
Pi will be identified as a crack core. To form a one-tip-crack shown
in Fig. 4(b), we need to find the next particle Pj whose damage va-
lue is bigger than Dc, and it locates around the crack core inside a
circle with radius R centered at Pi in the following time steps. After
two damaged particles are selected, the second damaged particle
will become the crack tip, and the crack core particle Pi will be split
to two new particles that have the same value of state variables at
the moment of splitting, shown in Fig. 5, here the salve particles
are marked as diamond black boxes, the particles locate at the sur-
face of crack (except crack tip) are marked as square black boxes,
the normal meshfree particles are marked as circle black dotes
and the virtual points which denote the crack path are marked as
diamond blank boxes. In Fig. 5, particle Pi becomes a virtual point
P1 between the newly split two particles. Particle Pj is the crack tip
attached to a specified meshfree particle, the segment line P1Pj de-
notes the path of crack.

The mass and volume of the two new particles are re-assigned
according to the following particle splitting method:

Massnew1 ¼
1
2

Massold ð4:1Þ

Massnew2 ¼
1
2

Massold ð4:2Þ

and

Volumenew1 ¼
1
2

Volumeold ð4:3Þ

Volumenew2 ¼
1
2

Volumeold ð4:4Þ

Fig. 4. The geometric morphologies of cracks.
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The kinematic field variables, such as displacement, velocity, and
acceleration of the new particles are assigned based the following
formulas:

Xnew1 ¼ Xi þ d; ð4:5Þ
Xnew2 ¼ Xi þ d; ð4:6Þ
Dispnew1 ¼ Dispold þ d ð4:7Þ
Dispnew2 ¼ Dispold � d ð4:8Þ
Velnew1 ¼ Velold ð4:9Þ
Velnew2 ¼ Velold ð4:10Þ
Accnew1 ¼ 0:0d0 ð4:11Þ
Accnew2 ¼ 0:0d0 ð4:12Þ

where d is vector who is vertical with the crack path segment P1Pj

and whose length jdj � 1. It serves the purpose to make a physical
distinction of the two new particles once they are separated.

After the spatial shape of a one-tip-crack is formed, shown as in
Fig. 5, two new surface segments will be generated in the fractur-
ing body, which will change the topological or configurational
structure of the solid. To correctly reflect such change, the mesh-
free interpolation field has to change accordingly. One has to devel-
op a numerical algorithm that can automatically modify the local
connectivity map for meshfree particles, so that the computation
can simulate a running crack without the user interference. To
do so, we adopt the parametric visibility condition algorithm pro-
posed by Li and Simonsen [22] to update the connectivity arrays of
the related particles and hence the shape of meshfree interpolation
function for particles nearby the point P1. To implement the visible
condition, the segment line P0Pj is used to ‘cut’ the straight line
connecting the nearby particles with P1, where the virtual particle
P0 is defined as:

P0 ¼ P1 þ d
P1Pj

!

j P1Pj

!
j

ð4:13Þ

where d is a scalar and d� 1, which means that we only extend the
segment line P1Pj

!
a d ratio to ‘cut’ the particle connection clearly.

4.2. Crack propagation

Once the projectile impact specimen, the nucleated cracks begin
to propagate deeply inside solid. Assume that there is a crack with
crack tip particle Pn and the piece-wise segment crack path line
P0P1 � � � Pn, shown as Fig. 6. In this work, during the crack propaga-
tion process, a crack tip is always attached to an existing material/

interpolation particle. It only moves from one particle to another.
The crack growth is determined by the particle damage value D
too. To locate the new crack tip, we first choose a radius R and draw
a circle centered at the current crack tip Pn, then apply the crack
criterion Dc to each meshfree particle inside the circle to decide
which point should be the next crack tip, except those points
(square boxes) on the crack surfaces.

In practice, however, if the new crack tip is located behind the
current crack tip, it could cause some complications such as the
crack-direction-reverse phenomenon. To simplify the crack growth
algorithm, we limit the potential new crack tip inside a fan region
of the circle, which is defined by the angle \AOB in Fig. 6. That an-
gle is centered at the segment line of Pn�1Pn with a half of angle hc,
here, Pn�1Pn is the last crack path segment.

For a specified particle Pj inside the circle, the angle between
segment line PnPj and Pn�1Pn can be represented as:

hj ¼ arccos
Pn�1Pn

!
� PnPj

!

j Pn�1Pn

!
jj PnPjj

!

0@ 1A ð4:14Þ

Finally, the new crack tip can be selected by satisfying the fol-
lowing criteria:

Dj P Dc and hj 6 hc=2:0 ð4:15Þ

When there are more than one particle whose damage value ex-
ceeds the critical damage value, it will cause another technical com-
plexity: crack bifurcation. For simplicity, in this work we only
consider one particle as the new crack tip, i.e., the particle with
maximum damage value.

Once the new crack tip is selected, we split the old crack tip into
two particles using a similar algorithm as that in Eq. (4.4). How-
ever, at the crack propagation phase, the mass and volume of the
new two particles are re-assigned based on the angle defined by
the crack propagation direction. Denote the angle \PjPnP1 as u1

and angle \P1PnPj as u2, which satisfy the condition u1 + u2 = 2p
as shown in Fig. 6. Then the particle split algorithm is

Massnew1 ¼
u1

2p
Massold ð4:16Þ

Massnew2 ¼
u2

2p
Massold ð4:17Þ

and

Volumenew1 ¼
u1

2p
Volumeold ð4:18Þ

Volumenew2 ¼
u2

2p
Volumeold ð4:19Þ

Fig. 5. Illustration of numerical scheme for crack nucleation.

Fig. 6. Illustration of numerical scheme for crack growth.
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The kinematic field variables, such as displacement, velocity, and
acceleration of the new particles are assigned as the algorithm ex-
actly described in Eqs. (4.5)–(4.12).

Once the crack propagation finish, the current crack tip become
particle Pj. When a crack propagates one step forward, the crack
surface segments inside solid will be update too. In the fracturing
body, the visible condition algorithm is adopted to modify the par-
ticle integration connection again. At the current crack propagation
step, the segment line PnPj is used to ‘cut’ the integration connec-
tion of particles that located nearby the current crack tip.

For the ductile fracture, the shape of crack surface is complex. In
following, an example is illustrated to display the meshfree shape
function evolution of a particle that is located along a crack path.
Before the crack reaches to that particle, its original shape function
is a single ‘‘hill” as shown in Fig. 7(a) and (b) after the crack passes
through it, the particle is split into two particles to form new crack
surfaces via particle splitting algorithm. Sequentially the local
topological structure of the solid has changes, hence we update
the meshfree connectivity by the parametric visibility condition.
In Fig. 7 (c) and (d), the modified 2D and 3D profiles of shape func-
tion distribution show that a meshfree function has been cut by
crack into two parts, and each part is assigned to one of the split
particle. The example shows alone crack path, the meshfree shape
function can be automatically updated successfully.

4.3. Crack arrest

In the plugging fracture, once a crack goes through the speci-
men, the crack will severe the specimen, and the crack will stop

to propagate, which we call as the crack arrest. To simulate crack
arrest phenomenon, we have developed the following meshfree
algorithm. At each crack propagation step, once the new crack tip
is found, it should be tested whether it is located in the outer sur-
face of specimen or not. Because meshfree is a meshless simula-
tion, a specified strategy must be designed to test the outer
surface condition. In this paper, we use the angle hj, which is de-
scribed in Eq. (4.14) to estimate the outer surface condition. In
Fig. 6, for every particle inside the searching circle, we must calcu-
late the angle hj to find out the new crack tip. If no new crack tip
can be found out at the current step, and the maximum an mini-
mum angle hmax and hin satisfy the following condition:

hmax � hin > hc ð4:20Þ

we then say that the current crack tip Pn locates at the outer surface
of specimen, and the crack should be arrested.

For an arrested crack tip, we have first implemented the particle
split method mentioned in Eqs. (4.4) and (4.12) to split particle Pn

to two new particles. Subsequently the crack path segment
Pn�1Pnþ1 is used to modify the integration field of particles based
on visible condition algorithm, shown in Fig. 8. Here the virtual
point Pn+1 is defined by:

Pnþ1 ¼ Pn þ d
Pn�1Pn

!

j Pn�1Pn

!
j

ð4:21Þ

where d is a scalar and d� 1. The same as crack nucleation, we only
extend the segment line Pn�1Pn

!
a d ratio to ‘cut’ the particle connec-

tion clearly.

Fig. 7. Meshfree shape function evolution along crack propagation.
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5. Numerical simulations

5.1. Crack growth criteria

The most critical step in simulation of plugging fracture is the
crack growth criterion, which determines whether or not the
numerical simulation makes any physical sense. The main mecha-
nism of plugging fracture is attributed to the formation of adiabatic
shear banding (ASB) and subsequent damage accumulation inside
the ASB, e.g. [31]. Therefore, in this work, we have proposed two
fracture criteria in numerical simulations. Firstly, we choose the
effective shear strain as the fracture criterion, i.e. we set up a crit-
ical effective shear strain value, �cr. Once the effective shear strain
value is reached at one point near a crack tip, the crack starts to
advance.

Secondly, we choose the accumulative damage value as the
crack growth criterion. In the meshfree formulation, the John-
son–Cook damage model [28] is adopted to estimate the damage
of particles, which is calculated by the following damage evolution
equation:

D ¼
XD�

�f
ð5:1Þ

where

�f ¼ D1 þ D2 exp D3
sm

rY

� �� 	
½1þ D4 ln _��½1þ D5T � ð5:2Þ

and sm ¼ 1
3 ðs11 þ s22 þ s33Þ; D� is the plastic strain increment in

each time step, and D1, D2, D3, D4, D5 are material damage constants.
Once a critical damage value Dcr is reached at a particles around a
crack tip, the crack front will advance to a new position

5.2. Numerical modeling

To validate the meshfree algorithm of the thermo-mechanical
formulation, we have performed numerical simulations of a plug-
ging fracture failure experiment conducted by Borvik et al. [10].
The experimental set-up is shown in Fig. 9. To validate the numer-
ical result with experimental data, two cases of simulations are
carried out according to the exact experiment conditions that are
documented in Table 1. In the Case I and the Case II, the width of
target plate is 11.1 mm and 10.2 mm, respectively, corresponding
to the experiment Test 8-13 and Test 8 from Borvik et al. [10]. In
Borvik et al.’s experiment, the projectile is launched by compressed
gas gun with variable velocity to impact a thin target plate. After
contacting, the high speed stress wave induces growth of micro-

cracks and micro-voids inside shear zone with heat generation
and conduction from plastic work. Subsequently, discontinuous
micro-cracks will coalesce each other to form the macro-crack,
and that crack propagate to grow through the target to form the
plugging failure. The final damage pattern can be shown as
Fig. 10. In experiments, the projectile is made of hardened steel,
and the target is made of Weldox 460E steel. Comparing with tar-
get plate, the final deformation of projectile is very small (see
Figs. 13 and 14). Therefore in this work, we model the projectile
as a rigid body, and we model the target plate by using the John-
son–Cook model with constants tabulated in Table 2. The material
constants of the Johnson–Cook model are taken from the experi-
mental data in Borvik et al. [10] exactly. In Borvik et al. [10], a
set of systematic experiments have been conducted to measure
Welddox 460E steel and to determine the material constants of
the Johnson–Cook model. In this work, the fracture criteria is cho-
sen based on either the critical shear strain or the critical damage.
The critical value for the shear strain is set as �cr = 0.30, and the
critical damage value is set as Dcr = 0.50 for the Johnson–Cook
damage model.

In meshfree discretization, on the vertical direction,we use non-
uniform graded particle distribution, i.e., we use a dense particle
distribution near the impact area, and gradually coarsen the parti-
cle density towards to the ends of plate. While on the plate thick-
ness direction, we set uniform graded particle distribution over the
plate thickness. To test the convergence of proposed method, two
meshfree particle distributions are used in the simulation: a coarse
particle distribution/discretization that contains 11,520 particles
for meshfree interpolation and 44,068 quadrature points for
numerical integration; and a fine particle distribution/discretiza-
tion that contains 45,984 particles and 179,916 quadrature points.
Our simulation computer is Hp xw4600 workstation (CPU: Intel
Core 2 Duo 2.83 GHZ, RAM:3.0 GB). For Case I with effective shear

Fig. 8. Illustration of numerical scheme for crack arrest.

Fig. 9. The dimension of computation configure.

Table 1
Simulation conditions.

Test ] Target width (mm) Projectile initial velocity (m s�1)

Case I 11.1 298.0
Case II 10.2 173.7
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strain criteria, the computing response time is 118.0 ls, the com-
puting time for coarse discretization is 0.92 h and for fine discret-
ization is: 3.80 h. For Case II with effective shear strain criteria, the
computing response time is 216.0 ls, computing time for the case
of coarse discretization is 1.86 h, and for the case of the fine dis-
cretization is it is 7.1 h. The CPU time for Johnson–Cook damage
criteria is very close to the above data.

5.3. Simulation details

The residual velocity of projectile vp after plugging failure is a
main measurable quantity or characteristics of the ballistic pene-
tration test. Results of numerical simulation and experiment of
both Case I and Case II are compared in Figs. 11 and 12. The com-

parison data is shown as Table 3, where vi denotes the projectile
initial velocity, ve

p denotes the residual velocity of projectile from
experiment, and vs

p denotes the residual velocity of projectile from
numerical simulation.

Summing up the comparison, we find that for Case I both of the
coarse and fine discretization are convergence to the experiment
data well, whereas for Case II, the error of simulation decreases

Fig. 10. The damage pattern of plugging failure. (From Borvik et al. [9] with the
permission of Elsevier Pub. Co.).

Table 2
Material parameters of Weldox 460E steel.

Parameter Value Definition

E 200 GPa Young’s modulus
m 0.3 Poisson’s ratio
q 7850 kg m�3 mass density
A 490 MPa yield stress
B 807 MPa strain hardening
n 0.73 strain hardening index
_�0 1.0 s�1 reference strain rate

m 0.94 temperature softening
Cp 452 J (kg K)�1 specific heat
a 11.2 � 10�6 K�1 coefficient of thermal expansion
v 0.9 the fraction of plastic work converted to heat
k 452 J (kg K)�1 specific heat
D1 0.0705 damage parameter
D2 1.732 damage parameter
D3 �0.54 damage parameter
D4 �0.015 damage parameter
D5 0 damage parameter

Fig. 11. Comparison on the residual velocities of projectile between experiment
and simulation: Case I.

Fig. 12. Comparison on the residual velocities of projectile, between experiment
and simulation: Case II.

Table 3
Residual velocity of projectile.

Test ] Particles vi ve
p

(m s�1)
Criteria vs

p

(m s�1)
Error (%)

Case I 11,496 298.0 241.4 Damage 238.5 �1.2
Effective strain 246.7 +2.2

45,984 Damage 239.6 �0.8
Effective strain 246.1 +1.9

Case II 11,496 173.7 112.0 Damage 123.0 +9.8
Effective strain 121.8 +8.7

45,984 Damage 116.1 3.6
Effective strain 109.4 �2.6
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from about 9% to 3%. Even though the specimen of Case II is a little
thinner than Case I (10.2 mm vs. 11.1 mm), because the projectile
velocity of Case II is lower than Case I (173.7 m s�1 vs. 298.0 m s�1),
the plastic deformation time of Case II is longer than that of Case I
(see Figs. 13 and 14). From Fig. 10, we can find that the plugging
fracture is a localization phenomena, therefore, the simulation re-
sults show that the simulation of plugging fracture is discretization
dependent.

Although the simulation results show that both the damage and
the effective shear strain criteria work well, as pointed out by Bai
et al. [3], the damage mechanism of high-speed impact is associ-
ated with the mode II fracture, and strain localization will cause
void growth and heat generation inside the shear bands. Hence,
in the following, we mainly discuss the numerical results based
on the effective strain criterion for the case of the fine
discretization.

In Borvik et al. [10], there are some high-speed camera images
for both Case I and Case II at specific time instances. To compare
the deformation morphology of these tests, the experimental and
numerical results are juxtaposed in Figs. 13 and 14. The variations
of the color in the figures are the contours of effective stress, where
the ‘red1’ area indicates a more than 1.2 � 109 Pa high stress zone.
From the figure, we can observe the penetration of the projectile
and the whole process of the plugging fracture. For the Case I, the
plugging fracture process is finished at 28 ls after the initial impact,
i.e., the crack goes through the specimen. And it occurs at 46 ls for
the Case II as shown in Figs. 13 and 14.

The distribution of the effective stress is also displayed in these
figures. One may observe that a high stress zone moves with the
crack tip along the crack path, and the stress wave propagation in-
side the target plate may also be observed. Owing to the fact that
the plugging failure of metal is an extraordinary nonlinear material
response, the dynamical crack growth process in the target renders
a non-symmetric fracture pattern. In Figs. 13 and 14, one may find
that the fracture surfaces of cracks have rough and irregular
shapes, which indicates a ductile fracture feature. Paying attention
to the shape of the final shape of the plugging crack, one can find a
distinct plastic deformation pattern at the left of top and bottom
side of plugging crack, that is a clear evidence of ductile fracture,
and it is difficult to be simulated by FEM methods because of mesh
constraints.

The detailed failure morphology of Case I is plotted as the con-
tour of shear stress in Fig. 15. When the projectile impacts the tar-
get, the high-speed dynamic indentation causes massive plastic
deformation at the contact region of the target. Subsequently the
damage of particles located nearby edges of the projectile quickly
increases to reach the critical value, then the cracks start to prop-
agate through the target.

From Fig. 15, we can find that during crack propagation the
shear stress is localized in a small and almost horizontal zone from
the vertical edge of target. Outside the localized deformation zone,
the high shear stress disappears rapidly. Back to the localized
deformation zone, we can find that the high shear stress zone con-
centrates at the front of crack tips (the ‘‘red” and ‘‘blue” areas) and
it gradually lessens after the cracks have severed target plate. This
phenomena indicates that the stress has been released by the new-
ly-formed crack surface, and it indirectly validates the fact that the
trace-free crack surface has been modeled correctly in the mesh-
free simulation. Such fracture feature is difficult to be captured
by the FEM erosion algorithm.

Reviewing the morphology of the crack surface, one may see a
zig-zag pattern. This zig-zag pattern of rough crack surface is the

trademark of ductile fracture [32–34]. Using the grid based simu-
lation method such as FEM, the path of crack growth should go
along the edges of elements, then it is hard to capture this rough

Fig. 13. High speed camera images compare with numerical simulation: Case I,
vi = 298.0 m s�1. The numerical plots is shown as contours of the effective stress req.
(From Borvik et al. [9] with the permission of Elsevier Pub. Co.).

1 For interpretation of colour in Figs. 7, 13, 14, 16 and 17, the reader is referred to
the web version of this article.

920 B. Ren, S. Li / Computers and Structures 88 (2010) 909–923



Author's personal copy

surface feature of ductile fracture. The final fracture morphologies
of Case I with coarse and fine discretization at 34 ls are shown as
Fig. 16. In these figures, we can find that the crack surface mor-
phology maintains its rough feature and it becomes finer for the
computation result obtained from the fine particle discretization.

We have studied the numerical instability of the meshfree sim-
ulations by changing different time increment in time integration.

Fig. 14. High speed camera images compare with numerical simulation: Test Case
II, vi = 173.7 m s�1. The numerical plots is shown as contours of effective stress req.
(From Borvik et al. [9] with the permission of Elsevier Pub. Co.).

Fig. 15. The detailed crack surface morphology with a background of shear stress
contour r12.
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For the simulation results reported above, we have used a very
small time increment, Dt = 4 � 10�9 s, in the simulations for both
coarse particle distribution and the fine particle distribution. It is
well below the Courant–Friedrichs–Lewy (CFL) instability limit
for linear problems. On the other hand, we have also tested other
time increments starting from Dt = 10�9 s to 10�7 s. For the fine
particle distribution, the numerical instability occurs between
Dt = 5.0 � 10�7 s to 10�8 s. It is worthy mentioning that the CPU
time of the computation reported above is also related to time
increment used in time integration. From this perspective, the re-
ported CPU time is a conservative estimate.

Zooming into the contact interface, one may find that initially
the projectile impacts on the target with its whole front end; sub-
sequently with the projectile penetration progressing, there is an
air gap formed between the front end of the projectile and the con-
tact surface of the target, which may be due to the ‘‘bending effect”
of the target plate caused by the impact load. This makes the con-
tact force concentrating in a small zone nearby the two plugging
cracks.

During the plastic deformation, the plastic work converts to
heat that further induces thermal softening. For the Case I, the local
temperature profiles of target are shown in Fig. 17. When temper-
ature reaches a critical value inside the adiabatic shear band, the
crystal grains will undergo recrystallization, which will further
lead to the stress collapse inside the ASB, and it will result adia-
batic shear band propagation. From Fig. 17, one can observe that
the temperature is localized near the damage zone, and it is related
to strain localization; these simulation results agree with the early
results of meshfree simulations of adiabatic shear bands reported
by Li et al. [19–21].

6. Discussions

In this work, we have developed a meshfree procedure to sim-
ulate ductile plugging fracture problem under real contact/impact
condition. Comparing with experiment data, the numerical compu-
tation shows that proposed algorithm can accurately simulate the
ductile fracture undergoing finite deformations and large scale
yielding.

The meshfree formulation presented here has some special fea-
tures, including (1) A coupled thermal–mechanical formulations
for meshfree computation; (2) A modified rate-dependent consti-
tutive update algorithm for finite deformations; (3) An effective
meshfree impact/contact algorithm for dynamics simulation; (4)
A meshfree crack growth and propagation algorithm that can auto-
matically simulate the crack nucleation, propagation and arrest.
Moreover, the numerical computation presented here illustrates
that proposed formulas are effective and computationally stable;
the proposed meshfree contact/impact algorithm is simple and
efficient comparing with the previous meshfree version, and it
can be easily extended to 3D simulations.

Finally, like most of other numerical simulations, we cannot
completely eliminate mesh sensitivity, especially for the fracture
problem, where the stress and temperature fields are extraordi-
narily localized at the crack tip zone, which make mechanical vari-
ables such as the damage value dependent on particle distribution.
Nevertheless, we believe that the simulation presented here has
captured the main features of ductile plugging fracture and the re-
lated dynamical mechanical responses.

Fig. 16. The crack surface morphology of coarse and fine discretization.

Fig. 17. The detailed crack surface morphology with a background of temperature
profile.
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