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a b s t r a c t

In this work, a novel multiscale cohesive zone model is proposed, in which the bulk material is modeled
as a local quasi-continuum medium that obeys the Cauchy–Born rule while the cohesive force and dis-
placement relations inside the cohesive zone are governed by a coarse grained depletion potential. The
interface depletion potential is constructed based on the Derjaguin approximation of nonlocal colloidal
interactions. By doing so, the interface constitutive descriptions are made genetically consistent with
the bulk constitutive relations that are enriched from underneath atomistic structure. The method pro-
vides an effective means to describe properties of material inhomogeneities such as grain boundaries,
bi-material interfaces, slip lines, and inclusions, etc. We have developed and implemented the proposed
multiscale cohesive zone model in a cohesive finite element weak Galerkin formulation, and we have
applied it to simulate dynamic fracture problems in solids. The numerical simulation results have shown
that the method has successfully captured the phenomenon of spall fracture during simulations of
impacts and penetrations.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The theory of cohesive zone model may be traced back to the
early works by Dugdale [7] and Barrenblatt [2], in which both con-
cepts of atomistic de-cohesion and the defect process zone are
established. Xu and Needleman [27] first related the cohesive zone
model with finite element (FE) analysis, and they developed the
cohesive finite element method and successfully applied it to sim-
ulate dynamic fracture problems. Since then, the phenomenologi-
cal cohesive zone model has gained much popularity in material
failure simulations, and it has been extensively applied to solve
engineering fracture mechanics problems e.g. Ortiz and Pandolfi
[19]. However, so far most of these applications are macroscale
material failure analysis, and they may be restricted to the small
scale yielding conditions. In other words, the method is most suit-
able for simulations of brittle fractures or quasi-brittle fractures.
When the crack size becomes very small, say below sub-micron
scale, the conventional cohesive zone model may reach to its limit,
because irreversible plasticity theory is highly size-dependent, and
the conventional cohesive law inside the cohesive zone may be-
come inaccurate. Another drawback is that in conventional cohe-
sive finite element method, the bulk and interface constitutive
relations are disjointed; and in conventional cohesive FEM the nor-
mal and tangential cohesive potential laws are also prescribed sep-
arately, even though recently attempts have been made to develop

a mix-mode universal phenomenological cohesive potential, e.g.
Park et al. [20].

To advance the current cohesive finite element technology, an
ideal cohesive finite element paradigm would be based on the
interface cohesive potential that can be linked to the atomistic po-
tential obtained from first-principle calculations. This fundamental
approach is considered as the ultimately replacement to the empir-
ical cohesive potential approach, see Nguyen and Ortiz [18], Bra-
ides et al. [3], and Liu et al. [14]. Pursuing this goal, both Nguyen
and Ortiz [18] and Braides [3] have investigated this problem by
using formal asymptotics and renormalization group techniques
to obtain a coarse grained or effective cohesive potential for inter-
facial cohesive zone.

In this work, by taking a completely different approach, we first
consider the cohesive zone as a finite width zone, and then we pro-
pose to use the coarse graining methodology in colloidal physics to
model constitutive relations in the interplanar cohesive zone. By
assuming that the cohesive zone is a relatively ‘‘soft” interface
zone, one may derive a so-called depletion for the interface zone
by using Derjaguin’s approximation (see Derjaguin [6]). Second
we use the Cauchy–Born rule to model the effective constitutive
properties of the cohesive zone as well as in bulk elements. The
justification to do so is based on the following hypothesis that most
defects are multiscale entities, so should be the cohesive zone. Taking
crack as an example, except at initial stage and in the atomistic
scale, the crack growth is purely a surface separation; once the ini-
tial crack starts to grow, it will evolve into a growth of a depleted
material layer or zone, which contains voids, grain boundary, slip
lines, and surface separations.
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From the computational perspective, the proposed multiscale
cohesive zone model may be viewed as a combination of cohesive
finite element and the Cauchy–Born rule method. Tadmor et al.
[25] have proposed a quasi-continuum (QC) method as a multi-
scale simulation method to bridge atomistic simulations and con-
tinuum simulations. There are two versions of quasi-continuum
methods corresponding to different scales: a local version of QC
method applicable at mesoscale and a nonlocal version of QC
method that is designated for atomistic scale simulations. How-
ever, up to today, how to couple these two versions of the QC
method still have many issues, such as the justification of the
use of ghost force, etc. Since there is no clear advantage using non-
local QC method, at least for now, at atomistic scale the preferred
simulation tool is still the molecular dynamics (MD) rather than
the nonlocal version of QC method, which may be more compli-
cated and costly. The local version of QC method is basically a
straightforward application of the Cauchy–Born rule in nonlinear
finite element method with linear FE interpolation function, and
it is only applicable when material deformation is uniform. In fact,
the Cauchy–Born rule has been applied to construct material con-
stitutive relations since 1980s, such as Milstein and Hill [16], Mil-
stein [17], Ericksen [8], Daw and Baskes [5], among others.

The objective of this work is to establish a small scale coarse
grained multiscale cohesive zone model that not only has the sim-
plicity of continuum modeling and computation efficiency of finite
element methods, but also has the capability of capturing certain
particular local non-uniform deformations such as fractures and
dislocations. One of the motivations of this research is to seek a
possible coarse grained computational micro-mechanics model
for simulations of ductile spall fracture at small scales.

The paper is organized in six sections: in Section 2 we shall re-
view both the quasi-continuum method and the finite element
Galerkin weak formulation for the conventional cohesive zone
model; in Section 3 we shall discuss the construction of the multi-
scale cohesive zone model; Section 4 is focused on finite element
implementation of the cohesive zone model, and in Section 5, a
few numerical simulations are presented, and finally in Section 6
we shall discuss some important issues of the multiscale cohesive
zone model.

2. Review of existing methods

2.1. Local quasi-continuum method

In the proposed multiscale cohesive zone model, to reduce the
computational cost and complexity in computing the atomistic po-
tential energy, the Cauchy–Born rule has been adopted (see Fig. 1)
to calculate elastic energy in each element. The so-called Cauchy–
Born rule is referring to the following procedure: if the deforma-
tion in each element is uniform, the deformation gradient, F ¼ @x

@X,
is then constant in each element. Since in a given element
e; e ¼ 1; . . . ;nelem the deformation gradient, Fe, is a constant tensor,
an arbitrary deformed bond vector ri in a unit cell in the element
can be found by mapping the corresponding primitive Bravais lat-
tice vector, i.e. the undeformed bond vector Ri, into the deformed
vectors,

ri ¼ FeRi; i ¼ 1;2; . . . ;nb; ð2:1Þ

where nb is the total number of bonds in a unit cell.
On the other hand, because the deformation in each element is

uniform, one can compute the elastic energy density in any given
element by calculating the potential energy density of an arbitrary
unit cell inside the element,

We ¼
1

Xb
0

Xnb

i¼1

/ðriÞ ¼
Xnb

i¼1

/ðFeRiÞ ¼WeðFeÞ;

e ¼ 1;2; . . . ;nelem; ð2:2Þ

where Xb
0 is the volume of the unit cell in the referential configura-

tion, /ðriÞ is the atomistic potential, ri; i ¼ 1;2; . . . ;nb is the current
bond length in a unit cell. Note that the superscript b indicates bulk,
and Xb

0 is the undeformed volume for the unit cell.
Note that the bond vector ri is the distance vector between the

center atom in the unit cell to one of the atoms at vertex of the unit
cell. Taking the hexagonal lattice for example (see Fig. 2), if we only
consider the nearest neighbor interaction and assume the equilib-
rium atomistic bond spacing is a, the six interatomic bond vectors
in the undeformed lattice can be expressed as:

R1 ¼ ða; 0Þ;
R2 ¼ ða� cosðp=3Þ; a� sinðp=3ÞÞ;
R3 ¼ ða� cosð2p=3Þ; a� sinð2p=3ÞÞ;
R4 ¼ ð�a;0Þ;
R5 ¼ ða� cosð�2p=3Þ; a� sinð�2p=3ÞÞ;
R6 ¼ ða� cosð�p=3Þ; a� sinð�p=3ÞÞ:

ð2:3Þ

Therefore the deformed bond length is a function of deformation
gradient of the element that the unit cell belongs to, i.e.
ri ¼ jrij ¼ riðFÞ. Hence, the strain energy density inside each element
is a function of the deformation gradient of that element,

We ¼
1

Xb
0

Xnb

i¼1

/ðriðFeÞÞ ¼WeðFeÞ: ð2:4Þ

Consequently, the constitutive relations for the bulk medium can be
established. For instance, the second Piola–Kirchhoff stress can be
written in the following form by using the Cauchy–Born rule:

SðCÞ ¼ 1

Xb
0

Xnb

i¼1

/0ðriÞ
@ri

@C
¼ 1

Xb
0

Xnb

i¼1

@/
@ri

Ri � Ri

ri
; ð2:5Þ

where Xb
0 is the volume of the unit cell in the referential configura-

tion, /ðriÞ is the atomistic potential, ri; i ¼ 1;2; . . . ;nb is the current
bond length for the ith bond in a unit cell, and C ¼ FT � F is the right
Cauchy–Green tensor. Similarly, we can find the first Piola–Kirch-
hoff stress tensor and Cauchy stress tensor in each element as

P ¼ FS ¼ 1

Xb
0

Xnb

i¼1

@/
@ri

ri � Ri

ri
; ð2:6Þ

r ¼ J�1FSFT ¼ 1

Xb

Xnb

i¼1

@/
@ri

ri � ri

ri
: ð2:7Þ

Then the strain energy in the element Xe can then be written as:

Fig. 1. The Cauchy–Born rule. Fig. 2. A hexagonal lattice unit cell.
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Ee ¼WðFeÞXe ð2:8Þ

and the total energy of the system will be,

Etot ¼
Xnelem

e¼1

WðFeÞXj: ð2:9Þ

This formulation is referred to as the local QC method. The local QC
method provides a considerable computational simplification in
evaluation of elastic energy of a quasi-continuum system, when
surface and interface energies may not be important. For solids con-
taining defects, the deformation will then become non-uniform and
non-smooth in the vicinity of defects; therefore the assumptions
made in local QC are no longer valid.

A nonlocal version of QC has been developed in which the en-
ergy is computed using the following ansatz:

Etot ¼
XNrep

a¼1

naEaðuaÞ; ð2:10Þ

where na is a suitably chosen weight. The energy from each repre-
sentative atom Ea is computed by visiting its neighboring atoms
whose positions are generated using the local deformation. Near de-
fects such as cracks or dislocations, the finite element mesh is also
refined to atomic scale to reflect the local deformation more accu-
rately. Practical implementations usually combine both local and
nonlocal version of the method.

A main challenge of the quasi-continuum method is how to
couple the macroscale local quasi-continuum method with the
microscale nonlocal quasi-continuum method. The general non-
local QC potential energy may lead to some non-physical effects
in the transition region. Specifically, taking derivatives of the en-
ergy functional to obtain forces on atoms and FE nodes may lead
to so-called ghost forces in the transition region, and it has many
issues that remain to be resolved, e.g. Shenoy et al. [24] and Miller
and Tadmor [15]. The origin of these ghost forces lies precisely in
the assumption of locality in the continuum region and the local/
nonlocal mismatch in the transition region.

2.2. Cohesive finite element method

Consider a solid subjected to inhomogeneous deformation that
is caused by displacement discontinuity as shown in Fig. 3. In engi-
neering applications, this type of strong discontinuities is the char-
acterization of fracture or dislocations. Initially as a single
connected domain, X0, the body is broken into two disjointed
pieces by a crack. In the referential configuration, the fracture sur-
face, or the plane of division, is denoted as S0, and it divides the
body into two halves: X0 ¼ Bþ0

S
B�0 . After the deformation u,

u : X0 ! X;

the body arrives at its deformed or current configuration, X (see
Fig. 3). We use x denoting the spatial position of a material point
X at the time t, i.e.

x ¼ uðXÞ ¼ uþ X: ð2:11Þ

Two crack surfaces now move to Sþ and S� and the two deformed
halves are denoted by Bþ and B�, respectively. Due to atomic inter-
actions, there will be surface traction between Sþ and S�.

The strong form of the governing equations of the problem, i.e.
the equations of motion, can be written as:

DIV½PðuÞ� þ q0B ¼ q0 €u in B�0 ; ð2:12Þ
u ¼ �u on @uB0; ð2:13Þ
PðuÞ �N ¼ T on @tB0; ð2:14Þ
Pþ �N þ þ P� �N � ¼ 0 on S�0 ; ð2:15Þ

where B is the body force, q0 is the mass density in referential con-
figuration. In above equations, the symbol DIV is the material diver-
gence operator, i.e.rX;N is the normal vector of surfaces including
the cohesive surface, �T is the prescribed traction on @tB0. It is as-
sumed that the traction is continuous along the cohesive surface,
S0, see Eq. (2.15). For domain boundaries, it is noted that

@uB0 ¼ @uBþ0
[
@uB�0 and @tB0 ¼ @tB

þ
0

[
@tB

�
0 ; ð2:16Þ

where @uB is the portion of the boundaries where the displace-
ments are prescribed, and @tB is the portion of the boundaries
where the traction is prescribed.

In Eqs. (2.12)–(2.15), PðuÞ is the first Piola–Kirchhoff stress ten-
sor. Considering the constitutive relation of a hyperelastic material,
one may find the first Piola–Kirchhoff stress by differentiating the
elastic strain energy density W with respect to deformation
gradient,

P ¼ @W
@F

which clearly indicates that P is a function of the deformation map,
i.e. P ¼ PðuÞ.

Following standard procedures and neglecting the body force,
we can derive the Galerkin weak formulation for Eqs. (2.12)–
(2.15) as:Z

B�0

q0 €u � dudV þ
Z

B�0

PðuÞ : dFdV

¼
Z
@t B�0

T � dudSþ
Z

S0

ðPðuÞ �N Þ � dðuþ � u�ÞdS: ð2:17Þ

The last term in the above equation is the virtual work done by the
cohesive traction force across the plane of discontinuity. If we de-
fine the jump there as:

D ¼ uþ � u� ð2:18Þ

then we can re-write the last term as:Z
S0

ðPðuÞ �N Þ � dðuþ � u�ÞdS ¼
Z

S0

Tcohe � dDdS; ð2:19Þ

where Tcohe denotes the cohesive traction. In continuum cohesive
theory, it is defined through the cohesive law:

Tcohe ¼ @Ws

@D
; ð2:20Þ

where Ws is the surface energy density.
In continuum cohesive FEM theory, Ws is empirical, and the

cohesive element between two bulk elements is in fact a virtual
entity, by which we mean that the interface element has no vol-Fig. 3. Illustration of the deformation of cohesive surfaces under finite deformation.
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ume or area associated with it. Once Ws is being prescribed, one
can calculate cohesive traction along the element boundary and
subsequently find the cohesive force contribution to each nodal de-
gree of freedom. However, a caveat for continuum cohesive zone
model is that one has to make an extra effort to choose a cohesive
surface potential, so that it is consistent with the constitutive rela-
tions in the bulk material, if one wishes to obtain simulation result
that can be compared with experimental tests. Ultimately, one will
have to justify one’s choice. Many times, some choices just cannot
be justified because of the complex size effects at small scale.

In a quasi-continuum medium, the properties of the bulk mate-
rial are determined by the atomistic potential in a coarse graining
procedure. To be true to the spirit of coarse graining, we believe
that the effective interface cohesive relations should be also de-
rived based on the same coarse graining procedure as in the bulk
material.

The essential difficulty to do so appears to be the discontinuity
as a form of local inhomogeneous deformation, because it makes
the Cauchy–Born rule break down and hence the coarse graining
scheme. To resolve this issue, we need to modify the bulk Cau-
chy–Born rule to incorporate or to accommodate kinematics of
strong discontinuity. In other words, we need to construct a gen-
eral non-uniform deformation field that can accommodate strong
discontinuity, so that we can extend the local quasi-continuum
FEM formulation to situations where the strong discontinuity is
present.

3. A multiscale cohesive zone model for quasi-continua

In this work, we shall use the Cauchy–Born rule (see Fig. 1) to
establish the constitutive relation for the bulk medium, and this
will provide us an atomistically based macroscale constitutive rela-
tion in multiscale computations. On the other hand, by doing so we
implicitly assume that the local deformation is uniform, which will
prevent us to simulate highly non-uniform deformations such as
dynamic fracture.

In order to represent possible non-uniform local deformation
fields caused by the presence of defects, we first remodel or re-con-
struct the material interface as a finite width compliance cohesive
zone, which is the weakest link in an otherwise homogeneous
medium (see Ibach [11]). In Fig. 4, it shows that the cohesive zone
between two bulk media is remodeled as a different lattice strip re-
gion whose lattice constants and atomistic potential are different
from those of the bulk medium. We assume that a locally non-uni-
form deformation field may be represented by a piece-wise uniform
deformation field that employs a finite width cohesive zone to con-
nect uniformly deformed bulk elements, and we further assume
that the non-uniform local deformation is mainly confined in the
cohesive zone. To quantitatively deal with the non-uniform defor-
mation inside the finite-width cohesive zone, we then assume that
the non-uniform deformation is multiscale in character, and its

overall (average) deformation at the scale of the bulk element size
can be expressed as an affine deformation. For example, in the case
of plane strain, it reads as follows:

�x1 ¼ a1 þ Fc
11X1 þ Fc

12X2; ð3:1Þ
�x2 ¼ a2 þ Fc

21X1 þ Fc
22X2; ð3:2Þ

�x3 ¼ a3 þ X3; ð3:3Þ

where Fc
ij are constants. Here the main argument is that the non-

uniform deformation field is mainly confined inside the cohesive
zone between the adjacent bulk elements, and its effective or over-
all displacement field can be treated as an affine displacement field,
Eqs. (3.1)–(3.3). In other words, the effective affine displacement
field inside the cohesive zone is a coarse grain model for local
non-uniform displacement field. Therefore in the proposed multi-
scale cohesive zone model, we are making two coarse graining
models: one for the bulk medium and one for the material inter-
faces, or defects. To compare the difference in kinematics between
the conventional cohesive zone model and the multiscale cohesive
zone model proposed in this work, we juxtapose their local defor-
mation maps in Fig. 5.

In two-dimensional finite element discretization, the multiscale
cohesive zone model may be simplified as two triangle bulk ele-
ments sandwiching one quadrilateral cohesive element (see
Fig. 6). The beauty of such coarse graining procedure is that the
effective deformation field can be uniquely determined by the bulk
finite element nodal displacements, and the coarse grain model for
the cohesive zone is properly connected with the kinematics of
bulk elements that are treated as a quasi-continuum. Consider
the 2D plane strain case, and fix the rigid body motion
a1 ¼ a2 ¼ a3 ¼ 0. One can easily determine the effective deforma-
tion gradient Fc by using the information of FEM nodal displace-
ments. For example, we can use the deformations of two
diagonal lines of the cohesive zone, which can be expressed by
the four FEM nodal displacements, to explicitly determine effective
deformation gradient Fc inside the cohesive zone as follows (see
Fig. 7):

Fc
11

Fc
12

Fc
21

Fc
22

2
66664

3
77775 ¼

1
ðad� cbÞ

d 0 �b 0
�c 0 a 0
0 d 0 �b
0 �c 0 a

2
6664

3
7775

xþ‘þ1 � x�‘
yþ‘þ1 � y�‘
xþ‘ � x�‘þ1

yþ‘ � x�‘þ1

2
6664

3
7775; ð3:4Þ

where a ¼ Xþ‘þ1 � X�‘ ; b ¼ Yþ‘þ1 � Y�‘ ; c ¼ Xþ‘ � X�‘þ1;d ¼ Yþ‘ � Y�‘þ1.
Previously without the coarse graining interface model, the lo-

cal QC method can only provide a coarse grained model for bulk
materials; that is why it cannot solve small scale defect evolution
problems. By constructing a finite width cohesive network, the
multiscale cohesive zone model can at least represent the overall
non-uniform deformation caused by defect evolution. The next
question is:

Fig. 4. Reconstruction of cohesive interface – an atomistic cohesive zone model.
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how do we construct cohesive laws for a weak interface zone?

To answer this question, we first exam the constitutive relations
for realistic weak interfaces, for instance, the grain boundary. The
cohesive laws in the grain boundary have been studied by Rice
[21] and Rice and Beltz [22] as what is called the Rice–Peierls ap-
proach. In fact, the essence of the Rice–Peierls approach is similar
to the basic idea of the depletion potential in colloidal physics. The
nature of the cohesive force inside the grain boundary may be con-
sidered as the colloidal adhesive force, and it can be obtained by
various coarse graining methods. This motivates us to apply the
Derjaguin approximation [6] to find the cohesive potential inside
the cohesive zone. Since we consider the cohesive zone as a phys-
ical zone with dimension, we can then apply the local version of

quasi-continuum method to the cohesive zone to obtain a coarse
grained stress–strain relation for the cohesive zone region. That
is, we can obtain the constitutive relations for both bulk region
and cohesive element by employing the same local version of qua-
si-continuum method. For instance, the first Piola–Kirchhoff stress
inside the cohesive zone can be written as:

P ¼ bc

Xc
0

Xnb

i¼1

@/cohe

@ri

ri � Ri

ri
; ð3:5Þ

where Xc
0 is the volume of the a unit cell inside the cohesive zone,

and /cohe is the so-called depletion potential inside the cohesive
zone. Even though for some realistic interfaces, there may be no
definite lattice structure with atomistic resolution. However, there
exist long range order structures or interface structures that come
from surface or interface remodelings. In the spirits of homogeniza-
tion, we assign an equivalent defect lattice structure to each cohesive
interface, and bc is the adjustable factor for equivalent cohesive
zone lattice density.

The key here is how to obtain the depletion potential as well as
the related ‘‘equivalent interface lattice” constants for given cohe-
sive zone. To do so, we first assume that the cohesive zone region
has a finite thickness R0. The width of the cohesive zone, R0, is a
physical parameter that is related to the characteristic length scale
of specific defects considered. In this study, we choose
10�3jS�0 j 6 R0 6 10�1jS�0 j, and S�0 are the length of the sides of the
adjacent bulk elements. The lower limit aspect ratio is a restriction
limit beyond which numerical ill-conditioning may happen in
computations. The upper limit aspect ratio may limit how much
refinement we can do, as the mesh size approaches to atomistic
scale, because R0 has to be greater than 4–5 lattice spacings in or-
der to apply the Cauchy–Born rule to the effective displacement
field in the cohesive zone.

Fig. 5. Comparison of kinematics between (a) conventional cohesive zone model and (b) the multiscale cohesive zone model.

Fig. 6. Illustration of the cohesive zone model.

Fig. 7. Deformation gradient in cohesive zone.
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To obtain the depletion potential in the cohesive zone, we as-
sume that the cohesive zone is a compliance interface, and it is
much weaker than the adjacent bulk elements, and the intermolec-
ular interaction inside the cohesive zone is a type of the Van der
Waals interaction between non-covalent bonds or quasi-covalent
bonds. The cohesive strength of the cohesive zone can then be
determined by the intermolecular forces in surrounding the bulk
medium. Under these assumptions, when we calculate the interac-
tion between two material points inside the cohesive zone and the
bulk medium, we may consider that the bulk medium is rigid with
almost no deformation, so the two bulk elements adjacent to the
compliant cohesive zone may be viewed as two rigid body half
spaces (see Fig. 8). If the atomistic potential for a given bulk med-
ium is available, which can be a pair potential or EAM (embedded
atom method) potentials (Daw and Baskes [5]), we can obtain the
atomistic potential of the cohesive zone by integrating the bulk po-
tential over the rigid bulk medium half space.

For instance, if the Lennard-Jones (LJ) potential is chosen as the
bulk potential shown in Eq. (3.7), a coarse graining interface poten-
tial can be obtained by analytical integration (see Israelachvili
[12]),

/cohesiveðrÞ ¼
Z

Half Space
b/bulkðr � r0ÞdV 0; ð3:6Þ

where b is the atomic density. The interface depletion potential may
have close form expressions, if we consider pair potentials. For
example, if we consider that the atomistic potential inside the bulk
material is the LJ potential,

/bulk ¼ 4�
r
r

� �12
� r

r

� �6
� �

ð3:7Þ

the interface depletion potential will be

/cohesive ¼
p�ffiffiffi

2
p 1

45
r0

r

� �9
� 1

3
r0

r

� �3
� �

; ð3:8Þ

where � is the depth of the potential well, and r is the (finite) dis-
tance at which the bulk atomistic potential is zero. r0 ¼ r21=6 is the
equilibrium bond distance in the bulk material. The above potential
has also been used by the present authors in computational adhe-
sion mechanics e.g. Sauer and Li [23].

Now in the multiscale cohesive zone model, the cohesive zone
is constitutively consistent with the bulk material. In Fig. 9, we
compare the force–displacement relations of the bulk medium
(red lines) with that of the cohesive zone (blue lines). To demon-
strate why the multiscale cohesive zone model works, one may
simplify the 2D bulk-cohesive zone sandwich as an one-dimen-
sional three spring model, in which three springs are in series con-

nections; two red springs representing two bulk elements are at
top and bottom and one blue spring representing the cohesive
interface is in the middle of the series connections (see Fig. 6).
Among all three springs, the tensile force should be equal due to
the series connections. Therefore as the tensile force increases
the displacements in both bulk medium and cohesive zone will in-
creases until the force in cohesive zone reaches to its maximum.
After the cohesive force in the cohesive zone reaches to maximum,
it will unload as the displacement inside the cohesive zone in-
creases, which will eventually lead to surface separation, whereas
in the bulk region, the force and displacement will be restricted in
the dark color region, which is almost a linear elastic relation, and
the magnitude of displacement field in the bulk (red spring) is lim-
ited in a very small range. In Fig. 10(a), we plot the normal traction
against normal separation distance from our simulation results, it
is observed that as expected the normal traction shows a similar
pattern as the interatomic force as shown in Fig. 9. In Fig. 10(b),
we plot the tangential traction against tangential separation
distance.

Remark 3.1. Zhou and Huang [28] have pointed out that it is not
necessary that an interface is always softer than the bulk materials.
Whether a particular surface is softer or stiffer depends on the
competition between atomic coordination and electron redistri-
bution (which sometimes is referred as bond saturation) on the
surface. However, the focus of the present work is the type of
surfaces that are formed due to defect evolution. It may be a
reasonable assumption that in this case most of cohesive interfaces
are softer than the bulk material.

4. FEM Implementations

Once we obtain the stress inside the cohesive zone, we can
readily find the cohesive traction forces along the boundaries of
adjacent bulk elements as

Tcoh ¼ P �N ; ð4:1Þ

where N is the out-normal of adjacent bulk FE elements. Now we
can see the advantage of finite-width cohesive zone approach, be-
cause it can easily provide cohesive traction along the bulk element
boundary without prescribing both normal and tangential cohesive
potential separately, which are still difficult to find based on atom-Fig. 8. Integration scheme for acquiring cohesive zone depletion potential.

Fig. 9. Comparison between bulk zone and cohesive zone force–displacement
relations.
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istic information. For a given bulk element, the element weak form
can be expressed asZ

Be
0

q0 €uh � duhdV þ
Z

Be
0

PðuÞ : dFhdV �
Z

Se
c

Tcohe � duhdS

¼
Z

Be
0

B � dudV þ
Z
@t Be

0

T � duhdS; ð4:2Þ

where B is the body force, Be
0 is the eth element domain, @tB

e
0 is the

traction boundary of the element, and Se
c is the cohesive boundary of

the element. Notice the subtle differences between Eqs. (4.2) and
(2.17). With a finite width cohesive zone, we do not need to define
a jump operator any more.

Consider following linear FEM interpolation in each element,

uhðXÞ ¼
Xnnode

I¼1

NIðXÞdI: ð4:3Þ

Following the standard FE discretization procedure, e.g. Hughes
[10], we have the following discrete equations of motion

M€dþ f intðdÞ � fcoheðdÞ ¼ fext
; ð4:4Þ

where

M ¼ A
nelem

e¼1

Z
Be

0

q0NeT NedV ; ð4:5Þ

f int ¼ A
nelem

e¼1

Z
Be

0

BeT PeðdÞdV ; ð4:6Þ

fcohe ¼ A
nelem

e¼1

Z
Se

c

NeT Tcohe
e dS; ð4:7Þ

fext ¼ A
nelem

e¼1

Z
Be

0

NeT BdV þ
Z
@t Be

0

NeT TedS

( )
; ð4:8Þ

where A is the element assemble operator, Ne is the element shape
function matrix, Be is the element B-matrix, and T stands for
transpose.

5. Numerical simulations

5.1. Example I: Verification of the cohesive zone model by MD
simulations

To validate the proposed multiscale cohesive zone model, we
have applied it to simulate a special dynamic fracture process that
has been studied in the literature (Buehler et al. [4]). The computa-
tion results of the multiscale cohesive zone model is compared
with that of the MD simulation conducted by Buehler et al. [4].
The exact problem statement is shown in Fig. 11, in which a 2D

plate with dimension (LX � LY ¼ 8625� 3450 with LX=LY ¼ 2:5) is
under dynamically prescribed uniaxial tension load. There is a
pre-crack at the left side of the plate, and the pre-crack tip is lo-
cated at ðLC ¼ LX=5 ¼ 1725Þ. Under the dynamic loading, the crack
propagates along the horizontal direction (the x direction) in the
middle of the plate. For the purpose of comparison, all quantities
in these simulations are in reduced units. The specimen size in
reduced units is corresponding to micrometer in physical
dimensions.

The interfacial lattice is the hexagonal lattice with the equilib-
rium bond distance r1 ¼ 21=6, and the crystal orientation is shown
in Fig. 11. The lattice orientation inside the cohesive zone is chosen
the same as that of the bulk elements. To avoid crack branching, a
weak fracture layer is introduced (see Fig. 11) by assuming that the
cohesive strength in the rest of the slab are much stronger than the
cohesive strength in the weak layer.

We adopt the exact same biharmonic interatomic potential
used by Buehler et al. [4], which is composed of two spring con-
stants k1 ¼ 36=21=3 � 28:57 and k2 ¼ 2k1, and it is linearized from
the Lennard-Jones (LJ) potential (see Eq. (3.7)):

/ðrÞ ¼
1
2 k1ðr � r1Þ2; if r < ron;

a2 þ 1
2 k2ðr � r2Þ2; if r P ron;

(
ð5:1Þ

where a2 ¼ 1
2 k1ðron � r1Þ2 � 1

2 k2ðron � r2Þ2 and r2 ¼ 1
2 ðron þ r1Þ with

ron ¼ r1ð1þ eonÞ. The parameter ron governs the onset strain ðeonÞ
of the hyperelastic effects.

All the material constants are chosen exactly the same as in
Buehler et al.’s simulations, in which Poisson’s ratio is chosen as
m ¼ 0:33 for all potentials; The Young’s modulus is E ¼ 33, and
shear modulus l ¼ 12:4; The density is q � 0:9165 for atomic
mass m ¼ 1. The shear wave speed is calculated as
cS ¼ ðl=qÞ1=2 � 3:6783, and the Rayleigh wave speed is calculated

Fig. 11. The simulation domain with lattice orientation and the weak layer.

Fig. 10. (a) Cohesive normal traction vs. normal separation distance and (b) tangential traction vs. tangential separation distance in cohesive zone.
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as cR � 0:9225cS � 3:3932. In our simulations, there are 16,000
bulk elements with the characteristic dimension of 20–30 nm,
and there are 23,860 cohesive zone elements with the thickness
of 5 atomic spacings. In the original model by Buehler et al. [4],
there are more than 50 million atoms in their simulations.

Constant strain rate ð _e ¼ 1:16� 10�5Þ is applied over the load-
ing period to strain the system. The Newmark-b integration meth-
od (with b ¼ 0 and c ¼ 0:5) has been used in our simulations, and
the time step is chosen as Dt ¼ 0:01. We compute the crack prop-
agation speeds based on the multiscale cohesive zone model under
different onset strains, and then we compare our numerical results
with the crack speeds obtained from the MD simulations using the
same potential and the same material constants (Buehler et al. [4]).
The comparison between the results of the multiscale cohesive
zone model and that of the MD simulation is shown in Fig. 12.
From Fig. 12, one may find that for the mediate value of the onset
strains the results obtained by using the multiscale cohesive zone
model agrees well with the results obtained by using molecular
dynamics.

5.2. Example II: Simulations of crack propagations

After the model verification, we have applied the multiscale
cohesive zone model to simulate crack propagations in macroscale.
In the simulations, the lattice structure is chosen as the hexagonal
lattice showed in Fig. 2, which is different from that of Example I.
However, the lattice orientation in the cohesive zone is again the
same as that of the bulk elements. We set � ¼ 1 and r ¼ 1 for
the bulk and cohesive atomistic potentials (see Eqs. (3.7) and (3.8)).

The following is a 2D example of our simulation. Consider a 2D
plate (2 mm � 2mm) under unilateral tension (see Fig. 13), and

Fig. 12. Comparison of crack speeds between MD simulation and multiscale
cohesive zone model simulation.

Fig. 13. Stress distribution for crack propagation: (a) t = 1.25 ls; (b) t = 2 ls; (c) t = 2.5 ls; and (d) t = 4.5 ls.
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there is a pre-crack at the left side of the plate. There are totally
9520 cohesive elements and 6400 triangular bulk elements. The
time step is chosen as Dt ¼ 1� 10�10 s. The crack branching has
been observed from the simulation (see Fig. 13).

5.3. Example III: Simulations of high-speed impact and spall fracture

To further illustrate the versatility of this model, numerical sim-
ulations have been carried out to simulate high-speed impact in-
duced spall fractures, which is a very difficult problem that has
been elusive to many existing numerical methods (Antoun et al.
[1]). The exact problem statement is described in Fig. 14. It is a ri-
gid projectile penetrating a deformable plate. The projectile is a
(0.38 mm � 0.38 mm) rigid block with impact velocity v = 100 m/
s, the target is a (2 mm � 0.4 mm) block clamped at the two ends.
In this simulation, there are totally 11,880 cohesive elements and
8000 triangular bulk elements used in the target. The lattice orien-
tations for both the bulk element as well as the cohesive zone are
exactly the same as in Example II.

In time integration, the time step is chosen as Dt ¼ 1� 10�10 s.
Contact problems are characterized by impenetrability conditions

that needs to be enforced during computation. We adopted the ex-
act enforcement of the impenetrability condition in a single time
step (see Hughes et al. [9]). The simulation results are shown in
Fig. 15. The wave propagation from the contact point to the oppo-
site boundary has been observed. The phenomena of spall fracture
under impacts has been captured (see Fig. 15).

6. Discussions

In this paper, we have reported a novel multiscale cohesive
zone model, and we have formulated and implemented the multi-
scale cohesive zone model in the context of finite element method.
This method is capable of simulating strong discontinuities across
a solid at nanoscale, such as micro-cracks and dislocations at small
scales. Compared to the conventional cohesive finite element
method, the proposed multiscale cohesive model employs the ba-
sic principles of colloidal physics and surface chemistry to deter-
mine the interface cohesive force, and it is exploiting the
underneath atomistic structure to construct surface or interface
cohesive laws. By doing so, the local quasi-continuum formulations
has been extended from the interior of the solid to the interfaces,

Fig. 14. The statement of the impact problem.

Fig. 15. Snapshots of stress distribution for a contact-impact process: (a) t = 0.2 ls; (b) t = 0.4 ls; (c) t = 0.6 ls; (d) t = 0.8 ls; (e) t = 1.2 ls; (f) t = 1.6 ls.
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and it is an approach that yields more accurate results than the
conventional cohesive zone approach. This is because first we
adopt atomistically enriched constitutive relations, second the nor-
mal and tangential potentials are consistent, and third the bulk
material properties and the material properties inside the interfa-
cial cohesive zone are consistent. Because of its simplicity, the
method is really easy to implemented, and we are currently work-
ing on extending the method to 3D problems and problems involv-
ing with multiple dislocations.

To be a truly multiscale method, will the multiscale cohesive
zone model be able to reach to atomistic resolution? So far the
closest case that we have tested is the case in which R0 equals 5
atomic spacings. Additional technical ingredients may be needed
in order to simulate the surface separation in atomistic resolution.
However, one of the main advantages of the multiscale cohesive
zone model is that this model can be easily incorporated into a
con-current multiscale formulation with fine scale physical models
such as the molecular dynamics method by using the bridging
scale approach e.g. Wagner and Liu [26]. In fact, a con-current cou-
pling between the multiscale cohesive zone model and MD has re-
cently been achieved by the present authors (Li et al. [13]). A
multiscale simulation of a moving screw dislocation has been car-
ried out there, which allows a dislocation passing through regions
of different scales.

It may be possible that the multiscale cohesive zone model can
provide an efficient approximation to calculate cohesive interface
stacking fault energy in numerical computations. We are expecting
that different interface lattice orientations in the cohesive zone
may affect the behaviors of the crack propagation, which may help
us explain and simulate brittle/ductile transient in crack propaga-
tion. This particular subject is out of the scope of this paper, and it
will be further discussed in a separated paper.
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