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SUMMARY

In this work, we set forth a multiscale non-equilibrium molecular dynamics (MS-NEMD) model. The
main objectives of MS-NEMD model are: (1) establishing a rigorous NEMD that provides direct three-
dimensional simulations of thermal–mechanical motions at atomistic scale, and (2) providing a general
computational paradigm for non-equilibrium multiscale simulations. The proposed MS-NEMD combines a
coarse-grained continuum thermodynamics model with a fine scale NEMD simulation. A novel concept of
Multiscale Canonical Ensemble is put forth, in which we argue that the coarse-grained field may provide a
heat bath within the coarse scale relaxation time interval, while the fine scale motion may reach to a local
equilibrium state during that time interval. In this work, we propose to use a Nosé–Hoover thermostat
network that is distributed among the local Voronoi cell-ensembles, and it will then regulate the difference
between the coarse scale thermodynamic temperature and kinetic temperature of the fine scale ensemble.
The proposed MS-NEMD algorithm has the following features: (1) the fine scale distribution function is
canonical in the sense that it obeys a drifted local Boltzmann distribution and (2) it can spontaneously and
automatically return to the equilibrium state. Several numerical examples have been carried out, in which
we have simulated the activation of shock waves or dislocations due to thermal fluctuations. Copyright
q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The non-equilibrium thermal–mechanical coupling process at small scales is a subject of increasing
importance to energy conversion/transfer, biochemistry, cellular and molecular biology, micro-
and nanoelectronics, and material synthesis and failure analysis. In principle, the essence of heat
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transfer at small scales is thermal–mechanical multiscale coupling, in which the length and time
scales span from molecular level to continuum level. Both the subject as well as the definition of
non-equilibrium thermodynamics have been studied before by many people, e.g. [1, 2]. Since that
this work is a practical treatise of multiscale non-equilibrium molecular dynamics (MS-NEMD),
in this work the non-equilibrium thermodynamic process is referred to as a process where both
spatial and temporal gradients of the temperature field are non-trivial. In other words, the focus of
the work is on NEMD, and it is beyond the finite temperature equilibrium molecular dynamics,
which has been well studied in the past, e.g. [3].

A fundamental understanding of thermal–mechanical couplings in non-equilibrium states at
small scales and the capacity to simulate such physical phenomena are vital to the study of
the mechanism of energy transfer/conversion and the advancement of reliability of micro- and
nanoelectronics. For example, understanding heat conduction in a nanotube or a nanowire is the
key for such nanoscale structures being used in electronic devices and functioning properly under
working conditions.

Since 1970s, NEMD method has been a major numerical tool for simulations of non-equilibrium
thermal–mechanical coupling process. It has been extensively used in many scientific and engi-
neering fields. Currently, several types of NEMDs are used in different research fields. Here, we
briefly review some of the representative NEMD algorithms:

1. Boundary-heat-flux-driven NEMD simulations: In this type of NEMD simulations the molec-
ular dynamics system is driven out of equilibrium by prescribed boundary heat flux or
temperature distribution, i.e. prescribed hot or cold heat sources or heat sinks at the bound-
aries of the domain of interest. Such heat sources or sinks are either maintained by thermostat
techniques or velocity scaling techniques (e.g. [4–10], among many others). A main feature of
this type of NEMDs is that in the interior domain only conventional molecular dynamics, i.e.
the micro-canonical ensemble MD, is used in simulations, hence they are often referred to as
direct NEMD or natural NEMD. In the rest of paper, we refer the boundary-heat-flux-driven
NEMD simulations as the direct NEMD simulations or the conventional NEMD simula-
tions. The direct NEMD simulations have been extensively used in thermal fluid science and
engineering and applied physics communities, and they have been used as the workhorse
in performing direct atomistic or molecular simulations in many scientific and engineering
fields, including nanoscale heat transfer [7, 11], polymer and amorphous materials [12, 13],
gas transport in nanopores [14], Raman response of liquids [15], filtering and separation of
mixtures [16], among many other applications.

2. Boundary-velocity-flow-driven NEMD simulations: The representatives of such NEMD algo-
rithms are the classic DOLLS and SLLOD algorithms proposed by Hoover, Evans, and
Morris [17–21]. The SLLOD algorithm is a symmetric version of DOLLS algorithm, and
it has been extensively used for simulations of planar Couette flows. In SLLOD algorithm,
the molecular system is driven out of equilibrium by mechanical boundary conditions. Most
applications of SLLOD algorithm for modeling shear flow use the Lees–Edwards boundary
conditions, and most applications of SLLOD algorithm for modeling elongational flow use
the Kraynik–Reinelt boundary conditions. Recently a so-called proper SLLOD algorithm
(p-SLLOD) has been proposed, and it is proven to be theoretically rigorous to simulate general
inhomogeneous flows [22–26]. The boundary-velocity-flow-driven NEMD algorithms have
been used in computing transport coefficients [27–29], simulating viscous flows [18, 20, 24]
and plastic deformations [30, 31], among others. Although there were attempts to thermalize

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



ON MS-NEMD SIMULATIONS

these algorithms, so that both mechanical and thermal boundary conditions can be applied
at the same time, e.g. [21], most of these algorithms are just using Newton’s equations
of motions in the interior of the simulation domain to extract thermodynamics properties.
In other words, if we consider that the boundary-thermostated region is just a means to
prescribed heat flux, the direct NEMD is in fact a micro-canonical ensemble MD in the
interior domain of the simulation domain, in which all the atoms are not thermostated, with
the prescribed heat flux boundary condition at both ends. Till date, a NEMD that can couple
thermal–mechanical interactions is yet to be established.

3. The synthetic NEMD simulations: In this type of NEMD simulations an artificial external
field is globally prescribed to drive the system out of equilibrium [21, 28, 32–34]. In practice,
the artificial external field is judicially chosen such that it renders the phase-space flux
divergence-free, or it satisfies a so-called adiabatic incompressibility condition (AI�) [21].
In Evans and Morriss [21], various thermostats are discussed for such type of algorithms.
Moreover, the synthetic NEMD simulations are linked with the Green–Kubo’s linear response
theory, and they have been used to extrapolate the transport coefficients of non-equilibrium
states. In practice, this type of NEMD algorithms are formulated under special conditions
for particular purposes, e.g. simulation of transport coefficients, and therefore in general they
are not intended or have not been used as a direct simulation tool.

The above categorization of NEMD simulations may be oversimplified. The present work, however,
only concerns with the direct NEMD simulations, which have been the workhorse in thermal–
mechanical engineering simulations. We have found that the direct NEMD simulations are not
able to automatically or spontaneously return to a canonical ensemble equilibrium state when the
external disturbances disappear. The reason is that the direct NEMD simulations use the micro-
canonical ensemble MD in the interior domain and impose the fixed temperature values only at the
boundary. This can be demonstrated by an one-dimensional (1D) example shown in Figure 1, in
which we compare a direct NEMD simulation with a Nośe–Hoover equilibrium MD simulation.
The Nosé–Hoover equilibrium MD is a canonical ensemble MD under equilibrium state. In order
to maintain a fixed temperature, the atomistic or molecular system is regularized by a Nośe–Hoover
thermostat [3] or a Nośe–Hoover thermostat chain [35]. For simplicity, let the interatomic force
be from the pair potential only. Then the Nosé–Hoover equilibrium MD simulation may take the
following form [3, 6]:

mi q̈i = F(qi −qi−1)−F(qi+1−qi)−�T mi q̇i , i =1,2, . . .,N (1)

Figure 1. Comparison between (a) the Nośe–Hoover equilibrium MD simulation
and (b) the direct NEMD simulation.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



S. LI AND N. SHENG

where qi is the position of atom i , mi is its mass, F is the potential force, and �T is an auxiliary
variable that may be determined by the following equation:

d�T
dt

= 1

�

(
N∑
j=1

m j q̇
2
j −kBNT

)
(2)

where kB is the Boltzmann constant, N is the total number of atoms, T is the equilibrium
temperature, and � is the pseudo mass of �T .

For the direct NEMD simulation, only the boundary regions �+ and �− are thermostated with
the temperatures T+ and T−, respectively. If we use S± and N± to, respectively, denote index sets
and numbers of atoms in boundary regions, the governing equations can be written as:

mi q̈i = F(qi −qi−1)−F(qi+1−qi )−
{

�+mi q̇i if i ∈ S+
�−mi q̇i if i ∈ S−

(3)

where

d�±
dt

= 1

�±

(
N±∑
j=1

m j q̇
2
j −kBN±T±

)
. (4)

One can see clearly that Equations (3) and (4) will not degenerate to (1) and (2) even if we
choose T+ =T−=T and make �+ =�− =�. The reason is that in the direct NEMD simulation,
the interior domain is not thermostated and it is treated via classical micro-canonical ensemble
MD simulation.

The micro-canonical ensemble MD simulation is deterministic in nature, and whether it can
faithfully model the statistical phonon scattering process in the interior domain without ubiquitous
presence of random forces is in question. For instance, Chen [36] expressed the same concern on
statistical physics foundation of the direct NEMD simulation.

In most direct NEMD simulations, when the whole system reaches to a non-equilibrium steady
state, the local equilibrium assumption is adopted to measure the local temperature. On the other
hand, in the steady-state region, the micro-canonical ensembleMD is used in the NEMD simulation,
the application of the equipartition theorem to obtain local temperature has been unjustifiably
used in practice by assuming the presence of a local Boltzmann distribution function, which is in
contradiction with the use of micro-canonical ensemble MD. Moreover, if a system’s temperature is
below the Debye temperature (see Table I, the quantum correction may be necessary e.g. [37, 38],
the integration of the direct NEMD simulation with quantum correction has also been unjustifiably
used, because the quantum correction may be only applicable to a classical canonical ensemble.

At the fundamental level, the local equilibrium assumption is related to or equivalent to an
ergodic assumption, because we can only use the spatial average to replace the temporal average
for a local canonical ensemble and the same may not be true for general non-equilibrium states.

Table I. Debye temperatures of various solids.

Silicon (Si) Diamond Titanium (Ti) �-Iron Aluminum (Al) Copper (Cu)

640K 2200K 420K 464K 426K 344.5 K
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Figure 2. (a) The usual concurrent multiscale simulation and (b) the proposed multiscale NEMD
simulation: fine scale region is marked with black dot and coarse scale region is represented by

finite element discretization.

Because of its broad applications, it seems to us that it may be necessary to develop a NEMD
simulation technique with solid statistical mechanics foundation for direct simulations of non-
equilibrium systems that have both spatial and temporal temperature gradients.

Recently, a class of concurrent multiscale simulations have emerged in nanoscale computational
mechanics, for example the heterogeneous multiscale method [39, 40], the bridging scale method
[41–43], the finite temperature quasi-continuum method [44, 45], the bridging domain method
[46], the perfectly matched multiscale simulation [47–49], and among others. The basic idea of the
concurrent multiscale simulations is shown in Figure 2(a): a coarse scale model is applied to the
entire domain of the problem interested; and a fine scale model is only used in a subregion where
finer resolution is required, for example the places where thermal–mechanical fluctuation caused
by inhomogeneities is so prevalent that it not only dictates the fine scale statistical thermodynamics,
but also affects the coarse scale thermodynamics.

The concurrent multiscale simulations are suited to model physical phenomena operating across
different scales and have become a popular research topic in recent years. However, most of
the multiscale models in the literature focus either on solving problems at zero temperature or
on simulating equilibrium systems with uniform environmental temperature. To the best of our
knowledge, there are few multiscale simulations or formulations available for non-equilibrium
systems, if there are any at all. In this paper, the term non-equilibrium multiscale simulation
is referred to a concurrent multiscale paradigm that couples a thermal–mechanical simulation
at continuum or quasi-continuum scale, e.g. heat transfer simulation with thermo-mechanical
interactions, with a NEMD at atomistic scale. However, in general this definition can be extended
to the concurrent multiscale coupling between Boltzmann transport equation and NEMD or the
concurrent multiscale coupling between the electron transport simulation and a time-dependent
density functional theory simulation.

In a recent letter [50], the present authors have proposed a canonical multiscale non-equilibrium
method, which is the further development of the previous work [49]. This work is a comprehensive
treatise of the proposed MS-NEMD. We would like to point out that the objective of the proposed
MS-NEMD is fundamentally different from that of the usual concurrent multiscale simulation
models: the present multiscale model is to use concurrent multiscale simulation techniques devel-
oping a NEMD algorithm with multiscale characters that can correctly represent non-equilibrium
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statistical physics and simulate non-equilibrium thermal–mechanical interactions at atomistic scale
whereas the most previous concurrent multiscale simulations are aimed at saving computation cost
for large-scale atomistic simulations. We would like to stress that the main difference between the
present work and the previous concurrent multiscale models is that we are not concerned with
developing a general multiscale algorithm to save Central Processing Unit (CPU) at the present
stage but developing a physically correct NEMD model. For the proposed MS-NEMD algorithm,
its computational cost may be even more expensive than that of the direct NEMD; however, it
sets a foundation for a more general MS-NEMD model that can save computational resources
significantly while providing physically correct predictions.

In this work, the coarse scale and the fine scale dynamics coexist in the same region, see
Figure 2(b), and we are concerned with the multiscale coupling inside the region where the coarse
scale and fine scale dynamics are present. The coarse scale and the fine scale are different layers
of the same spatial region, and we do not have, hence do not discuss, any issues of the coupling of
the atomistic simulation and the continuum simulation in different spatial regions. The meaning of
the concurrent simulation refers to different but synchronized dynamics in different layers (scales).
For this reason, the paper’s title is multiscale non-equilibrium molecular dynamics rather than
multiscale non-equilibrium simulation. In that case, we have to address the treatment of multiscale
boundary conditions between the fine scale NEMD and the coarse scale heat transfer equation,
similar as what have been discussed in [51, 52]. Nevertheless, this work may provide a foundation
for a general multiscale non-equilibrium simulation theory that will be the future study of this
research.

We term the proposed algorithm as the MS-NEMD algorithm, because we study the dynamics
of the non-equilibrium system at both macroscale (or mesoscale) and microscale (atomistic scale)
concurrently and simultaneously.

In the proposed MS-NEMD algorithm, the non-equilibrium thermodynamics of the mean drifting
field, or the thermodynamics of the coarse-grained field, is concurrently computed by the finite
element method with inputs from fluctuations of fine scale atomistic field besides the macroscale
boundary and initial conditions; whereas in the fine scale the molecular dynamics simulation
is driven by random forces that are regulated by macroscale heat transfer through a distributed
Nośe–Hoover thermostat network.

The fine scale motion in each thermostat is assumed to reach to a local equilibrium state during
the coarse scale relaxation time interval, and can be computed by the Nosé–Hoover equilibrium
MD algorithm. The fine scale motion is driven out of the equilibrium by the coarse scale mean
field instead of a prescribed or fictitious external field as in some traditional NEMD simulations.
In return, the fine scale simulation results are used to update temperature and displacement fields
at the coarse-grained level, and they may also be used to calculate transport coefficients for the
coarse-grained formulation. It is shown that under the local equilibrium assumption the proposed
MS-NEMD algorithm may produce a canonical NEMD simulation.

This paper is organized as follows: in Section 2, we first introduce the multiscale decomposition
used in the proposed multiscale formulation, which is crucial to the construction of a canonical
NEMD simulation. In Section 3, we elaborate the MS-NEMD algorithm both from theoretical
foundation and in algorithmic details. Then we shall further prove that the fine scale distribution
function is canonical. We shall discuss the coarse scale thermodynamics formulation in Section 4.
The implementation of the MS-NEMD algorithm is described in Section 5. Three numerical
examples are presented in Section 6, which include the simulations of thermal activation of shock
waves. Finally, we conclude the presentation in Section 7 by making a few remarks.
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2. MULTISCALE DECOMPOSITION AND CENTER OF MASS FRAME

An important step in NEMD calculation is the use of the peculiar and the associated center of
mass (COM) coordinates, with which one can rigorously extract thermodynamics properties of
the system from the drifting frame of reference [21, 53]. In fact, thermodynamic properties of
a non-equilibrium system like temperature are defined in terms of peculiar velocity field. If a
finite continuum thermodynamic system is undergoing large deformation under non-equilibrium
conditions, it may not be sufficient to use only one set of COM coordinates. For each statistical
ensemble element, one needs a set of local peculiar and COM coordinates to define the local
peculiar velocities.

By using a multiscale decomposition, we generalize the concepts of the peculiar and COM
coordinates to establish the coarse scale field corresponding to the generalized COM coordinates
and the fine scale field corresponding to the generalized peculiar coordinates. Hence, the multiscale
decomposition is the foundation of the concurrent MS-NEMD algorithm.

We view the multiscale decomposition proposed in [41] as an extension of the peculiar and
COM coordinates, which decomposes the discrete atomistic displacement field, q, into a coarse
scale part and a fine scale part:

q= q̄+ q′ (5)

The symbol ¯ indicates coarse scale quantities, the symbol ′ denotes their fine scale counterparts,
and the matrix notation is implied in (5)

q=[q1, . . .,qi , . . .,qnatom]T (6)

where qi =qi1E1+qi2E2+qi3E3 is the total displacement vector of the i-th atom, Ei , i =1,2,3
are the basis vectors of Cartesian coordinates in reference configuration, and natom is the total
number of atoms in the system.

We assume that the coarse scale atomistic displacement field q̄ can be described by a continuous
displacement field,

ū(X)= ū1(X)E1+ ū2(X)E2+ ū3(X)E3 (7)

where X denotes the spatial position vector. In this paper, the continuous displacement field ū(X)

is governed by a coarse-grained model that is constructed by incorporating with finite element
(FE) method, so that the continuous displacement field can be interpolated by FE shape functions,

ū(X)=
nnode∑
I=1

NI (X)dI (8)

where

dI :=dI1E1+dI2E2+dI3E3 (9)

is the displacement vector of the FE node I , nnode is the total number of FE nodes, and NI (X) is
the conventional FE shape function associated with node I evaluated at X (e.g. see [54]). At atom
sites, the continuous displacement field captures the coarse scale atomistic displacement field, i.e.

ū(Xi )=
nnode∑
I=1

Ni
I dI (10)
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where Ni
I :=NI (Xi ), and Xi is the spatial position vector of the i-th atom in the system.

Define the FE nodal displacement array as

d=[d1, . . .,dI , . . .,dnnode]T (11)

and the FE shape function matrix N as

N=

⎡
⎢⎢⎢⎢⎢⎢⎣

N1
1 I3×3 N1

2 I3×3 . . . N1
nnodeI

3×3

N2
1 I3×3 N2

2 I3×3 . . . N2
nnodeI

3×3

...
...

. . .
...

Nnatom
1 I3×3 Nnatom

2 I3×3 . . . Nnatom
nnode I3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

where

I3×3=[�i j ]3×3

is the 3×3 identity matrix and N is of size 3natom×3nnode. The coarse scale atomistic displacement
array can be expressed as

q̄=N d (13)

where

q̄=[ū(X1), . . ., ū(Xi ), . . ., ū(Xnatom)]T (14)

Similarly, the total atomistic velocity array, q̇, can be decomposed into two scales,

q̇= ˙̄q+ q̇′ (15)

in which the coarse scale atomistic velocity array can be expressed by FE interpolation,

˙̄q=N ḋ (16)

where ḋ is the FE nodal velocity array.
Define the atomistic mass matrix as

MA =

⎡
⎢⎢⎢⎢⎢⎢⎣

m1I3×3

m2I3×3

. . .

mnatomI3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

the total linear momentum array of the atomistic system can be written as

p=MA q̇ (18)

which can also be decomposed into two scales

p= p̄+ p′ (19)
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To link the total displacement field q with the coarse scale displacement field q̄, Wagner and
Liu [41] used the following weighted �2 type of error norm to minimize the difference between
the total displacements and the coarse scale displacements at all atom positions, i.e.

min
d

natom∑
i=1

mi

∣∣∣∣qi − nnode∑
I

N i
IdI

∣∣∣∣
2

(20)

By doing so, both the coarse scale displacement field and the fine scale displacement field can be
obtained from the total displacement field by the following projection operations,

q̄=P q, q′ =Q q (21)

where P and Q are projection matrices defined as

P := [Pij]3natom×3natom =NM−1NTMA (22)

Q := [Qij]3natom×3natom = I−P (23)

where

I=[�ij]3natom×3natom

is the 3natom×3natom identity matrix, and the matrix M is the coarse scale mass matrix defined as

M :=[Mij]3nnode×3nnode =NTMAN (24)

It is readily verified that indeed the operators P and Q are projection operators, i.e.

PP=P and QQ=Q (25)

In [48], the present authors explored the physical meaning of the abovemultiscale decomposition.
It is argued that the above projection operators can also be obtained by the following minimization
procedure,

min
ḋ

{
1
2( p

′)TM−1
A p′}=min

ḋ

{
1
2 ( q̇−N ḋ)TMA( q̇−N ḋ)

}
(26)

for a fixed velocity field q̇. The minimization is attainable because MA is positive definite. If we
consider the fine scale velocity as the generalization of ‘peculiar velocity field’ [21], the kinetic
temperature may be defined by

3
2 (natom−nnode)kBT =

〈
1
2( p

′)TM−1
A p′〉 (27)

where 〈·〉 denotes averaging in time. Note that the definition of temperature in (27) has been
adopted by both Wagner and Liu [41] and Rudd and Broughton [55]. We may argue that the
physical implication of such multiscale decomposition is: ‘For a system with given total kinetic
energy and a priori coarse-grained dimension (size of the ensemble cell or FEM mesh), the
multiscale projection operators are obtained based on the condition that among all possible coarse
scale velocity fields (with the fixed degrees of freedom nnode), the projected coarse scale velocity
field should describe the movement of the drifted center of mass manifold (mean field) upon which
the temperature of the system can be corrected defined. In other words, the projected coarse scale

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



S. LI AND N. SHENG

velocity field separates the fluctuation of the system from the total velocity field.’ Therefore, we
may call the decomposition or the projection as the adiabatic decomposition or the adiabatic
projection, meaning that the decomposition itself will not cause thermal exchange between two
scales. More precisely speaking, here the adjective ‘adiabatic’ means that the separation of the
drifting coarse scale velocity field from the total velocity field will not cause any thermal energy
leaking. This is the basis for establishing a COM continuum frame of coarse scale. Nevertheless,
there are thermal exchanges between the coarse scale and the fine scale, and this is accomplished
by using the coarse scale FEM nodal temperatures to enforce the local equilibrium temperature
for each and every Nosé–Hoover thermostats.

A direct consequence of such decomposition is that it decouples the fine scale (or peculiar)
velocity field with the coarse scale (or mean) velocity field. Considering the following coarse scale
linear momentum field and the fine scale linear momentum field projected from the total linear
momentum field,

p̄=P p and p′ =Q p (28)

one can show that

( p′)TM−1
A p̄= pTQTM−1

A P p=0 (29)

because of the identity QTM−1
A P≡0. Similarly,

p̄TM−1
A p′ = pTPTM−1

A Q p=0 (30)

For mono-atom systems, under multiscale projections (28), Equations (29) and (30) imply that the
peculiar linear momentum field is orthogonal to the mean linear momentum field, i.e.

natom∑
i=1

1

mi
p′
i · p̄i ≡0. (31)

This orthogonal condition is crucial to the construction of the present multiscale NEMD algorithm,
which will be discussed in the following section.

3. MULTISCALE NON-EQUILIBRIUM MOLECULAR DYNAMICS MODEL

The essence of the proposed MS-NEMD algorithm is: the coarse scale motion is solved by using
the FE method based on a coarse-grained thermodynamics model, which is driven by macroscale
initial/boundary conditions and the thermal fluctuation from the fine scale computation; whereas
the fine scale motion is modeled and solved by using a NEMD simulation, which receives the inputs
from the coarse scale computation and is driven out of the equilibrium by the coarse scale mean
field instead of a prescribed or fictitious external field as in some traditional NEMD simulations,
such as DOLLS or SLLOD algorithms.

A conceptual illustration of the multiscale framework is shown in Figure 3. In the proposed
MS-NEMD model, we argue that a coarse scale FE node may be viewed as a ‘coarse scale
thermal reservoir’, and it represents the ambient space of a large set of atoms. We call each set of
atoms surrounding a FE node as a Voronoi cell-ensemble. Note that the Voronoi cell or Voronoi
tessellation is a dual structure of Delaunay triangulation [56], hence the cell structure is related to
FE mesh or discretization.
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Figure 3. Coarse-grained FE mesh and Voronoi cell-ensemble structure.

Figure 4. The illustration and comparison of canonical ensemble and multiscale canonical ensemble.

The main novelty of this work is the proposal of the concept, multiscale canonical ensemble,
which is a generalization of the classical notion of canonical ensemble. The classical canonical
ensemble, or fixed atom Number, Volume, and Temperature (NVT) ensemble, denotes a system
embedded into an infinitely large thermal reservoir, whose temperature remains constant during
an equilibrium process. In our model, we argue that the temperature of each coarse scale nodal
reservoir remains constant during any time interval that is smaller than the time scale of the coarse
grain, which is chosen here as the coarse scale time step. This claim is valid because the coarse
grain is defined based on the ‘slow variable approximation’ and the ‘Markovian approximation’
[57]. Since a Voronoi cell-ensemble is embedded within a coarse scale nodal reservoir and the
temperature of each coarse scale nodal reservoir remains constant within each coarse scale time
step, the motions of atoms in a Voronoi cell-ensemble can be assumed to reach to a local equilibrium
state within one coarse scale time step. So we may call a Voronoi cell-ensemble as a multiscale
canonical ensemble in the sense of local equilibrium approximation, see Figure 4. The local
equilibrium assumption has been widely used in non-equilibrium thermodynamics [21]. This work
may be the first attempt to use it in multiscale analysis.
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In this section, we first discuss the fine scale NEMD algorithm. We consider the multiscale
adiabatic Hamiltonian for a single cell-ensemble c surrounding the FE node I :

H adia
c =

nc∑
i=1

1

2mi
(p̄i +p′

i )·(p̄i +p′
i )+Uc( q)

=
nc∑
i=1

1

2mi
p̄i · p̄i +

nc∑
i=1

1

2mi
p′
i ·p′

i +
nc∑
i=1

1

2mi
p̄i ·p′

i +Uc( q) (32)

where nc is the number of atoms in the cell-ensemble c, Uc( q) is the atomistic potential, p̄i and
p′
i are, respectively, the coarse scale and fine scale linear momentum vectors of the i-th atom.

Note that each cell-ensemble has only one node, so the numberings I and c have one-to-one
correspondence (see Figure 3).

With the multiscale decomposition introduced in Section 2, the fine scale linear momentum field
is orthogonal to the coarse scale linear momentum field, see Equation (31). Therefore, Equation (32)
can be written as:

H adia
c =

nc∑
i=1

1

2mi
p̄i · p̄i +

nc∑
i=1

1

2mi
p′
i ·p′

i +Uc( q) (33)

The two-scale equations of motion are then derived from Equation (33) as

q̇i = �H adia
c

�pi
= p̄i

mi
+ p′

i

mi
(34)

ṗi = −�H adia
c

�qi
=−�U( q)

�qi
=:Fi (35)

˙̄qi = �H adia
c

�p̄i
= p̄i

mi
(36)

˙̄pi = −�H adia
c

�q̄i
=F j · �q j

�q̄i
(37)

where Fi is the external force acting on the atom i . From Equations (34)–(35), the fine scale
equations of motion may be expressed in terms of qi and p

′
i as follows:

q̇i = p̄i
mi

+ p′
i

mi
(38)

ṗ′
i = Fi − ˙̄pi (39)

In passing we note that if the use of FE interpolation over the current configuration were justifiable,
for instance the updated Lagrangian FE formulation was used [58], one might find that

˙̄pi =mi
d

dt
( ˙̄qi )=mi

d

dt

(∑
I
NI (xi )ḋI

)

=mi

(∑
I
NI (xi )d̈I +∑

I
BI (xi )· ẋi ḋI

)
(40)
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where

BI (xi) := dNI (xi )
dxi

and xi is the current atom position denoted as xi =qi +Xi . Thus, we have

ẋi = q̇i = ˙̄qi +
p

′
i

mi
(41)

which leads to

˙̄pi =mi

{∑
I
NI (xi )d̈I +∑

I
(BI (xi )· ˙̄qi )ḋI +∑

I

(
BI (xi)· p

′
i

mi

)
ḋI

}

=mi
d

dt

(∑
I
NI (xi )ḋI

)
coarse scale

+∑
I

(BI (xi )·p′
i )ḋI

≈∑
I

(BI (xi )ḋI )·p′
i =

� ˙̄qi
�xi

·p′
i (42)

where we assume that

mi
d

dt

(∑
I
NI (xi )ḋI

)
coarse scale

=mi

{∑
I
NI (xi )d̈I +∑

I
(BI (xi)· ˙̄qi )ḋI

}

≈ 0 (43)

when there is no external force at coarse scale. In this hypothetical case the MS-NEMD algorithm
degenerates to a generalized mean-field driven DOLLS formulation. Nevertheless in the present
paper, we have not pursued such formulation, and all the derivations here are based on the total
Lagrangian formulation.

To couple the fine scale motions of atoms with the coarse scale heat conduction, we introduce a
local Nosé–Hoover thermostat in each cell-ensemble such that the fine scale equations of motion
in Equations (38) and (39) become

q̇i = p′
i

mi
+ p̄i
mi

(44)

ṗ′
i = Fi − ˙̄pi −�cp

′
i (45)

∀i ∈nc, nc={1, · · ·· · ·,nc} and

�̇c= 1

�c

(∑
i∈nc

p′
i ·p′

i

mi
−3nckBTc

)
(46)

where �c is an auxiliary variable, �c is the pseudo mass of �c, and the temperature Tc for each cell-
ensemble is the coarse scale thermodynamic temperature at FE node I . Equation (46) is another
novelty of the present multiscale formulation. Since the coarse scale temperature distribution is
not uniform and evolving with time, the FE nodal temperature changes from node to node and
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Figure 5. Distributed Nosé–Hoover thermostat network.

time to time. Therefore, the local thermodynamic temperature is not uniform among different cell-
ensembles and different coarse scale time steps. In the MS-NEMD simulation, a distributed Nosé–
Hoover thermostat network is used to ensure each cell-ensemble reaching to a local equilibrium
state (see Figure 5). This is a generalization of the Nosé–Hoover thermostat [3, 35, 59, 60] in
a global equilibrium ensemble MD simulation. In each cell-ensemble, the current environment
temperature is set as thermodynamic temperature at the coarse scale FE node of previous time
step. As discussed in [61], the damping term in molecular dynamics due to the Nosé–Hoover
thermostat is in fact equivalent to a random force term. In this sense, one may view the distributed
Nosé–Hoover thermostat network as a means to control the magnitude and the distribution of
random forces applying to the fine scale atomic motions.

The conventional Nosé–Hoover thermostat renders the molecular dynamics system a canonical
ensemble [59]. Will the proposed Nosé–Hoover thermostat network play a similar role in non-
equilibrium simulations? Consider

H∗
c =

nc∑
i=1

p̄i · p̄i
2mi

+
nc∑
i=1

p′
i ·p′

i

2mi
+Uc( q)+ Jc+1− Jc−1 (47)

where Jc+1 and Jc−1 are cell boundary fluxes. It then can be shown that

d

dt
H∗
c − J̇c+1+ J̇c−1 =∑

i

(
1

mi
(ṗ′

i ·p′
i + ˙̄pi · p̄i )−Fi · q̇i

)

=∑
i

(
1

mi
(ṗ′

i ·p′
i + ˙̄pi · p̄i )−Fi ·

(
p′
i

mi
+ p̄i
mi

))

=∑
i

(
p̄i
mi

·( ˙̄pi −Fi )+ p′
i

mi
·(ṗ′

i −Fi )

)
(48)

From Equation (45), we have

˙̄pi −Fi = −ṗ′
i −�cp

′
i (49)

ṗ′
i −Fi = −˙̄pi −�cp

′
i (50)
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which lead to:

d

dt
H∗
c − J̇c+1+ J̇c−1 =∑

i

(
p̄i
mi

(−ṗ′
i −�cp

′
i )+

p′
i

mi
(−˙̄pi −�cp

′
i)

)

= −�c

(∑
i

1

mi
p′
i ·p′

i

)
−�c

(∑
i

1

mi
p′
i · p̄i

)
−∑

i

(
1

mi
(p′

i · ˙̄pi + p̄i · ṗ′
i )

)

= −�c

(∑
i

1

mi
p′
i ·p′

i

)
−�c

(∑
i

1

mi
p′
i · p̄i

)
− d

dt

(∑
i

1

mi
p′
i · p̄i

)
(51)

With the orthogonal condition in Equation (31), Equation (51) can be written as:

d

dt
H∗
c =−�c

(∑
i

1

mi
p′
i ·p′

i

)
+ J̇c+1− J̇c−1. (52)

Now we consider the rate of change of the following pseudo-energy,

d

dt

(
H∗
c + 1

2
�c�

2
c

)
=−�c

(∑
i

1

mi
p′
i ·p′

i

)
+ J̇c+1− J̇c−1+�c�c�̇c (53)

By substituting Equation (46) into the above equation, we get

d

dt

(
H∗
c + 1

2
�c�

2
c

)
=−3nc�ckBTc+ J̇c+1− J̇c−1 (54)

It should be pointed out that the Voronoi cell-ensemble is not isolated to each other. They are open
systems with fluxes exchange from each other. Assume that the domain boundary is adiabatic,
then the inter-cell fluxes cancel each other if we sum Equation (54) for all cell-ensembles. Thus,

∑
c

(
d

dt

(
H∗
c + 1

2
�c�

2
c

))
=−∑

c
3nc�ckBTc. (55)

On the other hand, the Liouville equation for distribution function is

∑
c

d fc
dt

=−∑
c

{
fc

nc∑
i=1

(
�q̇i
�qi

+ �ṗ′
i

�p′
i

)
+ fc

��̇c
��c

}
(56)

where fc is the probability density distribution function for cell-ensemble c. From Equation (44),
we have

�q̇i
�qi

= �
�qi

(
p′
i

mi
+ p̄i
mi

)
= � ˙̄qi

�qi
. (57)

From Equation (45), we have

�ṗ′
i

�p′
i

= �
�p′

i

(Fi − ˙̄pi −�cp
′
i )=−� ˙̄pi

�p′
i

−3�c (58)

By virtue of Equation (42),

� ˙̄pi
�p′

i

= � ˙̄qi
�xi

= � ˙̄qi
�qi

(59)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



S. LI AND N. SHENG

which leads to

�ṗ′
i

�p′
i

=−� ˙̄qi
�qi

−3�c (60)

We also assume that �̇c is independent of �c, i.e.

��̇c
��c

=0 (61)

By substituting Equations (57), (60), and (61) into Equation (56), we obtain

∑
c

d fc
dt

=∑
c
3nc�c fc (62)

This leads to

∑
c

(
d

dt

(
H∗
c + 1

2
�c�

2
c

)
+ 1

�c

d

dt
log fc

)
=0 (63)

where �c= (kBTc)−1.
A possible solution for the distribution function in each cell-ensemble will be

fc(q,p′,�c, t)=C exp

[
−�c

(
H∗
c + 1

2
�c�

2
c

)]
(64)

where C is an arbitrary constant. We then conclude that the proposed MS-NEMD algorithm does
indeed produce a canonical non-equilibrium thermodynamics (e.g. [62, 63]), which is superior to
the algorithm proposed in [49]. Moreover, one of the main advantages of the proposed MS-NEMD
algorithm is that it will make the simulated system automatically and spontaneously return to an
equilibrium state when all external forces and fluxes disappear, because in this case the MS-NEMD
algorithm degenerates to a Nosé–Hoover canonical equilibrium MD algorithm.

4. THE COARSE-GRAINED MODEL

In this section, we discuss the coarse-grained thermodynamics model that is part of the MS-NEMD
algorithm. How to construct an accurate coarse-grained thermodynamics model is a challenging
subject [57, 64, 65]. Since the objective of this work is to formulate and implement a MS-NEMD
model, the choice of the coarse-grained model is flexible. Therefore, in this work, we adopt a
class of coarse-grained thermodynamics models that are based on the free-energy minimization,
e.g. [66–68], and more recently [69]. Such coarse-grained models have been extensively used
in practical computations for studying defects in solids. There are two main assumptions or
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approximations involved in this class of coarse-grained thermodynamics models: (1) harmonic
approximation and (2) the Cauchy–Born rule. By doing so, the quantum statistical thermodynamics
can be made well versed with the continuum thermodynamics [70, 71].

We consider a general three-dimensional (3D) solid with a Bravais lattice structure. We choose
the zero-temperature equilibrium configuration as the reference configuration, and denote the i-th
atom’s position as Xi . Since at the finite temperature, each atom is vibrating around its equilibrium
position, its current position is denoted as

xi =qi +Xi (65)

To emphasize that xi is an atom position, we denote qi =ui and use

x=u+X (66)

for all material as well as configurational points that may or may not be attached with a mass.
For multiscale analysis,

u= ū+u′ and x= x̄+x′ (67)

where ū is defined in (8) by FE interpolation, and

x̄= ū+X. (68)

The main approximation or provision of the classical Cauchy–Born rule is that within a local
region, the deformation gradient is assumed to be a constant and the underlying atomic lattice will
deform the same way [72]. In [49], the local ensemble is chosen as a FE and the coarse-grained
thermodynamics model is formulated within each FE by using linear FE interpolation functions,
such that

F̄e= �x̄
�X

∣∣∣∣∀X∈�e

=const. and r̄i� = F̄e ·Ri� (69)

where F̄e is the coarse scale deformation gradient in the element e, r̄i� denotes the coarse scale
projection of the position vector between atoms i and � in the deformed lattice, Ri� denotes the
original bond vector in the referential space, and �e denotes the domain of the element e.

In this paper, we formulate the coarse-grained model within each cell-ensemble instead of within
each element, because one of the basic assumptions of the proposed MS-NEMD algorithm is that
within the time scale of the coarse grain each cell-ensemble can reach to a local equilibrium state,
which means that the temperature is a constant in a cell-ensemble rather than in an element, see
Figure 3. Another setback of element formulation is that the temperature is always non-uniform
in an element even if linear FE shape function is used to interpolate temperature field.

To use the Cauchy–Born rule in a Voronoi cell-ensemble c where the deformation is not
homogeneous, we consider the local mean field. Let the FE node inside the Voronoi cell-ensemble c
be labeled as I . The average coarse scale deformation gradient in the cell-ensemble c is defined as:

〈F̄〉�c =
〈
�x̄
�X

〉
�c

(70)
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where �c denotes the volume of the cell-ensemble c. Similarly, the average total deformation
gradient in the cell-ensemble c can be defined as:

〈F〉�c =
〈
�x
�X

〉
�c

=
〈
�x̄
�X

〉
�c

+
〈
�u′

�X

〉
�c

=〈F̄〉�c +
〈
�u′

�X

〉
�c

(71)

Assume that on the boundary of each cell-ensemble the following fine scale displacement flux
condition holds or approximately holds,∫

��c

u′
iNJ dS=0 (72)

where ��c denotes the boundary of the cell-ensemble c and NJ are the out-normal components
of ��c. This assumption leads to〈

�u′
i

�XJ

〉
�c

= 1

�c

∫
�c

�u′
i

�XJ
d�= 1

�c

∫
��c

u′
iNJ dS=0. (73)

It is then straightforward that

〈F〉�c =〈F̄〉�c (74)

i.e. the average deformation gradient in a cell-ensemble equals the average coarse scale deformation
gradient in the cell-ensemble. We now postulate the following coarse scale Cauchy–Born rule

r̄i� =〈F̄〉�c ·Ri� (75)

Remark 1
(1) In this paper, we use F̄c denoting the average coarse scale deformation gradient within a cell-
ensemble c, which is approximated as the value of the coarse scale deformation gradient evaluated
at the nodal point I since the cell-ensemble c contains only one nodal point I (I and c have the
one-to-one correspondence). Moreover, if the linear FE interpolation functions are used,

F̄c :=〈F̄〉�c = F̄(XI )= 1

�c

n∑
e=1

F̄ewe (76)

where we=�e
⋂

�c and n is the number of elements sharing the FE node I .
(2) The postulate assumption (72) may be understood in the sense of〈∫

��c

u′
iNJ dS

〉
�tc

=0. (77)

That is valid in the sense of time average over a coarse scale time step, �tc.

To formulate the coarse-grained formulation, we first write the total potential energy of a Voronoi
cell-ensemble c as

U0= 1

2

nc∑
i=1

nb∑
�=1

�(ri�) (78)
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where nc is the total number of atoms in the cell-ensemble c, nb is the total number of pair
atomistic bonds in a unit cell, e.g. nb=6 for a hexagonal lattice, and ri� =|ri�| is the length of
the position vector. For the multiscale Cauchy–Born rule, we state that U0 is approximated as the
function of the mean value of the deformation gradient within the cell-ensemble, i.e.

U0(ri�)≈U0(r̄i�)=U0(F̄c) (79)

where r̄i� =|r̄i�|, which is related to F̄c by Equation (75).
Based on the harmonic approximation [67, 68] and the Cauchy–Born rule [66, 69, 73, 74], the

coarse-grained Helmholtz free energy in a cell-ensemble c may be written as

Fc(F̄c,Tc)=U0(F̄c)+kBTc
nc∑
i=1

3∑
k=1

log

[
2sinh

(
h̄�ik(F̄c)

4�kBTc

)]
(80)

where h̄ is Planck’s constant divided by 2�, Tc is the kinetic temperature for the cell-ensemble c,
and �ik are three normal mode frequencies for the atom i . �ik depends on F̄c through r̄i�. It is
possible to compute �ik for some simple type of lattices, e.g. an 1D lattice with identical atoms
and quadratic potentials. For a general 3D lattice, one simple way to compute �ik is to adopt the
local harmonic approximation [69]:∣∣∣∣∣mi�

2
ikI3×3− �2U0

�xi�xi

∣∣∣∣∣=0, i =1, . . .,nc. (81)

Note that at the beginning of each fine scale time integration cycle, we set the kinetic temperature
Tc as the coarse scale thermodynamics temperature at the FE node I . At the end of each fine scale
time integration cycle, Tc is updated based on the fine scale momentums or the peculiar velocities
in the cell c:

Tc= 2

3(nc−1)kB

〈 nc∑
i=1

p′
i ·p′

i

2mi

〉
. (82)

A detailed implementation of the proposed MS-NEMD algorithm is described in Section 5.
With the free-energy expression Fc available, one can derive the expression for entropy Sc

at the coarse scale level for each nodal point. Recall that each cell-ensemble has only one nodal
point, so the numbering of the nodal point and the numbering of the cell-ensemble are the same.
We have

Sc = −�Fc

�Tc
= h̄

4�Tc

nc∑
i=1

3∑
k=1

�ik(F̄c)coth

(
h̄�ik(F̄c)

4�kBTc

)

−kB
nc∑
i=1

3∑
k=1

log

[
2sinh

(
h̄�ik(F̄c)

4�kBTc

)]
. (83)

Similarly, we can find the internal energy Ec as

Ec=Fc+TcS
c=U0(F̄c)+ h̄

4�

nc∑
i=1

3∑
k=1

�ik(F̄c)coth

(
h̄�ik(F̄c)

4�kBTc

)
. (84)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



S. LI AND N. SHENG

Based on the Helmholtz free energy Fc, the expression for the first Piola–Kirchhoff stress Pc

can be written as:

Pc(F̄c,Tc) = 1

�c

�Fc

�F̄c
= 1

�c

{
1

2

nc∑
i=1

nb∑
�=1

�′(r̄i�)
r̄i�⊗Ri�

r̄i�

+ h̄

4�

nc∑
i=1

3∑
k=1

[
coth

(
h̄�ik(F̄c)

4�kBTc

) nb∑
�=1

�′
ik(r̄i�)

r̄i�⊗Ri�

r̄i�

]}
(85)

The specific heat at constant volume Cc
V and the specific heat at constant temperature Cc

T can be
derived as well:

Cc
V (F̄c,Tc)=−Tc

�2Fc

�T 2
c

= h̄2

16�2kBT 2
c

nc∑
i=1

3∑
k=1

�2
ik(F̄

c)

sinh2
(
h̄�ik(F̄c)

4�kBTc

) (86)

and

Cc
T (F̄c,Tc) = −Tc

�2Fc

�Tc�F̄c

= −h̄2

16�2kBTc

nc∑
i=1

3∑
k=1

⎡
⎣ �ik(F̄c)

sinh2
(
h̄�ik(F̄c)
4�kBTc

) nb∑
�=1

�′
ik(r̄i�)

r̄i�⊗Ri�

r̄i�

⎤
⎦ (87)

To find the initial guess or prediction for thermal conductivity Kc
T , we exploit the result from the

kinetic theory [75]:
Kc

T = 1
3C

c
V v�I3×3 (88)

where v is the average particle velocity and � is the particle mean free path. For non-conducting
crystalline materials, we have

�=v	 (89)

where 	 is the collision time. The values of both � may be obtained from standard references, e.g.
[75]. Since we assume that Cc

V =Cc
V (F̄c,Tc), we can write Kc

T as:

Kc
T =Kc

T (F̄c,Tc)

Note that in the proposed MS-NEMD algorithm, all the transport coefficients can be later updated
based on the fine scale computation via the response theory. Now, we have derived the expressions
for Pc, Cc

T , C
c
V , and Kc

T , and all of them can be expressed as functions of F̄c and Tc.
Our coarse-grained model is built in conjunction with the FE method. To establish FE Galerkin

weak formulation, we first discuss the governing equations at coarse scale level. The governing
equations at the coarse scale level are: (1) the equation of motion and (2) the first law of ther-
modynamics. The equation of motion for finite deformations in a continuum can be written
as [76]:

∇X ·P+
0B=
0 ¨̄u ∀X∈�0 (90)
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where ū is the coarse scale displacement field, P is the first Piola–Kirchhoff stress, 
0 is the density
in material configuration, B is the body force, ∇X :=�/�XIEI is the material divergence operator,
and �0 denotes the coarse scale domain.

The equation of thermodynamic first law is expressed as [77]:
ẇ=
0z−∇X ·Q+P : ˙̄F (91)

where w is the internal energy per unit reference volume, z is the heat source per unit mass, Q is
the Piola–Kirchhoff heat flux, and

F̄= I3×3+ �ū
�X

. (92)

To explore the meaning of Equation (91), we write the left-hand side of (91) for each cell-ensemble,

ẇc = Ėc

�c
= 1

�c

�Ec

�F̄c
· ˙̄Fc+ 1

�c

�Ec

�Tc
Ṫc

= 1

�c

�Fc

�F̄c
· ˙̄Fc+ Tc

�c

�Sc

�F̄c
· ˙̄Fc+ 1

�c

�Ec

�Tc
Ṫc

= Pc : ˙̄Fc+Cc
T

�c
: ˙̄Fc+ Cc

V

�c
Ṫc (93)

Equation (93) can be extended to the whole coarse scale domain �0,

ẇ=P : ˙̄F+CT

�0
: ˙̄F+ CV

�0
Ṫ (94)

by defining

P(X) : =
ncell∑
c=1

Pc�(�c) (95)

CT (X) : =
ncell∑
c=1

�0

�c
Cc
T �(�c) (96)

CV (X) : =
ncell∑
c=1

�0

�c
Cc
V �(�c) (97)

Note that ncell=nnode, and �(�c) is the characteristic function of each cell,

�(�c) :=
{
1 ∀X∈�c

0 ∀X �∈�c
(98)

For the heat flux Q, we exploit Fourier’s law in the material configuration,

Q=−K ·∇XT (99)
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where

K(X) :=
ncell∑
c=1

Kc
T �(�c) (100)

The final expression for the first law is obtained by substituting (94) and (99) into (91):

CT

�0
: ˙̄F+ CV

�0
Ṫ =
0z+∇XF−1 ·K ·F−T∇XT . (101)

Note that the coarse scale displacement field, ū(X), and the thermodynamic temperature field,
T (X), are the primary variables governed by Equations (90) and (101) as well as the boundary
and initial conditions. Consider the boundary conditions of the coarse scale problem as

ū(X) = û(X) ∀X∈�u (102)

P·N= T̂(X) ∀X∈�t (103)

T (X) = Ĝ(X) ∀X∈�g (104)

(JF−1 ·K ·F−T∇XT )·N= Ĥ(X) ∀X∈�h (105)

where û and Ĝ are given displacement and temperature at the boundary, T̂ and Ĥ are given
traction and heat flux at the boundary, �u ∪�t =�0 and �h ∪�g =�0. And consider the initial
conditions as

u(X)|t0 = u0(X) ∀X∈�0 (106)

u̇(X)|t0 = v0(X) ∀X∈�0 (107)

T (X)|t0 = T0(X) ∀X∈�0 (108)

where u0(X), v0(X), and T0(X) denote the displacement, velocity, and temperature at the initial
time t0, respectively.

The Galerkin weak forms of (90) and (101) can be established via standard procedure, which
are written as:∫

�0


0 ¨̄u·�ūd�+
∫

�0

P :�F̄d�=
∫
�0


0B·�ūd�+
∫

�t

T̂ ·�ūdS (109)

and ∫
�0

CV

�0
Ṫ�T d�+

∫
�0

CT

�0
: ˙̄F�T d�+

∫
�0

JF−1 ·K ·F−T∇XT ·(∇X�T )d�

=
∫

�0


0z�T d�+
∫

�h

Ĥ�T dS. (110)

The referential domain�0 is then broken into a set of elements {�e},e=1, . . .,nelem. The integrals
in Equations (109) and (110) are expressed as summations of integrals over �e. The final form of
discrete FE governing equations are as follows:

Mc d̈= fext− fint (111)

CVṪ+CT ḋ+KT T = hbody+ hboun (112)
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with the initial conditions

d|t0 = {u0(X1), . . .,u0(XI ), . . .,u0(Xnnode)}T (113)

ḋ|t0 = {v0(X1), . . .,v0(XI ), . . .,v0(Xnnode)}T (114)

T|t0 = {T0(X1), . . .,T0(XI ), . . .,T0(Xnnode)}T (115)

The matrices and vectors in the discrete FE governing equations of the thermal–mechanical system
(111)–(112) are:

Mc =
∫

�0


0NT
uNu d� (116)

fint =
∫

�0

BT
uP

h d� (117)

fext =
∫

�t

NT
uT̂dS+

∫
�0


0NT
uBd� (118)

CV =
∫

�0

Ch
V

�0
NT

T NT d� (119)

CT =
∫

�0

1

�0
NT

TC
h
T Bu d� (120)

KT =
∫

�0

BT
TKhBT d� (121)

hbody =
∫

�0


0zN
T
T d� (122)

hboun =
∫

�h

ĤNT
T dS (123)

where Nu and NT are shape function matrices [54, 78] for ū and T , d and T are nodal displacement
and temperature arrays,

Nu(X) = {N1(X)I3×3, . . .,NI (X)I3×3, . . .,Nnnode(X)I3×3}3×3nnode

NT (X) = {N1(X), . . .,NI (X), . . .,Nnnode(X)}1×nnode

d= {d1, . . .,dI , . . .,dnnode}T

T = {T1, . . .,TI , . . .,Tnnode}T

and

Bu := �Nu(X)

�X
, BT :=[FT]�NT (X)

�X
(124)
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and

Ph =
nnode∑
I=1

NI (X)PI (125)

Ch
V =

nnode∑
I=1

NI (X)CV I (126)

Ch
T =

nnode∑
I=1

NI (X)CT I (127)

Kh =
nnode∑
I=1

NI (X)KT I (128)

where PI have been determined in each cell-ensemble, i.e. Equation (85) as Pc, and CV I ,CT I ,KT I
are determined in Equations (86)–(88) as Cc

V , C
c
T , and Kc

T , respectively. Note that each cell-
ensemble has only one node, so the numberings I and c have one-to-one correspondence.

Equations (111) and (112) are non-linear coupled equations in terms of nodal unknowns d and
T. We can solve (111) and (112) to obtain the coarse scale solutions d and T, whereas the fine
scale fluctuation is obtained by solving Equations (44) and (45). The coupling between the coarse
scale computation and the fine scale computation is described in the following section.

5. IMPLEMENTATION OF THE ALGORITHM

A main difference between the proposed MS-NEMD algorithm and other molecular dynamics
algorithms is that in the proposed MS-NEMD algorithm, the fine scale model alone cannot provide
statistics details. The fine scale statistical model, by which the fine scale stochastic motions are
described, depends on the coarse scale mean field in the following two ways: (1) the amplitude of
fine scale fluctuation is controlled by the coarse scale thermodynamic temperature T; T is used to
set up heat reservoirs at the beginning of each fine scale time integration cycle; the fine scale motion
is driven out of the equilibrium by the coarse scale mean field instead of a prescribed or fictitious
external field as in some traditional NEMD simulations, such as DOLLS or SLLOD algorithms
and (2) in turn, the fine scale motion provides thermal fluctuation to the mean field; at the end of
each fine scale time integration cycle, the fine scale atomistic velocities are used to update coarse
scale thermodynamic temperature according to Equation (82); the fine scale atomistic displacement
q is used to calculate the atomistic force vector F which is then mapped to FE nodes to obtain
the internal force vector fint for the coarse scale computation. To illustrate how to implement the
MS-NEMD algorithm, a complete MS-NEMD algorithmic sequence is documented as follows.
The time sequence is presented in the order of numerical integration:

1. Set up FE discretization and interpolation. Calculate multiscale projection matrices, P

and Q.
2. Start at coarse scale time tN = t0+N�tc, where t0 is the initial time, �tc is the coarse

scale time step size, and N is the current number of coarse scale time step. {d(tN ), ḋ(tN ),

d̈(tN ),T(tN ), Ṫ(tN )} are solutions obtained at tN .
3. Set up heat reservoirs, use T(tN )={Tc(tN )}nnodec=1 as the temperature array in the distributed

Nośe–Hoover thermostat network.
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4. Start at fine scale time t f0= tN , with { q(tN ), q̇′(tN ), q̈′(tN )}. Enforce the multiscale decom-
positions:

˙̄q(tN ) = P q̇(tN ) and q̇′(tN )=Q q̇(tN )

¨̄q(tN ) = P q̈(tN ) and q̈′(tN )=Q q̈(tN )

5. Do n=0 :ncyl
Update MD solutions { q, q̇′, q̈′} from t fn to t fn+1, where t fn = tN +n�t f, �t f is the fine scale
time step size, n is the current number of fine scale time step, and ncyl is the total number of
fine scale time step. In a cell-ensemble c, atoms are associated with a heat reservoir of Tc(tN ).
The velocity Verlet algorithm for Nośe–Hoover chain dynamics [35, 79–81] is adopted for
the MD update in each cell-ensemble c.

Part 1: Advance q̇′
c, �2k−1, and �̇2k from t fn to t fn+1/2, where k=1, . . .,M/2, M is the length

of Nośe–Hoover chain, and q̇′
c denotes the subvector of q̇′, i.e. the fine scale velocities of

the atoms in the cell-ensemble c. Also define MA,c as the submatrix of MA and Fc as the
subvector of F.

q̈′
c(t

f
n) = M−1

A,cFc(t
f
n)− ¨̄qc(tN )

q̇′
c(t

f
n+1/2) =

[
q̇′
c(t

f
n)

(
1− �t f

4
�̇1(t

f
n)

)
+ �t f

2
q̈′
c(t

f
n)

](
1+ �t f

4
�̇1(t

f
n)

)−1

�2k−1(t
f
n+1/2) = �2k−1(t

f
n)+

�t f

2
�̇2k−1(t

f
n)

�̇2k(t
f
n+1/2) =

[
�̇2k(t

f
n)

(
1− �t f

4
�̇2k+1(t

f
n)

)
+ �t f

2
a�2k (t

f
n)

](
1+ �t f

4
�̇2k+1(t

f
n)

)−1

a�1(t
f
n+1/2) =

[ nc∑
i=1

mi q̇′
i(t

f
n+1/2)· q̇′

i(t
f
n+1/2)−3nckBTc(tN )

]/
Q1

a�2k−1
(t fn+1/2) = Q2k−2�̇

2
2k−2(t

f
n+1/2)−kBTc(tN )

Q2k−1

Part 2: Advance qc, �2k , and �̇2k−1 at t fn to the ones at t fn+1:

qc(t
f
n+1) = qc(t

f
n)+�t f( q̇′

c(t
f
n+1/2)+ ˙̄qc(tN ))

�2k(t
f
n+1) = �2k(t

f
n)+�t f�̇2k(t

f
n+1/2)

�̇2k−1(t
f
n+1) =

[
�̇2k−1(t

f
n)

(
1− �t f

2
�̇2k(t

f
n+1/2)

)
+�t fa�2k−1

(t fn+1/2)

]

×
(
1+ �t f

2
�̇2k(t

f
n+1/2)

)−1
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Calculate Fc(t fn+1) based on qc(t
f
n+1) and calculate

a�2k (t
f
n+1)=

Q2k−1�̇
2
2k−1(t

f
n+1)−kBTc(tN )

Q2k

Part 3: Advance q̇′
c, �2k−1, and �̇2k from t fn+1/2 to t fn+1:

q̈′
c(t

f
n+1) = M−1

A,cFc(t
f
n+1)− ¨̄qc(tN )

q̇′
c(t

f
n+1) =

[
q̇′
c(t

f
n+1/2)

(
1− �t f

4
�̇1(t

f
n+1)

)
+ �t f

2
q̈′
c(t

f
n+1)

][
1+ �t f

4
�̇1(t

f
n+1)

]−1

�2k−1(t
f
n+1) = �2k−1(t

f
n+1/2)+

�t f

2
�̇2k−1(t

f
n+1)

�̇2k(t
f
n+1) =

[
�̇2k(t

f
n+1/2)

(
1− �t f

4
�̇2k+1(t

f
n+1)

)
+ �t f

2
a�2k (t

f
n+1)

]

×
[
1+ �t f

4
�̇2k+1(t

f
n+1)

]−1

End of fine scale cycle with { q(tN+1), q̇′(tN+1), q̈′(tN+1)}. Note that ncyl ·�t f=�tc.
6. Update (correct) coarse scale temperature based on fine scale atomistic velocities for each

cell-ensemble c:

Tc(tN+1/2)= 2

3(nc−1)kB

〈
nc∑
j=1

p′
j ·p′

j

2m j

〉

and update finite element nodal position in each cell-ensemble,

xc(tN )= 1

nc

nc∑
i=1

qi

7. Solve FE equations for {d(tN+1), ḋ(tN+1), d̈(tN+1),T(tN+1), Ṫ(tN+1)}. A mixed time inte-
gration algorithm is used in coarse scale FE update, which is pioneered by Liu and Belytschko
for solving dynamic fluid–structure interaction problems [82],

d(tN+1) = d(tN )+�tc ḋ(tN )+ (�tc)2

2
d̈(tN )

ḋ(tN+1/2) = ḋ(tN )+ �tc

2
d̈(tN )

d̈(tN+1) = M−1
c ( fext(tN+1)− fint(tN+1))

ḋ(tN+1) = ḋ(tN+1/2)+ �tc

2
d̈(tN+1)
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T(tN+1) = T(tN+1/2)+�tcṪ(tN )

Ṫ(tN+1) = −C−1
V (CT ḋ(tN+1)+KT T(tN+1))

Update the velocity

˙̄q(tN+1) = N ḋ(tN+1)

q̇(tN+1) = ˙̄q(tN+1)+ q̇′(tN+1)

Update the acceleration

¨̄q(tN+1) = N d̈(tN+1)

q̈(tN+1) = ¨̄q(tN+1)+ q̈′(tN+1)

8. Advance coarse scale time to tN+1.

6. NUMERICAL EXAMPLES

6.1. An one-dimensional wave benchmark example

To validate the proposed MS-NEMD algorithm, we have carried out several numerical examples.
The first example is a problem of wave propagation along 1D lattice. The Morse potential with
parameters for Aluminum is used. Nearest neighbor interaction is assumed. The expression for the
potential is

�(rij)=De−2�(rij−r0)−2De−�(rij−r0) (129)

where i and j denote two atoms. The parameters for Aluminum are [83]: r0=3.253A,
�=1.1646A−1, D=0.2703eV, ma =26.98amu. The Boltzmann constant kB is 1.3806e-23 J K−1

and the Planck’s constant h̄ is 1.0546e-34 J S. An initial displacement is given,

u0(x)= B

B−ua

(
1+bcos

2�x

H

)(
B exp−( x

�)
2 −ua

)
(130)

for | x |�L , where ua = B exp−(L/�)2 , B=0.8r0, �=10r0, H =�/4, b=0.1, and L=5�. A domain
of [−300r0,300r0] is simulated with a total of 60 FE elements. The fine scale region is at
[−90r0,90r0] and has 181 atoms. There are 18 fine scale FE elements and each of them consists of
10 atoms. The coarse scale time step is 1.0×10−14 s and the fine scale time step is 1.0×10−15 s.

Figure 6 shows the comparison of the displacement solution of the 1D wave moving out of the
fine scale region via (a) bridging scale method [41] or PMMS method [48] without temperature,
(b) MS-NEMD method with initial temperature T0=100K, and (c) MS-NEMD method with initial
temperature T0=200K. One can find that the initial temperature will significantly affect the local
atomic displacements, or phonon motion, which eventually affects the coarse scale displacement
profile as well. In fact, one may find that as the initial temperature increases, the maximum
amplitude of the displacement profile decreases as indicated in Figure 6. We believe that this is
due to the facts: (1) large thermal fluctuation will assist the thermal–mechanical coupling, i.e.
dependence of thermal conductivity coefficient on temperature and (2) once the mechanical work

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



S. LI AND N. SHENG

Figure 6. Displacement profiles (x and u in meter): (a) zero-temperature PMMS solution;
(b) MS-NEMD solution with initial temperature T0=100K; and (c) MS-NEMD solution

with initial temperature T0=200K.
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Figure 7. Temperature profiles by MS-NEMD simulation (x in meter, T in K): (a) instanta-
neous temperature for initial temperature T0=100K; (b) instantaneous temperature for initial
temperature T0=200K; (c) coarse scale temperature for initial temperature T0=100K; and

(d) coarse scale temperature for initial temperature T0=200K.

is converted into heat it tends more to diffuse out over the entire domain rather than convert back
into mechanical energy again.

Moreover, the simulation results predict that the interchange of mechanical work and heat
flux will generate non-uniform temperature distribution under purely non-uniform mechanical
disturbance. In Figure 7, the fine scale instantaneous temperature is juxtaposed with the coarse
scale thermodynamic temperature. One can observe the non-uniform temperature distribution in
the fine scale region. This confirms the thermal–mechanical coupling at the both scales and their
exchange between the two scales.

6.2. An one-dimensional shock wave propagation

The second example is the simulation of a shock wave propagation along 1D lattice. A special
type of Frenkel-Kontorova potential, or the Fermi, Pasta, and Ulam (FPU)-� potential [6, 84] is
used in the numerical simulation,

U( q)=∑
i

(
k

2
(|qi−q j |−a)2+K

2
(qi−a int(qi/a))2−K

24
(qi−a int(qi/a))4

)
, |i− j |=1 (131)

E and his co-workers have used a similar potential, i.e. the first two terms of Equation (131), to
simulate shock wave propagation by using the heterogeneous multiscale method [39, 40, 85]. In the
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present simulation, we use the following normalized parameters: a=1, k=1, K=0.7, ma =1,
k̃B=kB(t2c /mcL2

c), and ˜̄h= h̄(tc/mcL2
c), where mc, Lc, and tc are characteristic mass, length,

and time, respectively. They are chosen as: mc=26.98amu, Lc=3.253A, and tc=2.0×10−13 s.
The function int(x) is the floor integer function that converts a real number to the next smallest
integer, and it is defined as

int(x)=n if and only if n�x<n+1 (132)

A domain of [0,1000] with 1001 atoms is considered. A strong discontinuity in displacement
field (dislocation) is prescribed at x=500. There are 50 FE elements and each of them consists
of 20 atoms. The normalized coarse scale time step is 0.1 and the normalized fine scale time step
is 0.01.

We have conducted two sets of simulations. In the first set of simulations, a constant external
force f =0.04, which is slightly higher than the critical force (the Peierls force), is applied to
every atom along the 1D lattice. We use the MS-NEMD method to simulate the propagation of the
dislocation, or strong discontinuity. The initial temperature in this example is chosen as T0=100K.
Figure 8 shows snapshots of displacement, instantaneous kinetic (fine scale) temperature, and
thermodynamic (coarse scale) temperature profiles. One can observe extreme high temperature
peak moving with the shock front, which generates coarse scale heat wave propagation. Moreover,
one may find that there is a good agreement between the coarse scale temperature distribution and
the fine scale temperature distribution, which indicates that the definitions of temperatures used in
this work are sensible. This example reveals the capacity of the MS-NEMD method to simulate a
non-equilibrium process with both spatial and temporal temperature gradients.

In the second set of MS-NEMD simulations, a sub-Peierls force, f =0.03 is applied along the
lattice. Figure 9(a–c) shows the time histories of the displacement profiles with initial temperatures
T0=0K, T0=100K, and T0=200K, respectively. In Figure 9(a, b), there are stationary shock
waves for every t , which indicates that the shock does not propagate along the lattice under sub-
Peierls force. Whereas in Figure 9(c), we choose initial temperature T0=200K, and one can find
that the shock wave starts moving from right to left, which indicates the thermal activation of
shock wave or dislocation motions.

Figure 9(d–f) displays the time histories of the fine scale temperature profiles with initial
temperatures T =0K, T =100K, and T =200K, respectively. One can observe that when the initial
temperature increases, the fine scale temperature distribution is visibly larger. It indicates that the
thermal–mechanical interaction is more significant in the case of T =200K and hence, the thermal
activation of shock wave occurs when the initial temperature is increased to 200K.

We note that first the results shown here are qualitative, because it does not correspond to any
real materials, for which specific numerical simulations have to be conducted; second, similar
conclusions may have been drawn based on the finite temperature equilibrium MD simulation
[86]. However, in reality a shock wave only propagates in non-equilibrium states, in which both
spatial and temporal temperature gradients are present and changing. To the best of the authors’
knowledge, this is the first successful numerical simulation of thermal activation of ‘dislocation’
under non-equilibrium conditions. The fine scale calculation provides the essential source for
thermal–mechanical coupling at both scales, and the activation of dislocation is clearly due to
thermal fluctuations.

For the case of f =0.03, we have also performed the simulations by using three other different
methods, i.e. (1) micro-canonical ensemble MD simulation (without temperature), (2) direct NEMD
simulation (with a fixed temperature of 200K at the boundary ends), and (3) canonical ensemble
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Figure 8. MS-NEMD simulation of shock wave propagation under an above-critical load f =0.04:
displacement profiles at (a) t=168 and (b) t=420; fine scale temperature profiles at (c) t=168 and

(d) t=420; coarse scale temperature profiles at (e) t=168 and (f) t=420.

MD simulation (with fixed temperature of 200K). The results are compared with that of the
present MS-NEMD simulation with the initial temperature of 200K. As shown in Figure 10(a, b),
both the micro-canonical MD simulation and the direct NEMD simulation predict a stationary
shock wave, which does not propagate along the lattice. Whereas in the canonical MD simulation
(Figure 10(c)) and the MS-NEMD simulation (Figure 10(d)), the shock wave moves from right to
left, which indicates the thermal activation of dislocation motions. From this comparison study,
one can find that the micro-canonical MD simulation fails to predict thermal activation of shock
wave or dislocation because it is not able to produce thermal fluctuations. The direct NEMD
simulation may have failed in prediction of thermal activation of shock waves, because it uses the
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Figure 9. MS-NEMD simulation of shock wave propagation under a sub-critical load f =0.03: displace-
ment profiles with initial temperatures at (a) T0=0K; (b) T0=100K and (c) T0=200K; instantaneous

temperature profiles with initial temperatures at (d) T0=0K; (e) T0=100K; and (f) T0=200K.

micro-canonical MD in the interior of the simulation domain. On the other hand, both the equilib-
riumMD simulation and theMS-NEMD simulation predict the thermal activation of the dislocation,
because of the intrinsic statistical or thermodynamic structures in both algorithms, which enable
them to produce correct thermal fluctuations that are responsible for exciting dislocation motion
or shock wave propagations. This example clearly demonstrates an advantage of the proposed
MS-NEMD algorithm over the direct NEMD algorithm.

Furthermore, the instantaneous temperature profiles obtained by the four different methods are
juxtaposed in Figure 11. In the micro-canonical ensemble MD simulation, no thermodynamic
temperature is enforced; and in the direct NEMD simulation, only two boundary thermostats are
enforced with a fixed temperature of 200K. Subsequently, these two simulations put a constraint
on kinetic energy distribution. In other words, the thermal–mechanical interaction is constrained.
Therefore, the instantaneous temperature distributions obtained by the micro-canonical ensemble
MD simulation (Figure 11(a)) and the direct NEMD simulation (Figure 11(b)) are visibly smaller
than that of the canonical ensemble MD simulation (Figure 11(c)) and the MS-NEMD simulation
(Figure 11(d)). This may explain the thermal activation of dislocation in the later two simulations.
Moreover, although the displacement profile of the proposed MS-NEMD simulation is close to
that of the canonical ensemble MD simulation (see Figure 10(c, d)), the MS-NEMD instantaneous
temperature distribution exhibits larger fluctuations (see Figure 11(c, d)). Therefore, the proposed
MS-NEMD simulation gives more sensible temperature distribution.

6.3. A two-dimensional shock wave propagation

To demonstrate the multidimensional characters of theMS-NEMD algorithm, we present simulation
results of a shock wave propagation in 2D space in this subsection.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
DOI: 10.1002/nme



ON MS-NEMD SIMULATIONS

Figure 10. Shock wave propagation under a sub-critical load f =0.03: displacement profiles obtained by
(a) micro-canonical ensemble MD simulation, (b) direct NEMD simulation, (c) canonical ensemble MD

simulation (with fixed temperature), and (d) MS-NEMD simulation.

We consider a shock wave propagating in a hexagonal lattice. The dimension of the computation
domain is [−100,100]×[−100,100]. The normalized interatomic spacing is chosen to be 1. Inside
the domain, there are 40 401 atoms. The coarse scale continuum is discretized into 800 triangle
elements, and there are total of 441 FE nodes and each of them represents a Voronoi cell-ensemble
of 100 atoms. An initial dislocation or out-of-plane displacement in x3 direction is prescribed as:
q(r)=1.0 for r�20. A constant out-of-plane force f =0.04, which is slightly higher than the
critical lattice friction force (the Peierls force), is applied to every atom. The FPU-� potential [6]
is used as the atomistic potential,

U( q) =∑
i, j

(
k

2
(qi, j −qm,n)

2+K

2
(qi, j − int(qi, j))

2−K

24
(qi, j − int(qi, j ))

4
)

|(i+ j)−(m+n)|=1, or |i−m|=1, | j−n|=1 (133)

where the subscript indices, i and j , denote the position of a discrete point in the 2D plane.
The parameters used in computations are the same as those in the example of 1D shock wave
propagation, because the deformation mode of a screw dislocation is anti-plane strain and we only
have out-plane displacement component.
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Figure 11. Shock wave propagation under a sub-critical load f =0.03: instantaneous temperature profiles
obtained by (a) micro-canonical ensemble MD simulation, (b) direct NEMD simulation, (c) canonical

ensemble MD simulation (with fixed temperature), and (d) MS-NEMD simulation.

The normalized coarse scale time step is 0.2, and the normalized fine scale time step is 0.02.
The initial temperature is chosen as T0=100K that distributes uniformly throughout the domain.

A time sequence of displacement profiles obtained by the MS-NEMD simulation are shown in
Figure 12(a–d). One can observe that the shock wave moves from the center to the boundaries.
In Figure 12(e–h), we also show the displacement profiles obtained by the direct NEMD simulation
for comparison. One may find that the results obtained by the MS-NEMD simulation show visibly
larger displacement fluctuations than that of the direct NEMD simulation. Second, in Figure 13,
we compare the temperature profiles obtained by the direct NEMD simulation and the MS-NEMD
simulation. The MS-NEMD results indicate that the temperature amplitude in the region that shock
wave passes through will not drop down to the initial temperature, and it will remain fluctuating for
some time. Whereas based on the temperature profiles obtained by the direct NEMD simulation,
the temperature inside the zone that shock wave passes through will immediately drop to the initial
temperature. This cannot be true because the time scale for heat diffusion is much larger than the
simulation time reported.

The above example had been carried out before in [87] by using the algorithm that is based
on a multidimensional theory of non-equilibrium multiscale method proposed in [49]. One may
compare the results below to those reported in [87].
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Figure 12. A 2D shock wave propagation: (a–d) a time sequence of displacement profiles
obtained by MS-NEMD simulation; (e–h) a time sequence of displacement profiles obtained

by direct NEMD simulation.

Figure 13. A 2D shock wave propagation: (a–d) a time sequence of instantaneous temperature
profiles obtained by MS-NEMD simulation; (e–h) a time sequence of instantaneous

temperature profiles obtained by direct NEMD simulation.

7. OUTLOOK

In this work, an MS-NEMD method has been formulated, implemented, and tested in numerical
computations. It is shown that the distributed Nosé–Hoover thermostat network approach may
yield a local canonical distribution function for NEMD. Using the canonical approach and the local
equilibrium approach to study non-equilibrium systems is not new, and it can be traced back to
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Mori [88], Yamada and Kawasaki [89], Kawasaki and Gunton [62], and more recently Mavrantzas
and Öttinger [90], Taniguchi and Morriss [63], and Edwards et al. [24]. In fact, the canonical
distribution approach has become a powerful method to study non-equilibrium thermodynamics.
The contribution of this work is to rigorously establish a local canonical distribution approach to
study NEMD in a setting of concurrent multiscale coupling. Moreover, the underline principle for
the distributed Nosé–Hoover thermostat network approach is to use local thermodynamic equilib-
rium assumption to study general non-equilibrium processes. Such philosophy and strategy have
been adopted by mainstream theoretical physicists in many years. In fact, the local thermodynamic
equilibrium assumption has been extensively used to construct non-equilibrium thermodynamics
and non-equilibrium statistical mechanics. This work may be the first attempt to use it in multiscale
analysis—This is the novelty of the work.

The proposed MS-NEMD method has the following merits:

• Different from our earlier work [49], the proposed MS-NEMD simulation is canonical;
• The distributed Nosé–Hoover thermostat network not only provides a source of random force

based on mean field intensity, but also accelerates thermal relaxation by bridging time scales;
• The MS-NEMD simulation may be still locally time-reversible, which we cannot verify yet,

but it is globally time-irreversible, because of (a) the coupling of the dynamics at different
scales and (b) thermal–mechanical interactions among different Voronoi cell-ensembles;

• The role of the micro-level deterministic thermostats is more in assisting heat conduction or
thermal relaxation than just adding or removing heat.

The potential applications of the MS-NEMD are multitude, and in the following we list a few that
we think are important:

• Accurate prediction of thermal conductivity of crystalline solids: Recent study has shown that
the conventional MD simulation of the lattice thermal conductivity have severe limitations
on accuracy [91]. The main reason for such limitation is the lack of accurate description
on phonon thermal transport like phonon–phonon scattering. As shown in this paper, the
MS-NEMD algorithm will provide a powerful local equilibrium approach for a large class
of non-equilibrium problems. Because the mutliscale non-equilibrium molecular/continuum
approach can attain local equilibrium in a general non-equilibrium process, it allows us to
define and measure local temperature by spatial averaging kinematic energy rather than from
the original temperature definition of temporal averaging—an ergodic assumption that the
micro-canonical ensemble system does not satisfy. Furthermore, the bridging scale decom-
position approach leads to a global distributed COM coordinate, which allows us accurately
define and measure the local peculiar velocity and hence the local temperature. Accordingly,
MS-NEMD can accurately simulate phonon interactions, scattering, and phonon statistical
distribution. It is expected that it may be possible that MS-NEMD may provide a means to
measure thermal conductivity tensor in 3D under general non-equilibrium conditions.

• Accurate simulation and prediction of the thermal conductance at material interfaces:
The prediction of the thermal conductance at material interfaces is another key technique
component in the thermal management of integrated circuits in thin films, micro-electronic-
mechanical-system (MEMS), and nano-electronic-mechanical-system (NEMS), which has
been a major challenge in both simulations as well as experimental measurements [92]. As
shown in this paper, MS-NEMD provides a convenient framework to accurately simulate
multiscale phonon interactions and scattering. Because (1) it can clearly separate high
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frequency atomic vibrations with long range acoustic wave propagation, and therefore (2) it
can capture the acoustic wave transmission, reflection, and scattering at the material interface
under non-equilibrium conditions.

• Providing accurate, efficient, and physics-based multiscale coupling algorithms: The main
challenge for the concurrent multiscale simulation is the multiscale coupling and exchange
of information. The proposed MS-NEMD method is in fact a special algorithm for a very
general multiscale paradigm. In this work, we have only demonstrated a local canonical
ensemble approach to couple the macroscale variable temperature with atom vibration, in
which the local temperature is enforced in each cell ensemble. We can apply the similar
technique to develop a local Norton ensemble for a general non-equilibrium system, in which
the macroscale stress may be enforced in each cell ensemble by a distributed local thermostat
approach. By doing so, we create an accurate multiscale information passage that concurrently
exchange information among different scales. This multiscale coupling paradigm for non-
equilibrium systems is most general, statistically correct, and elegant approach. It will be
instrumental for simulations of thermal–mechanical interaction and evolution of defects in
multiscale scales, such as thermal activations of dislocations, nanoscale fracture, vacancy and
solvent diffusion due to thermal–mechanical interactions, molecular simulation of turbulence
flows. These processes are not only important for miniature electronic systems, but also
hold the promise on studying problems, such as stress corrosion cracking, radiation damage,
and high temperature creep, which are the main concerns for designing next generation of
superalloys and self-healing materials.

In fact, currently we are working on applying theMS-NEMDmethod to simulate heat conduction
and fracture in multiple dimensions. To simulate fracture, the drifting COM manifold, which is
represented by FEM interpolation, has to be able to automatically adapt its evolving topological
configuration. This can be accomplished by employing a multiscale cohesive zone model [93],
which will be reported in a separated work [94].

We realize, nevertheless, the necessity of a systematic parametric study for the propose
MS-NEMD paradigm to determine (1) a suitable size of Voronoi cell-ensemble, i.e. how many
atoms should be in a Voronoi cell-ensemble. For instance, the cell-size of the MS-NEMD
simulation may be determined by the length of the phonon-free-mean-path, which is a local
property depending on many different factors, such as the local geometry and dimension of the
solid, microstructure or inhomogeneity distribution, and defect position and its state of evolution;
(2) the suitable time step for coarse scale integration; and (3) the convergence and stability of
transport coefficients determined by the fine scale calculations, etc.

In fact, these issues are related to the following fundamental questions: ‘(1) what determines
the size of the coarse grains and (2) if there is arbitrariness does it have physical implications,
e.g. with respect to the second law?’ [65]. Since in the multiscale formulation the temperature is
calculated as the average peculiar kinetic energy in a local cell-ensemble, the system’s entropy has
to be dependent on the size of the cell-ensemble or the coarse grain selection. It is also related to
the coarse scale time step size, because the coarse scale time step size is the duration to achieve the
local equilibrium. In general, this is a challenge in multiscale calculation, because the minimum
size of cell-ensemble is dictated by the phonon mean free path, which is a physical quantity that
may be affected by the presence of defects. In fact, the problem on how to select the size of
the coarse grain cell is NOT NEW, it has been a major technical problem in the direct NEMD
simulation as well. In most direct NEMD simulations, the temperature is calculated by averaging
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kinetic energy of atoms in a finite local strip, hence the size of the strip will affect the calculation
of temperature. In order to correctly calculate the temperature, most direct NEMD simulations are
3D calculations, the heat flux is usually chosen along one direction and the heat flux is assumed
to be in a steady state. Therefore even though the thickness of the finite strip may be small, one
may choose large sizes for the other two dimensions that are perpendicular to the direction of
the heat flux so that there are still sufficient number of atoms in a 3D simulation cell so that the
temperature calculation is accurate.

This strategy can be applied to the proposed MS-NEMD method as well, but it may limit the
applications of MS-NEMD to 1D and 2D applications of thermo-mechanical coupling problems
just like that of the direct NEMD. Even if the heat flux and temperature gradient are completely
in 3D character, the MS-NEMD method proposed in this paper may still work under the Casimir
limit, i.e. for the case that the size of the ensemble cell is sufficiently larger than the average
phonon mean-free-path.

Another important issue is: how to update transport coefficients based on the fine scale compu-
tations. In the present multiscale formulation, the values of transport coefficients, such as CV ,CT ,
and KT are calculated or estimated by the coarse-grained formulation, and they may only serve
as the initial guess of the transport coefficients. The precise values of various transport coeffi-
cients should be obtained based on the fine scale calculations. For example, instead of using the
coarse-grained approximation, 
T = 1

3CV v�, we consider to use,


T = Jc+1− Jc
(Tc+1−Tc)/h

, etc. (134)

for 1D thermal–mechanical interaction problems. Currently, we are working on justification or
validity of using (134) to calculate the thermal diffusion coefficients. It may be possible to develop
a multiscale linear response theory to calculate transport coefficients. All these remaining issues
and tasks will be discussed in subsequent papers.
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13. Kröger M, Hess S. Rheological evidence for a dynamical crossover in polymer melts via nonequilibrium
molecular dynamics. Physics Review Letters 2000; 85:1128–1131.

14. Xu L, Sedigh MG, Sahimi M, Tsotsis TT. Nonequilibrium molecular dynamics simulation of transport of gas
mixtures in nanopores. Physical Review Letters 1998; 80:3511–3514.

15. Jansen TIC, Snijders JG. The third- and fifth-order nonlinear Raman response of liquid CS2 calculated using a
finite field nonequilibrium dynamics method. Journal of Chemical Physics 2000; 113:307–311.

16. MacElroy JMD, Boyle MJ. Nonequilibrium molecular dynamics simulation of a model carbon membrane
separation of CH4/H2 mistures. Chemical Engineering Journal 1999; 74:85–97.

17. Hoover WG. Systems far from equilibrium. In Systems Far from Equilibrium, Garrido L (ed.). Springer: Berlin,
1980; 373–380.

18. Hoover WG, Evans DJ, Hickman RB, Ladd AJC, Ashurst WT, Moran B. Lennar-Jones triple-point bulk and
shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics. Physical
Review A 1980; 22:1690–1697.

19. Hoover WG. Nonequilibrium molecular dynamics. Annual Review of Physical Chemistry 1983; 34:103–127.
20. Evans DJ, Morriss GP. Nonlinear-response theory for steady planar Couette flow. Physics Review A 1984;

30:1528–1530.
21. Evans DJ, Morriss GP. Statistical Mechanics of Nonequilibrium Liquids. Academic Press Inc: San Diego, 1990.
22. Tuckerman ME, Mundy CJ, Balasubramanian S, Klein ML. Modified nonequilibrium molecular dynamics for

fluid flows with energy conservation. Journal of Chemical Physics 1997; 106:5616.
23. Edwards BJ, Dressler M. A reversible problem in non-equilibrium thermodynamics: Hamiltonian evolution

equations for non-equilibrium molecular dynamics simulations. Journal of Non-Newtonian Fluid Mechanics
2001; 96:163–175.

24. Edwards BJ, Baig C, Keffer DJ. An examination of the validity of nonequilibrium molecular-dynamics simulation
algorithms for arbitrary steady-state flows. Journal of Chemical Physics 2005; 123. Article no. 1141106.

25. Edwards BJ, Baig C, Keffer DJ. A validation of the p-SLLOD equations of motion for homogeneous steady-state
flows. Journal of Chemical Physics 2006; 124. Article no. 194104.

26. Baig C, Edwards BJ, Keffer DJ, Cochran HD. A proper approach for nonequilibrium molecular dynamics
simulations of planar elongational flow. Journal of Chemical Physics 2005; 122. Article no. 114103.

27. Evans DJ. Homogeneous NEMD algorithm for thermal conductivity-application of non-canonical linear response
theory. Physics Letters 1983; 91A:457–460.

28. Zhang F, Isbister DJ, Evans DJ. Nonequlibrium molecular dynamics simulations of heat flow in one-dimensional
lattices. Physical Review E 2000; 61:3541–3546.

29. Zhang M, Lussetti E, de Souza LES, Müller-Plathe F. Thermal conductivities of molecular liquids by reverse
nonequilibrium molecular dynamics. Journal of Physical Chemistry B 2005; 109:15060–15067.

30. Hoover WG, Ladd AJC, Moran B. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics.
Physics Review Letters 1982; 48:1818–1820.

31. Holian BL, Lomdahl PS. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations.
Science 1998; 280:2085–2088.

32. Evans DJ, Hoover WG, Failor BH, Moran B, Ladd AJC. Nonequilibrium molecular dynamics via Gauss’s
principle of least constraint. Physical Review A 1983; 8:1016.

33. Galea TM, Attard P. Constraint method for deriving nonequilibrium molecular dynamics equations of motion.
Physical Review E 2002; 66. Article No. 041207.

34. Bright JN, Evans DJ. New observations regarding deterministic, time-reversible thermostats and Gauss’s principle
of least constraint. Journal of Chemical Physics 2005; 122. Article no. 194106.
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chain dynamics’ [J. Chem. Phys. 110, 3623 (1999)]. Journal of Chemical Physics 1999; 110:3626–3628.
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