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In this paper, we introduce a multi-scale nonequilibrium molecular dynamics
(MS-NEMD) model that is capable of simulating nano-scale thermal–mechanical inter-
actions. Recent simulation results using the MS-NEMD model are presented. The
MS-NEMD simulation generalises the nonequilibrium molecular dynamics (NEMD)
simulation to the setting of concurrent multi-scale simulation. This multi-scale frame-
work is based on a novel concept of multi-scale canonical ensemble. Under this concept,
each coarse scale finite element (FE) node acts as a thermostat, while the atoms asso-
ciated with each node are assumed to be in a local equilibrium state within one coarse
scale time step. The coarse scale mean field is solved by the FE method based on a
coarse-grained thermodynamics model; whereas in the fine scale the NEMD simulation
is driven by the random force that is regulated by the inhomogeneous continuum filed
through a distributed Nośe–Hoover thermostat network. It is shown that the fine scale
distribution function is canonical in the sense that it obeys a drifted local Boltzmann
distribution.

Keywords: Nonequilibrium thermodynamics; multi-scale simulation; canonical ensemble.

1. Introduction

The essence of heat transfer at small scales is the nonequilibrium thermal–
mechanical multi-scale coupling, in which the length and/or time scales span from
molecular level to continuum level. The fundamental understanding of nonequilib-
rium thermal–mechanical coupling process at small scales and the capacity to sim-
ulate such physical phenomena are vital to the study of the mechanism of energy
conversion and to the advancement of reliability of micro and nano-electronics.

∗Corresponding author.
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The conventional molecular dynamics (MD) simulation is a simulation of micro-
canonical ensemble, and it is unable to describe system’s responses due to thermal
fluctuation. The finite temperature equilibrium MD simulation is a simulation of
canonical ensemble under fixed temperature, which is regularised by various ther-
mostats, e.g. Nośe–Hoover thermostat [Hoover, 1985; Nośe, 1984, 1986]. However,
the equilibrium MD simulation is unable to simulate problems with spatial or tem-
poral temperature gradients. An illustration of one-dimensional Nośe–Hoover equi-
librium MD simulation is given in Fig. 1(a). The thermostated region is denoted by
blue colour.

Since 1970s, the nonequilibrium molecular dynamics (NEMD) method has been
a major numerical tool for the simulations of nonequilibrium thermal–mechanical
coupling processes, which is largely due to the contribution made by Hoover [1983]
and Evans and Morriss’ [1990] pioneer works. Currently, there are several types of
NEMD simulations that have been used in different research fields [Baranyai, 1996;
Bright and Evans, 2005; Edwards and Dressler, 2001; Evans et al., 1983; Evans and
Morriss, 1984, 1990; Galea and Attard, 2002; Hoover, 1980, 1983; Lepri et al., 2003;
Müller-Plathe, 1997; Tuckerman et al., 1997; Zhang et al., 2000]. Among them, the
direct NEMD simulation [Baranyai, 1996; Lepri et al., 2003; Müller-Plathe, 1997]
is the most popular one used in practice. It has been the workhorse in performing
direct atomistic or molecular simulations in many scientific and engineering fields.
In the direct NEMD simulation, the system is driven out of equilibrium by pre-
scribed boundary heat flux or temperature distribution, i.e. prescribed heat sources
or heat sinks at the boundaries of the domain of interest. Such heat sources or sinks
are maintained by either thermostat techniques or velocity scaling techniques. An
illustration of one-dimensional direct NEMD simulation is given in Fig. 1(b).

A main shortcoming of the direct NEMD simulation is that in the interior
domain it simply uses the conventional micro-canonical ensemble MD simulation, so
the system cannot automatically return to a canonical ensemble equilibrium state
when the boundary heat flux disappears. This fact can be illustrated in Fig. 1, in

(a)

(b)

Fig. 1. Comparison between (a) the Nośe–Hoover equilibrium MD simulation and (b) the direct
NEMD simulation.
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which we compare the direct NEMD simulation with the Nośe–Hoover equilibrium
MD simulation.

We question on whether the deterministic micro-canonical MD simulation can
faithfully model the statistical phonon scattering process in the interior domain
without ubiquitous presence of random forces. In a recent monograph, Chen [2005]
expressed the same concern on the direct NEMD simulation. The present authors
note that it may be necessary to develop a NEMD simulation technique with solid
statistical mechanics foundation for direct simulations of nonequilibrium systems.

Recently, a class of concurrent multi-scale simulations have emerged in nano-
scale computational mechanics, for example, the quasi-continuum method [Knap
and Ortiz, 2001; Tadmor et al., 1996], the coarse-grained MD method [Rudd and
Broughton, 1998, 2005], the bridging scale method [Wagner and Liu, 2003; Wagner
et al., 2004], the finite temperature quasi-continuum method [Tang et al., 2006],
the perfectly matched multi-scale dynamics method [Li et al., 2006; To and Li,
2005] and among others. The essence of the multi-scale simulations is the coupling
of deterministic coarse scale computations with stochastic, or statistical, fine scale
computations. They are suited to model Physical phenomena operating across dif-
ferent scales and have become a popular research topic. However, most of the multi-
scale models in the literature focus either on solving problems at zero temperature
or on simulating equilibrium systems with uniform environmental temperature. To
the authors’ best knowledge, there are few multi-scale simulations or formulations
available for nonequilibrium systems.

In this paper, we report a multi-scale nonequilibrium molecular dynamics
(MS-NEMD) model that generalises the NEMD simulation to the setting of con-
current multi-scale simulation and is capable of simulating nonequilibrium thermal–
mechanical coupling processes at the atomistic scale. In the proposed MS-NEMD
model, the coarse scale mean field is concurrently solved by finite element (FE)
method based on a coarse-grained thermodynamics model; whereas in the fine scale
the NEMD simulation is carried out.

A main difference between the proposed MS-NEMD simulation and other NEMD
simulations is that in the proposed MS-NEMD simulation, the fine scale model alone
cannot provide statistics details. The fine scale statistical model, by which the fine
scale stochastic motions are described, depends on the coarse scale mean field in the
following two ways: (i) The fine scale motion is driven out of the equilibrium by the
coarse scale mean field instead of a prescribed or fictitious external field as in some
traditional NEMD simulations. The amplitude of fine scale fluctuations is controlled
by the coarse scale thermodynamic temperature, which is determined by coarse
scale boundary heat fluxes, interior heat sources/sinks, and interior coarse scale
heat diffusion and convection. (ii) In turn, the fine scale motion provides thermal
fluctuation to the mean field. The fine scale simulation results are used to update
temperature and displacement fields at the coarse-grained level, and they may also
be used to calculate transport coefficients for the coarse-grained formulation.
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It is shown that the fine scale distribution function is canonical in the sense that
it obeys a drifted local Boltzmann distribution. To the authors’ best knowledge,
the proposed MS-NEMD algorithm is the first canonical NEMD algorithm in the
literature. Moreover, when external forces and fluxes disappear, the MS-NEMD
simulation will degenerate to the equilibrium MD simulation, i.e. the simulated
system can automatically and spontaneously return to an equilibrium state.

This paper is organised in the following way. In Sec. 2 we outline the basic ideas
of MS-NEMD model. In Secs. 3 and 4 we introduce in detail the fine scale model and
the coarse scale model, respectively. One- and two-dimensional numerical examples
are presented in Sec. 5. Finally, we conclude the presentation in Sec. 6 by making
a few remarks.

2. The Basic Framework and Ideas

The foundation of the concurrent MS-NEMD simulation is the multi-scale decom-
position proposed by Rudd and Broughton [1998] and Wagner and Liu [2003], which
decomposes the discrete atomistic displacement field, q, into a coarse scale part and
a fine scale part:

q = q̄ + q′. (2.1)

The symbol ¯ indicates coarse scale quantities and the symbol ′ indicates their fine
scale counterparts.

The main ingredients of the proposed MS-NEMD are its multi-scale computa-
tion and coupling. The coarse scale motion is solved by using the FE method based
on a coarse-grained thermodynamics model; whereas the fine scale motion is mod-
elled and solved by using an NEMD. A conceptual illustration of the multi-scale
framework is shown in Fig. 2. In the proposed MS-NEMD model, we argue that
each coarse scale FE node may be viewed as a thermal reservoir, and it represents
the ambient space of a large set of atoms. We call each set of atoms surrounding an
FE node as a Voronoi cell-ensemble. Note that the Voronoi cell or Voronoi tessel-
lation is a dual structure of Delaunay triangulation [Qiang et al., 1999], hence the
cell structure is related to FE mesh or discretisation (see Fig. 2).

The main novelty of this work is the proposal of the concept — multi-scale
canonical ensemble, which is a generalisation of the classical notion of canonical
ensemble. The classical canonical ensemble denotes a system embedded into an
infinitely large thermal reservoir, whose temperature remains constant during an
equilibrium process. In the proposed MS-NEMD model, we argue that the temper-
ature of each coarse scale nodal reservoir remains constant during any time interval
that is smaller than the time scale of the coarse grain, which is chosen here as
the coarse scale time step. Since a Voronoi cell-ensemble is embedded within a
coarse scale nodal reservoir, the motions of atoms in a Voronoi cell-ensemble can be
assumed to reach to a local equilibrium state within one coarse scale time step. So we
may call a Voronoi cell-ensemble as a multi-scale canonical ensemble in the sense of
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Fig. 2. Coarse-grained finite element mesh and Voronoi cell-ensemble structure.

local equilibrium approximation. The local equilibrium assumption has been widely
used in nonequilibrium thermodynamics, e.g. Evans and Morriss [1990]. This work
may be the first attempt to use it in multi-scale analysis.

To ensure each Voronoi cell-ensemble reaching to a local equilibrium state in each
coarse scale time step, we introduce a local Nośe–Hoover thermostat in each cell-
ensemble. The local thermodynamic temperature for each cell-ensemble is set as the
coarse scale temperature at the governing FE node. Since the coarse scale tempera-
ture distribution is nonuniform and evolving with time, the FE nodal temperature
changes from node to node and time to time. Therefore, the local thermodynamic
temperature is not uniform among different cell-ensembles and different coarse scale
time steps. This leads to the use of a distributed Nośe–Hoover thermostat network
in the present MS-NEMD simulation (see Fig. 3), which is a generalisation of the
Nośe–Hoover thermostat [Hoover, 1985; Nośe, 1984, 1986] in a global equilibrium
ensemble MD simulation.

Coarse scale: FEM nodes

Fine scale: atoms

Fig. 3. The structure of distributed Nośe–Hoover thermostat network.
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In statistical physics, the fluctuation dissipation theorem states that the response
of a system in thermodynamic equilibrium to a small external perturbation is the
same as its response to a spontaneous fluctuation. In the proposed MS-NEMD
model, coarse scale thermodynamic temperature provides the external disturbance
through the distributed Nośe–Hoover thermostat network, which drives the system
out of equilibrium, and it is equivalent to fluctuations created by random forces.
Therefore, one may view the distributed Nośe–Hoover thermostat network as a
means to control the amplitude of fine scale fluctuations. This is another novelty of
the present work.

3. The Fine Scale NEMD Model

The multi-scale displacement decomposition in Eq. (2.1) implies similar decompo-
sitions for velocity field, q̇, and linear momentum field, p, i.e.

q̇ = ˙̄q + q̇′ and p = p̄ + p′. (3.1)

With the bridging scale formulation [Wagner and Liu, 2003], the total scale kinetic
energy can be decoupled in terms of p̄ and p′. This suggests the following multi-scale
adiabatic Hamiltonian for a single cell-ensemble c surrounding the FE node I

Hadia
c =

nc∑
i=1

1
2mi

p̄i · p̄i +
nc∑
i=1

1
2mi

p′
i · p′

i + Uc(q) (3.2)

where nc is the number of atoms in the cell-ensemble c, Uc(q) is the atomistic poten-
tial, p̄i and p′

i are, respectively, the coarse scale and fine scale linear momentum
vectors of the i-th atom. Here and in the following the subscript i is used to denote
the quantities of the i-th atom. Note that each cell-ensemble has only one node, so
the numberings I and c have one-to-one correspondence (see Fig. 2).

The two-scale equations of motion are then derived from Eq. (3.2) as

q̇i =
∂Hadia

c

∂pi
=

p̄i

mi
+

p′
i

mi
and ṗi = −∂Hadia

c

∂qi
= −∂U(q)

∂qi
= Fi, (3.3)

˙̄qi =
∂Hadia

c

∂p̄i
=

p̄i

mi
and ˙̄pi = −∂Hadia

c

∂q̄i
= Fj · ∂qj

∂q̄i
, (3.4)

where Fi denotes the external force acting on the atom i. From Eq. (3.3), the fine
scale equations of motion may be expressed in terms of qi and p′

i as follows,

q̇i =
p̄i

mi
+

p′
i

mi
and ṗ′

i = Fi − ˙̄pi. (3.5)

To couple the fine scale motions of atoms with the coarse scale heat conduction, we
introduce a local Nośe–Hoover thermostat in each cell-ensemble such that the fine
scale equations of motion in Eq. (3.5) become

q̇i =
p̄i

mi
+

p′
i

mi
and ṗ′

i = Fi − ˙̄pi − ξcp′
i (3.6)
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∀i ∈ nc, nc = {1, . . . , nc} and

ξ̇c =
1

Θc

(∑
i∈nc

p′
i · p′

i

mi
− 3nckBTc

)
, (3.7)

where kB is the Boltzmann constant, ξc is an auxiliary variable [Hoover, 1985; Nośe,
1984, 1986], Θc is the pseudo mass of ξc, and the local thermodynamic temperature
Tc for cell-ensemble c is the coarse scale temperature at the governing FE node I.

As introduced in Sec. 2, a distributed Nośe–Hoover thermostat network is used
in the MS-NEMD simulation to ensure each cell-ensemble reaching to a local equilib-
rium state within one coarse scale time step. Moreover, based on the inhomogeneous
coarse scale temperature, the distributed Nośe–Hoover thermostat network provides
a source of random forces to drive the fine scale system out of equilibrium.

The conventional Nośe–Hoover thermostat renders the MD system a canonical
ensemble. The authors have proved in a recent paper [Li et al., 2008] that the
proposed distributed Nośe–Hoover thermostat network provides a similar role in
the nonequilibrium simulation, and it yields a local canonical distribution function
for nonequilibrium thermodynamics. This is superior to the algorithm proposed by
Liu and Li [2007]. Using the canonical approach and the local equilibrium approach
to study nonequilibrium systems is not new, and it can be traced back to Kawasaki
and Gunton [1973] and Mori [1958] and more recently Edwards et al. [2005] and
Taniguchi and Morriss [2004]. The contribution of this work is to rigorously apply
the local canonical distribution approach to MD in a multi-scale setting.

4. The Coarse Scale Model

In discrete-to-continuum multi-scale computations, we want our coarse scale model
to be a coarse-grained one, in the sense that it needs to be consistent with the
fine scale model. This means we have to incorporate atomic information into the
coarse scale level. Traditional FE methods do not satisfy this criterion, since they
use empirical constitutive models. In the proposed MS-NEMD model, the coarse
scale mean field is concurrently solved by the FE method based on a coarse-grained
thermodynamics model [Jiang et al., 2005; Weiner, 1983]. The formulation is based
on a coarse-grained Helmholtz free energy. It stems from the principles described by
Weiner [1983] and is derived with the assumptions of harmonic approximation and
the Cauchy–Born rule. In this paper, we will use the coarse-grained Helmholtz free
energy to derive macroscopic quantities in coupled thermomechanical equations.

The main provision of the classical Cauchy–Born rule is that within a local
region, the deformation gradient is assumed to be a constant and the underly-
ing atomic lattice will deform the same way. In Liu and Li [2007], a local region
is viewed as an FE and the coarse-grained thermodynamics model is formulated
within each FE. In this paper, we formulate the coarse-grained model within each
cell-ensemble instead of within each element, because one of the basic assumptions

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 2

00
9.

01
:4

05
-4

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 B
E

R
K

E
L

E
Y

 o
n 

08
/1

1/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 20, 2009 16:35 WSPC-255-IJAM SPI-J108 00028

412 N. Sheng & S. Li

of the proposed MS-NEMD model is that within the time scale of the coarse grain
each cell-ensemble can reach to a local equilibrium state, which means that the
temperature is a constant in a cell-ensemble rather than in an element, see Fig. 2.

To use the Cauchy–Born rule in the multi-scale analysis, we have constructed a
coarse scale Cauchy–Born rule as

r̄iα = F̄c · Riα, (4.1)

where r̄iα denotes the coarse scale projection of the position vector between atoms
i and α in the deformed lattice, Riα denotes the original bond vector in referential
space, and F̄c denotes the average deformation gradient within a cell-ensemble c,
which is approximated as the value of the coarse scale deformation gradient evalu-
ated at the nodal point I since the cell-ensemble c contains only one nodal point I

(I and c have the one-to-one correspondence).
If we only consider the pair potential, the total potential energy in a Voronoi

cell-ensemble c can be written as

U0 =
1
2

nc∑
i=1

nb∑
α=1

ϕ(riα), (4.2)

where nc is the total number of atoms in the cell-ensemble c, nb is the total number
of pair atomistic bonds in a unit cell, e.g. nb = 4 for a cubic lattice, and riα = |riα| is
the length of the position vector. For the multi-scale Cauchy–Born rule, we assume
that U0 is approximated as the function of the mean value of the deformation
gradient within the cell-ensemble, i.e.

U0(riα) ≈ U0(r̄iα) = U0(F̄c), (4.3)

where r̄iα = |̄riα|, which is related to F̄c by Eq. (4.1).
Based on the harmonic approximation and the Cauchy–Born rule, the coarse-

grained Helmholtz free energy in a cell-ensemble c may be written as [Weiner, 1983]

Φc(F̄c, Tc) = U0(F̄c) + kBTc

nc∑
i=1

3∑
k=1

log
[
2 sinh

(
�ωik(F̄c)
4πkBTc

)]
, (4.4)

where � is Planck’s constant divided by 2π; Tc is the coarse scale thermodynamic
temperature for the cell-ensemble c; and ωik are three normal mode frequencies for
the atom i, which depend on F̄c through r̄iα and can be determined via harmonic
approximation [Jiang et al., 2005].

Note that in the proposed MS-NEMD model, Tc is updated based on fine scale
atomistic velocities:

Tc =
2

3(nc − 1)kB

〈
nc∑
i=1

p′
i · p′

i

2mi

〉
, (4.5)

where 〈·〉 denotes averaging in time.
With Φc available, we can derive the expressions for the state variables such as

the first Piola–Kirchhoff stress Pc, the specific heat at constant volume Cc
V and the
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specific heat at constant temperature Cc
T :

Pc(F̄c, Tc) =
1
Ωc

∂Φc

∂F̄c

=
1
Ωc

{
1
2

nc∑
i=1

nb∑
α=1

ϕ′(r̄iα)
r̄iα ⊗ Riα

r̄iα

+
�

4π

nc∑
i=1

3∑
k=1

coth
(

�ωik(F̄c)
4πkBTc

)[ nb∑
α=1

ω′
ik(r̄iα)

r̄iα ⊗ Riα

r̄iα

]}
, (4.6)

Cc
V (F̄c, Tc) = −Tc

∂2Φc

∂T 2
c

=
�

2

16π2kBT 2
c

nc∑
i=1

3∑
k=1

(
ωik(F̄c)

)2
sinh2

(
�ωik(F̄c)
4πkBTc

) , (4.7)

Cc
T (F̄c, Tc) = −Tc

∂2Φc

∂Tc∂F̄c

=
−�

2

16π2kBTc

nc∑
i=1

3∑
k=1

ωik(F̄c)

sinh2
(

�ωik(F̄c)
4πkBTc

)
[

nb∑
α=1

ω′
ik(r̄iα)

r̄iα ⊗ Riα

r̄iα

]

(4.8)

in which Ωc denotes the volume of the cell-ensemble c. Note that in the proposed
MS-NEMD algorithm, the above transport coefficients will be later updated based
on the fine scale computation via the response theory.

Our coarse-grained model is built in conjunction with the FE method. To estab-
lish the FE formulation, we start with the governing equations at the coarse scale
level. They include: (i) the equation of motion, and (ii) the first law of thermody-
namics. The equation of motion at coarse scale can be written as

∇X ·P + ρ0B = ρ0¨̄u, ∀X ∈ Ω0, (4.9)

where Ω0 denotes the entire domain of the problem, X denotes the spatial position
vector, ū(X) is the continuous displacement field, ρ0 is the density in material
configuration, B is the body force, ∇X is the material divergence operator, and P
is defined by

P(X) :=
ncell∑
c=1

Pcχ(Ωc). (4.10)

Note that ncell = nnode denotes the number of cell-ensembles/FE nodes, and χ(Ωc)
is the characteristic function of each cell-ensemble,

χ(Ωc) :=

{
1, ∀X ∈ Ωc

0, ∀X /∈ Ωc

. (4.11)

Consider the first law of thermodynamics:

ẇ = ρ0z −∇X · Q + P : ˙̄F, (4.12)
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where w is the internal energy per unit reference volume, z is the heat source per
unit mass, Q is the Piola–Kirchhoff heat flux, and F̄ = I + ∂ū

∂X . For the heat flux
Q, we exploit Fourier’s law in the material configuration

Q = −K · ∇XT, (4.13)

where K is the thermal conductivity. Then the first law provides the following heat
conduction equation

CT

Ω0
: ˙̄F +

CV

Ω0
Ṫ = ρ0z + ∇X ·K · ∇XT, (4.14)

where CV and CT are defined by

CV (X) :=
ncell∑
c=1

Ω0

Ωc
Cc

V χ(Ωc), (4.15)

CT (X) :=
ncell∑
c=1

Ω0

Ωc
Cc

T χ(Ωc). (4.16)

Equations (4.9) and (4.14) form the complete set of governing equations for
the coarse-grained model. In computations, we use the coarse scale velocity and
acceleration to update the atomistic velocity and acceleration. The coarse scale
thermodynamic temperature is used to set up heat reservoirs for the fine scale
computations. On the other hand, the fine scale atomistic position can be used to
calculate the atomistic force which is then mapped to FE nodes to obtain the inter-
nal force for the coarse scale computations. The fine scale atomistic velocity can
be used to update coarse scale temperature. By doing so, the coarse scale model is
coupled with the fine scale model.

5. Numerical Examples

Two numerical examples are presented in this paper to illustrate the effectiveness
of the proposed MS-NEMD model.

5.1. A one-dimensional shock wave propagation

The first example is the simulation of a shock wave propagation along one-
dimensional (1D) lattice. A special type of Frenkel–Kontorova potential, or the
FPU-β potential [Lepri et al., 2003], is used,

U(q) =
∑

i

(
k

2
(|qi − qj | − a)2 +

µ

2
(qi − a int(qi/a))2

− µ

24
(qi − a int(qi/a))4

)
, |i − j| = 1.

The following normalised parameters are used: a = 1, k = 1, µ = 0.7, mi = 1, k̃B =
kBt2c/mcL

2
c and �̃ = �tc/mcL

2
c, where mc, Lc and tc are characteristic mass, length
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and time, respectively. They are chosen as: mc = 26.98amu, Lc = 3.253 Å and
tc = 2.0×10−13 s, respectively. A domain of [0, 1000] with 1001 atoms is considered.
There are 50 FEs and each of them consists of 20 atoms. The normalised coarse
scale time step is 0.1 and the normalised fine scale time step is 0.01.

In the simulation, a constant external force f = 0.03, which is slightly lower
than the critical force (the Peierls force), is applied to every atom along the 1D
lattice. A strong discontinuity in displacement field (dislocation) is prescribed in the
middle of the lattice. Figs. 4(a)–4(c) show the time histories of the displacement
profiles with initial temperatures T0 = 0, 100 and 200K, respectively. It can be
observed that the shock does not propagate along the lattice when T0 = 0 and 100K.
Whereas when T0 = 200K, the shock wave starts moving from right to left, which
indicates the thermal activation of shock wave or dislocation motions. Figs. 4(d)–
4(f) display the time histories of the fine scale temperature profiles when T0 =
0, 100 and 200K, respectively. One can observe that when the initial temperature
increases, the fine scale temperature distribution is visibly larger. It indicates that
the thermal–mechanical interaction is more significant in the case of T0 = 200K and
hence, the thermal activation of shock wave occurs when the initial temperature
is increased to 200K. To the authors’ best knowledge, this is the first successful
numerical simulation of thermal activation of “dislocation” under nonequilibrium
conditions. The fine scale calculation provides the essential source for thermal–
mechanical coupling at both scales, and the activation of dislocation is clearly due
to thermal fluctuations.

We have also performed the direct NEMD simulation with a fixed temperature of
200K at the boundary ends. The results are compared with that of the present MS-
NEMD simulation with the initial temperature of 200K. It is found that the direct
NEMD simulation fails to predict thermal-activation of shock wave or dislocation,
whereas the MS-NEMD simulation can do so, see Figs. 5(a) and 5(b). By comparing
the instantaneous temperature profiles obtained by the two simulations in Figs. 5(c)
and 5(d), it is observed that the instantaneous temperature distribution obtained by
the MS-NEMD simulation exhibits larger fluctuations than that of the direct NEMD
simulation. The thermal–mechanical interaction is constrained in the direct NEMD
simulation, which may be due to the use of the micro-canonical MD simulation in the
interior of the simulation domain. While the inherent statistical or thermodynamic
structures in the MS-NEMD simulation enable it to produce thermal fluctuations
that are responsible for exciting unstable dislocation motions. This example clearly
indicates an advantage of the proposed MS-NEMD simulation over the direct NEMD
simulation.

5.2. A two-dimensional shock wave propagation

In the second example, we simulate a shock wave propagation in a cubic lattice.
The dimension of the computation domain is [−100ha, 100ha] × [−100ha, 100ha],
where ha = 3.253 Å is the interatomic spacing. By choosing characteristic length

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 2

00
9.

01
:4

05
-4

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 B
E

R
K

E
L

E
Y

 o
n 

08
/1

1/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 20, 2009 16:35 WSPC-255-IJAM SPI-J108 00028

416 N. Sheng & S. Li

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig

.
4
.

D
is

p
la

ce
m

en
t

p
ro

fi
le

s
w

it
h

in
it

ia
l
te

m
p
er

a
tu

re
s

a
t

(a
)

T
0

=
0

K
,
(b

)
T
0

=
1
0
0

K
a
n
d

(c
)

T
0

=
2
0
0

K
;
in

st
a
n
ta

n
eo

u
s

te
m

p
er

a
tu

re
p
ro

fi
le

s
w

it
h

in
it

ia
l
te

m
p
er

a
tu

re
s

a
t

(d
)

T
0

=
0

K
,
(e

)
T
0

=
1
0
0

K
a
n
d

(f
)

T
0

=
2
0
0

K
.

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 2

00
9.

01
:4

05
-4

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 B
E

R
K

E
L

E
Y

 o
n 

08
/1

1/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 20, 2009 16:35 WSPC-255-IJAM SPI-J108 00028

A Multi-Scale Nonequilibrium Molecular Dynamics Algorithm and Its Applications 417

(a) (b)

(c) (d)

Fig. 5. Displacement profiles obtained by (a) direct NEMD simulation and (b) MS-NEMD
simulation; instantaneous temperature profiles obtained by (c) direct NEMD simulation and
(d) MS-NEMD simulation.

as Lc = ha, the normalised interatomic spacing is 1 and the normalised dimension
of the domain is [−100, 100] × [−100, 100]. We simulate the problem with 40401
atoms and 800 linear triangle elements. There are total of 441 FE nodes and each
of them represents a Voronoi cell-ensemble of 100 atoms. An initial out-of-plane
displacement or dislocation is prescribed as: q(r) = 1 for r ≤ 20. A constant out-
of-plane force f = 0.04, which is slightly higher than the critical force, is applied to
every atom. The FPU-β potential is used as the atomistic potential,

U(q) =
∑
i,j

(
k

2
(qi,j − qm,n)2 +

µ

2
(qi,j − int(qi,j))2 − µ

24
(qi,j − int(qi,j))4

)
,

in which |(i + j) − (m + n)| = 1, or |i − m| = 1, |j − n| = 1, the subscript indices, i

and j, denote the position of a discrete point in the 2D plane. The parameters used
in computations are the same as those in the example of 1D shock wave propagation.
The normalised coarse scale time step is 0.2, and the normalised fine scale time step
is 0.02. The initial temperature is chosen as T0 = 100K that distributes uniformly
throughout the domain.
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(a) (b)

(c) (d)

Fig. 6. A 2D shock wave propagation: displacement profiles obtained by (a) MS-NEMD
simulation and (b) direct NEMD simulation; instantaneous temperature profiles obtained by
(c) MS-NEMD simulation and (d) direct NEMD simulation.

In Figs. 6(a) and 6(b), one may find that the results obtained by the MS-NEMD
simulation show visibly larger displacement fluctuations than that of the direct
NEMD simulation. The instantaneous temperature profile as shown in Fig. 6(c)
obtained by the MS-NEMD simulation indicates that the temperature amplitude
in the region that shock wave passes through will not drop down to the initial
temperature, and it will remain fluctuating for some time. Whereas based on the
temperature profile as shown in Fig. 6(d) obtained by the direct NEMD simulation,
the temperature inside the zone that shock wave passes through will immediately
drop to the initial temperature. This cannot be true because the time scale for heat
diffusion is much larger than the simulation time reported.

6. Conclusions

An MS-NEMD algorithm has been developed based on the postulate of local equi-
librium and the fluctuation dissipation theorem. This is accomplished by setting
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the Nośe–Hoover thermostat in each cell-ensemble to form a distributed thermo-
stat network, which may yield a local canonical distribution function for NEMD.
The underline principle for the distributed Nośe–Hoover thermostat approach is to
use local thermodynamic equilibrium assumption to study general nonequilibrium
processes. Moreover, the distributed Nośe–Hoover thermostat network provides a
source of random forces based on mean field intensity to drive the fine scale system
out of equilibrium.

A detailed description and discussion on both the theory and algorithm of the
MS-NEMD simulation, including verification and validation, size effects of contin-
uum FE or coarse grain and the calculation of transport coefficients based on the
fine scale computations, will be presented in coming papers.
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