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In Part I of this work, the moving least-square reproducing kernel (MLSRK) method is formulated and implemented. Based 

on its generic construction, an m-consistency structure is discovered and the convergence theorems are established. 

In this par\ of the work, a systematic Fourier analysis is employed to evaluate and further establish the method. The preliminary 

Fourier analysis reveals that the MLSRK method is stable for sufficiently dense, non-degenerated particle distribution, in the sense 

that the kernel function family satisfies the Riesz bound. One of the novelties of the current approach is to treat the MLSRK 

method as a variant of the ‘standard’ finite element method and depart from there to make a connection with the multiresolution 

approximation. In the spirits of multiresolution analysis, we propose the following MLSRK transformation. 
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The highlight of this paper is to embrace the MLSRK formulation with the notion of the controlled L,-approximation. Based on 

its characterization, the Strang-Fix condition for example, a systematic procedure is proposed to design new window functions so 

they can enhance the computational performance of the MLSRK algorithm. The main effort here is to obtain a constant correction 

function in the interior region of a general domain, i.e. Ci = 1. This can create a leap in the approximation order of the MLSRK 

algorithm significantly, if a highly smooth window function is embedded within the kernel. One consequence of this development 

is the synchronized convergence phenomenon-a unique convergence mechanism for the MLSRK method, i.e. by properly tuning 

the dilation parameter, the convergence rate of higher-order error norms will approach the same order convergence rate of the 

Lz error norm-they are synchronized. 

1. Introduction 

As one of the favorite global partitions of unity, the moving least-square interpolation scheme is 
playing a major role in the increasingly popularized meshless methods (see [4,20,21]) for details. 

Interestingly, its continuous counterpart-moving least-square reproducing kernel representation is, 
without exaggeration, reminiscent of the early ‘spline plateau’ related finite element subspace method, 
which was a milestone in the development of the mathematical theory of finite element methods. Once 
again, history repeats itself in an amazingly similar pattern. The new method is not just a rehash of the 
early theory. Instead of using the ‘spline plateau’ as the kernel function, the ‘spline function’ or ‘hill 
function’ is used here as the basic window function-a building block to generate a ‘reproducing kernel’, 
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which possesses some excellent features such as reproducing m-order polynomials exactly in a random 
particle distribution, enforcing the essential boundary condition, as well as assuring global higher-order 
conforming property of the interpolation field, etc. This development brings new excitement and novel 
techniques into the state-of-the-art finite element technology. One such evidence is, as pointed out in Part 
I, that the current MLSRK method bears some resemblances with the critically hailed multiresolution 
analysis. 

Naturally, for a scientific mind, it is not cynical to ask: is it a finite element method? is it a multiresolu- 
tion approximation? or both? nor either? ‘To be or not to be, that is the question. ’ For application-minded 
engineers, their question might be rather straightforward and plain. What is the real ‘touch’ and novelty 
behind the theme, if it is not all hoopla. Due to the lack of understanding of how the algorithm works, we 
are unable to assess this meshless method precisely. Although a priori convergence estimates are given 
in Part I of this work [21], all the numerical experiments conducted so far suggest that the convergence 
results of the MLSRK are consistently better than the results obtained by using the same order finite 
element shape functions, and our theory fails to predict it. 

As an indispensable analytical apparatus, Fourier analysis provides us with a unique instrument to 
transform a complex object into a simple, transparent image. Hence, in this part of the work, a systematic 
Fourier analysis is conducted to evaluate the MLSRK method in the spectral domain in order to gain 
some insight and understanding of its computational performance. 

There are two departure points for our approach. One is the early abstract finite element formu- 
lation in terms of kernel functions, which was popular in mathematical finite element literature, e.g. 
Aubin [2], BabuSka [3] and Strang and Fix [26-281. Because of the lack of practical implementation, 
this formulation has remained as a symbolic abstraction overshadowed by a more engineering oriented 
triangularization and other piecewise polynomial based localization approaches. Of course, one could 
view the conventional piecewise continuous finite element shape function as a particular kernel func- 
tion. Another source of inspiration is the state-of-the-art multiresolution approximation, which attracts 
a lot of attention these days. An enormous amount of literature has been published during a very short 
period on this subject. Here, our sources of reference are from three excellent monographs, Chui [S], 
Daubechies [7] and Meyer [22]. Readers can find many references in these books. Conceptually, multires- 
olution approximation is a perfect embodiment to implement the spectral-Galerkin method in solving 
partial differential equation numerically. As a matter of fact, numerous attempts have been initiated 
to explore the possibilities, and many claims have been announced, though some of them might be 
premature. 

In this study, it is confirmed again that the MLSRK method is a multiresolution approximation, which 
is also related to the issue of numerical stability. In other words, being a numerical method, the numerical 
stability of MLSRK is assured in the sense that the discrete kernel function family consists of a frame, 
or even a Riesz basis, which is equivalent to saying that the condition number of the fundamental Gram 
matrix is bounded. 

In the presentation, the MLSRK method is treated as a variant of the finite element method, and 
the analysis is focused on the comparison between its features in the physical space and those in the 
Fourier space. Section 2 mainly serves as an ‘overture’: a handful of definitions are introduced. The main 
emphasis is placed on the discussion of the Strang-Fix condition [9,26], which plays a crucial role in our 
analysis. In Section 3, we develop a so-called finite element-moving least-square reproducing kernel 
(FE-MLSRK) formulation, which is parallel to the theory of general reproducing kernel formulation. 
Based on the concept of L,-approximation, a Fourier transform version of the m-consistency condition 
is also established, which is particularly pertinent to the characterization of the MLSRK method in the 
Fourier space. A brief discussion on the relationship between numerical stability and multiresolution 
approximation is carried out in Section 4. In Section 5, we show how to systematically reconstruct 
window functions such that the correction function can be a constant in the interior domain, Cj = 1, 
which substantially improves the approximation order of the reproducing kernel function. For instance, 
the kernel function can satisfy a higher-order Strang-Fix condition, which ultimately leads to a new 
convergence phenomenon-the synchronized convergence. 
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2.1. Fourier transform 

There are many excellent monographs on the subject of the Fourier transform. However, as an engi- 
neering approach, our standard is moderate and application oriented. Therefore, our point of reference 
is mainly taken from Korner [18], Papoulis [23] and occasionally Stein and Weiss [31]. 

In most of this paper, we directly deal with the situations in IR”, thus, the multi-index notation is 
used throughout the paper. A nuisance of the Fourier transform is that it has several definitions in the 
literature and each of them seems to have its own merit. Since the Fourier transform is only used as a 
tool in this work, we adopt the most common definition. 

For f(x) E L1(R”) n L2(R’), the Fourier transform in R” is defined as follows: 

f(S) := IX ...lm f(x)exp(-i&x)& = l,, f(x)exp(-i&)dx (I) 
-r, --30 

f(x) = (2jr)fl _I ... J J O” _-r, f”(~) exp(ibx> d5 = &J J?G exp(X~) 4’ 
R” 

(2) 

The notation 

f(x) - f(l) (3) 

is used to indicate that functions f(x) and f(l) are a Fourier transform pair related through Eqs. (1) 
and (2). 

In the following, several useful results of the Fourier analysis are listed, so they can be conveniently 
employed at our disposal. 

1. Some elementary properties of the Fourier transform 

The following formulas can be found in [23], except (le); in that case, the proof is outlined, 
Spatial shifting 

f (x - ~0) * h3 expG~0b) 

Frequency shifting 

exp(i~0x)f (x) * .k - [o) 

Spatial differentiation 
Assume D,“f (x) E L, (IR”). Then, 

Zf (x) w (i#“‘i(O 

Frequency differentiation 
Assume x”f(x) E Lt(R”). Then, 

(xYf (x) - (i)‘niD~J(5) 

Scaling 

(4) 

(5) 

(6) 

(7) 

Let f,(x) := l/e” f(x/e). One has 

f,(x) - fl(eL) (8) 

x*fAx) - (i)‘“‘e”[n,“~(~)ll~=ei (9) 
KfAx) - (i>‘“‘e-a[5*fl(E)llf=e~ (10) 
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(i) We first show (8). By definition (2) 

f f (5) = +~ni(l)exp (iii) dJ 

(ii) Next we show (9). Note the fact that 

By (8) and (7), one can derive (9) immediately. 
(iii) Let z = X/Q. Consider 

Gfe(x> = e-“qf(z> 
and apply (8) and (6) to (13), to derive (10). 0 

(If) Convolution 
Suppose fl (4, f2W E LI W) n L2W) and 

fl(X> *m; f2@) * h(t) 

then 

J 
,. A 

fib - y)f2(y) dy * fi (LJfi(l> 
R” 

(11) 

(12) 

(13) 

(14) 

(15) 

2. The general moment theorem 

The connection between derivatives of the Fourier transform of a function 4(C) and its moments is 
well-known and can be stated as follows: 

THEOREM 2.1 ([23/J. VX*~(X) E L,(W”), let 

m ._ a .- 
J 

z”+(z) dz 
R” 

Then, 

m, = (i)lalDFJ(0) 

where the n-tuple (Y is 

a = (Q,,(Y2,... 1&l) 

(16) 

(17) 

(18) 

The proof of the theorem is omitted here; one can also find it in [23]. 
The above conventional moment theorem can be extended to moments of derivatives of a function 

4, which we referred to as the ‘general moment theorem’. 

THEOREM 2.2 (The general moment theorem). Zf xa4 (x) E L1 (IR”), let 

rnt := 
J 

R” z”%#dz) dz 

where Df := @;a? . ..a$. 1 
One has 

(19) 

m! = (i)l”+Pl 
(a “& D;%(W - P) (20) 
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where 

PROOE By definition 

4 (x) = & R” #J (5) exp(i5.r) d5 J n (22) 
Consequently, 

1 
&P(x) = (27~)” R” J (i43P$(l)exp(ilx)d5 

* kP4(5) = J,. D!~(x) exp(-i&x) dx 

Substituting f”(S) = (i@&(5) into (7) yields 

(23 
(24) 

(i)‘“+“‘D; [&(l)] = J x*D~~(x) exp(-i&x) dx (25) 
R” 

Finally, we have 

J x”D~~(x) exp(-i[x) dx = (i)l”‘pl c (;)D;-‘[i(G]D;[i”] (26) 
R” y<a 

= (i)l”+P’ c (;) D;-‘$(i) (p piy)! S’-‘(P - Y) 
Y6a 

(27) 

Let i = 0. Eq. (27) immediately yields 

m; = (i)‘“‘Pl (a “Ip)! D;-‘&(a - P) (2% 

Note that Eqs. (25), (26) and (27) will be repeatedly used. 0 

3. Bessel’s inequality ((8,181) 

(1) If {ei} is an infinite sequence of orthonormal elements and f E C(IR”) is continuous, then 

IIf i&R”) 3 C IV~ej>12 (29) 
jCZ” 

(2) Let 

T := lR/2aZ (30) 

If f : T -+ Cc is continuous, then 

&J T” If( dt 3 c lf^Ci>l’ 
jcZ” 

(31) 

4. Poisson S summation formula ((51) 
Assume: 

(i) f E Li(IV; 
(ii) CjGZnfCX +27Fj) converges everywhere to a continuous function; 

(iii) 1/(2rr)” CiGzti f(j) exp(ijx) converges everywhere: 
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then 

c f(x + 2rrj) = & c f(j) exp(ijx), x E R” 
jEZ” ]tZ” 

in particular, x = 0 

c ft2v) = (& j~z” - C f(i) 
jEZ" 

If the x-axis is scaled by a factor a, then, Eq. (32) may be rewritten as 

Cf( 
jGZ” 

x + 2nuj) = (2& j~z,~ 
- CP(j/a)exp (is) 

where 

j/a := (illal, j2la2,. . . ,jn14J 

aj:= (4jl,a2j2,... ,anjn) 

Let x = -x, a = h/2n and xi = hj. One has 

cf(Xj-X)=&xf(y)eXp(-iy) 

jGZ” jcZn 

x=0 =+ xf(hj) = d c?(w) 
jEZ" jtZ" 

Vice versa, one can have the Poisson’s summation formula expressed for the sampled data [23] 

ca([+T) =h”xf(hj)exp(-ihji) 
jGZ” jcZ” 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

2.2. Strang-Fix condition 

The Strang-Fix condition is essentially a condition to categorize functions based on their regular- 
ity [26,9,17]. Before discussing the Strang-Fix condition, it would be expedient to make a few definitions. 
The Schwartz class S, is introduced as follows [29]. 

DEFZNZTZON 2.1. The class of r-order regular functions, S,, is defined as 

We denote t? as a subset of S,, 

Now, we are in a position to state the Strang-Fix condition. 

(40) 

(41) 

DEFZNZTZON 2.2 (Strang-Fix Condition). Assume xa+ (x) E Li (IR”), the function b,(x) is said to satisfy 
the pth order Strang-Fix condition, if the following equalities hold 

&O) = 1 (42) 

D;&S) ]2nj= 0 , vi E z”\(O) (43) 

where J(Y] 6~. 
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The condition (43) can be slightly generalized as 

q&s, IT= 0 1 v’i E Z”\(O) 

where 

j/h := (jr /hr, jz/h.. . , in/h) 

16.5 

(441 

(45) 

The Strang-Fix condition possesses some useful properties. The following statement about the Strang- 
Fix condition is a generalized version of a proposition made by Daubechies et al. [lo]. 

PROPOSITION 2.1. The set of functions that satisfies the pth order semi-Strang Fix condition, 

S3W ._ ,, .- { $J 1 xa4(x) E RDq$(l) (i+= 0, v’i E z”\(O), IH <P} 

have the following properties 

(i) S3jIp’ is translation invariance.. 

4(x) E S3’P’ * 4(x + t) E S3@‘. h h, te]R” 

(ii) S3ip’ is scaling invariance in a sense: 

4(x) E SFy, t > 0 ==S #J(tx) E SF;;); t E IR” 

(iii) S3ip’ i s differentiation invariance: 

#J E S, and 4 (x) E S3;) + D;c#J (x) E S3:‘: 

(46) 

(47) 

(48) 

(49) 

(iv) S3:’ is an ideal under convolution, i.e. 

4(x),$(x) t S3T@’ =+ C$ * JI E S3‘@’ 
h h 

(v) s3y 1s an ideal under ~JI - l)-order weighted convolution, i.e. 

I~+~I<p-l, ~(x),~(x)ES3~)J(xQ~(x))*(xY~(x))tS3~) 

(vi) Zf 4(x) E S3:‘, the ath moment of C#I can be written as 

GO) 

(51) 

(52) 

(vii) If $(x) E S3:‘, h t e ath moment of D!+ can be written as 

where E-I” = hZ”. Note that here the differential operator D! is acting on the argument (xi - x) 
rather than the argument x. 

PROOE Properties (i)-(iii) are obvious. Property (iv) is a special case of (v); and property (vi) is a 
special case of property (vii). Hence, it suffices to show that (v) and (vii) are true. 

(1) Property (v); 
One has to show that 

D;(D~$(~)D;(i,(C))i,=+ = 0, ‘v’lp + ~1 G P - lli E Z”\(O) 

We proceed by showing the contrary. By the Leibnitz rule, one can have 

(54) 
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Suppose the condition (54) is not true. Then, 3p such that 1~31 6 ]a] and 

Ia-P+cL] 2~ and ]P+v] 3~ 

Combining the two yields 

This violates the assumption ]p + V] < p - 1. Thereby, property (v) holds. 

(2) Property (vii): 
Let 

G(y,x) := 0, - x)“D$#+ - x,x)hn 

The Fourier transform of G(y,x) will be (for argument y), 

00 
6(&x) = “. 

S J 

00 

--oo 
_-05 h” (Y - V@ 4 (Y - x7 4 exr+iJyl dy 

cm 
= exp[-ilx]h” 

J SW 
. . z4Df4(z,x)exp[-i5z] dz 

= (i)l*+pl exp]--~~$z”D~~~$ (5, x)] 

Let xj = hj. The Poisson summation formula (38) yields 

C (Xj - X>“P! d, (Xj - x)hn = C G(jh, X) 

=$~d($*) eby (38) 

= (i)l”‘Pl 

By considering the fact that 4(x) E 53’,@‘. Eq. (60) can be further simplified as follows: 

~~“(Xj-X)~Dem(Xj-X)h.=(i)‘.‘B’~eXP[-i~] ((~)(D~rj(2nj/h)) (7)’ 
I 

+ ; (D;-‘&2~j/h))/II y p-‘+.. 
0 ( > 

+.._ (i) (~;Bb(W/f+)(B!)} 

= (i)l”‘Bl (a $)! Pp&O)l(~ - P) 

On the other hand, by the general moment theorem (20), 

rn: := 
J 

x”DXpf$(.x) dx = (i)l”+pl 
R” 

(Ly $), q-p4J(w~ -P) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 
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Comparing (61) and (62) yields property (vii), i.e. Eq. (53). q 

It should be noted that today the condition that bears the names of Strang and Fix has become 
a very useful categorization of functions in the field of harmonic analysis as well as approximation 
theory [14,16,17]. As Gilbert Strang himself commented, ‘It is true that this has now become the Strang- 
Fix condition, much more useful than I ever expected!’ [30] 

3. Mathematical analysis 

3.1. The finite element representation 

At this point, it is most likely considered self-indulgent to juxtapose the meshless method with the finite 
element method. In this paper, however, we are attempting to ‘fit’ the moving least-square reproducing 
kernel method into a form of the standard finite element formulation. This ‘standard’ finite element 
formulation is mainly due to Aubin [2], and was considered as a paradigm of the charming, elegant and 
stylish work of French school. It might sound a little bit antiqueted today; nonetheless, there is no doubt 
that the MLSRK method inherits its bourgeois ancestor’s legacy. Indeed, the MLSRK method and the 
finite element method virtually share the same origin. 

In Aubin’s original presentation, there are only two basic operations: restriction and prolongation. We 
add a third operation-reproducing operation, to unify the whole formulation. 

We start by defining the integral reproducing kernel representation. 

DEFINITION 3.1 (Reproducing operation). The mth order reproducing operation is defined as 

R” : C(lEr) ++ Crn(lFv) (63) 

RTu := 
s 

R” Qo, - X)U(Y) dy 

where 

K,(x) := $ K: x 0 e 
In this paper, the kernel function is specifically referred to as the MLSRK function ([21] or Appendix 

A) 

Ic,(y - x) := -j P(O)M,*P’ p+(y) (65) 

A discrete version of the moving least-square reproducing kernel approximation is proposed as [21] 

R3 : IH” ++ P(lR”) (66) 

RzhL4 1: C Ki(Xj - XT X)U~Wj (67) 
j6Z 

where the discrete kernel Ki is defined as follows: 

in which 

M:(x) := {m;(x)) 

and 

m;(x) = $ c 
,EZ” (Xj;X)(4+1+aJe’14 (XjiX) 

p ("I") :={l;(xj;X)nl, (~)"',~~~,(5!fA)""} 

(69) 

(70) 

(71) 
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The weight Wj can be assigned based on quadrature rules, trapezoidal rule for instance, such that V fl c 

JR”, 

C Wj = meas (72) 
X,ER 

Or, simply let 

wj = 1, V’i E 2” (73) 

In Part I, we have shown that both the continuous moving least-square reproducing kernel approxi- 
mation and the discrete moving least-square reproducing kernel approximation are the mth order L,- 
approximation. Both of them satisfy a so-called m-order consistency condition. For convenience, both 
the continuous version as well as the discrete version of m-consistency conditions are listed as follows: 

Or, let k(x) := K(-x) 

J y”ti,(x -y)dy =xLy, ]a] < m 
R” 

s 
R” y”D!f,(x - y) dy = (a $,, x”I-‘, 14, IPI 6 m 

(74) 

(75) 

(76) 

And 

C (Xj - X)aKi(Xj - X, X)Wj = 6,0, Ial 6 m 

jEZ” 

C(Xj -X)*D~K~(Xj -X,X)Wj = (Y!S,p, 14, IPI G m 
jEZ” 

Or, let ki(y,x) = Ict(-y,x). 

C XTif$(X -Xj,X)Wj = Xa, ICkI < m 
jGZ” 

(77) 

C XrD,PZi(X - Xj,X)Wj = 
(a :!a)! x 

Oipp, bl, IPI G m 
jEZ” 

For more detailed information, readers may consult Part I of this work [21]. 

DEFINITION 3.2 (Restriction). Let III” = hZ”, h := (hl, h2, . . . , h,). The restriction operation is defined 

as a mapping 

rh : C(IR”) H V,(W) (78) 

(79) 

where a := p/h, and 

s h(y)dy=l 
R” 

(80) 
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In the following, several restriction operations, or choices of restriction kernel functions A, are illus- 
trated as the examples. 

EXAMPLE 3.1 (The n-dimensional S-comb). Let 

Aof& - Xi) = S(y - Xj) 

Choosing a = 1, we have 

EXAMPLE 3.2 (Shannon sampling). Let 

Then, one can define the restriction operation ri as 

EXAMPLE 3.3 (MLSRK transformation). Let 

hk(JJ - X) := &(y - x) 

Then 

~~~=S,fn,(~-jl,)“(y)dy=JR’~~(‘~)U(y)dY 

=J 
R” -$ P(O)M,‘P’ (y+) 4 (5) u(y)dy 

Note that in this case e # h, i.e. a # 1. 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

DEFINITION 3.3 (Prolongation). The prolongation operation is defined as the mapping 

p;uh : Vh(lH”) H P(JR”) 

pyUh = C KTi(X -Xj,X)UfWj 

jtZ" 

where 

(88) 
(89) 

it(X -Xj,X) I= ICph(Xj -X,X) 

= +yO)M;'(x)P (90) 

It should be noted that Ici(_y, x) = Kz(-y , x), K,(x) = P&(-x), if only the window function is sym- 
metric, i.e. 4(x) = 4(-x). The distinction will be explicitly emphasized when a particular situation is 
encountered. 

To this end, we are in a position to define a so-called finite element-moving least-square reproducing 
kernel (FE-MLSRK) approximation. 
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DEFINITION 3.4 (Finite Element-Moving Least Square Reproducing Kernel Method). The following 
composite mapping of restriction operation and prolongation operation is defined as finite element- 
moving least-square reproducing kernel approximation, if we choose the prolongation kernel function 
as a product of MLSRK function with an appropriate weight. 

ci4Ll := (p; 0 1;) u : C(W) H P(W) (91) 

Eq. (92) can be rewritten in a form of inner product 

F$9u = C (UT hq)jti(X - Xj,X)Wj 

where 

(U, &)j := $ L., A9 (i - j/a) u(y) dy (94) 

(92) 

(93) 

We call this the finite element-moving least-square reproducing kernel (FE-MLSRK) representation. 
If one chooses q = 0, Eq. (93) recovers the original MLSRK formula, i.e. 

qi”U = (py 0 r,“)U = C tt(X - Xj, X)U;Wj 

j6Z 

=Chlh,(Xj-X,X)UfWj =7T!ghU (95) 
jEZ 

If one chooses q = k, Eq. (93) represents a new MLSRK formulation-a genuine reproducing kernel 
formula. 

K,C_Y - Xj)UCy) dy 
> 

gt(X - Xj, Xj)Wj 

= C (UT Kp)jf?i(X - Xj, X)Wj (97) 
jEZn 

In practical implementation, the following double series summation is used 

qikU = C 

( 

C Ict(Xi - Xj, Xj)UiWi I?!(, - Xj, X)Wj (98) 
jEZ” iCZ” ) 

The inner summation can be interpreted as the discrete MLSRK transform, and the outer summation 
can be considered as the inverse MLSRK transform. 

One can easily extend the formula (98) into the cases of finite region, as well as random particle 
distribution, i.e. 

P$kU=g cK$(Xi_xI,Xj)UiWi lth,(X-Xj,X)Wj 

j=l ( i=l ) 

(99) 

where xi # hi and xj # hj. 

REMARK 3.1. In Aubin’s finite element formulation [2], in order to obtain a L,-approximation, the 
prolongation kernel function must satisfy the following m-convergence condition 

x$&x-k)= C hk&, O<j<m 
kGT’ * O<k<j 

w-8 
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where bk are constants. Furthermore, the restriction kernel function and the prolongation kernel function 
have to be compatible with each other, i.e. 

SJ ~u(xPb)(~ -xYdxdy = 
a=0 

R" R" 
o < IaI < m (101) 

In our FE-MLSRK formulation, the prolongation kernel function is specifically assigned as the moving 
least-square reproducing kernel function, 

P(X) = R(x), (102) 

that satisfies the m-consistency condition (76)-a particular form of m-convergence condition (100). It 
should be noted that the m-consistency condition (76) is a much stronger condition than m-convergence 
condition. Furthermore, by using Eq. (74), one may find that 

s 
R(x)(y - x)(y dx = y* (103) 

R” 

To meet the compatible condition (lOl), this requires that the restriction kernel function satisfies the 
condition 

s A(Y)Y” dy = 80, 
R" 

The conditions (104) can be translated into the condition in the dual Fourier space: they are 

D$(O) = 60, (105) 

or 

A(O) = 1 + c?(l’“‘+‘) (106) 

In what follows, we shall show how the finite element-moving least-square reproducing kernel formula 
meets the m-consistency criterion. 

PROPOSITION 3.1 (A genuine MLSRK formula). The following FE-MLSRK interpolation, 

3$u = c (I UY - +4_.4 dy 
R” ) 

@b - xi, x>w, 
jtZ” 

is an L,-approximation. 

PROOF It suffices to show that 

(i) By using Eqs. (75) and (77), it is straightforward that 

TtY” = C (S,. 'Q(Y - Xj)y” dy) C~(X - xj)wj 
jEZ" 

(107) 

(108) 

= C fi(X -Xj)X~Wj Z Xa 

jtZ" 
(109) 
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(ii) 
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D,P (3::~“) = C D.!~f(x -Xi> (J,. ~,‘C.Y -Xj)Y”dY) Wj 

jGZ” 

= C D,PKT~(x - Xj)XpWj 

jtZ” 

(110) 

3.2. Controlled L,-approximation 

The term L,-approximation is usually used as a synonym of L, convergence, whereas the term of 
controlled L,-approximation is a specific concept, which was introduced by Strang [27] in designing 
robust finite element shape functions in the early 1970s. Recently, there has been a revival interest in the 
field of approximation theory [12,9,16,17]. One ambition of this work is to embrace the MLSRK method 
with this notion. 

We proceed by defining the scaling operator and discrete convolution, 

Qhf := f(xlh) 

f *’ g := c f(x - i)g(i) 
jEZ” 

(111) 
(112) 

The controlled L,-approximation is defined as follows: 

DEFINITION 3.5 (Controlled L,-approximation). If u E Wj(lEV), 4 E S,, there exist weights ch such 
that 

(i) ]]u - gh(+ *’ chWp IlL,(fq 6 const.hk]u]w;(n) (113) 

(ii) I141~p~~~~ 6 conW41~p(f2) (114) 

It should be noted that for exact sampling interpolation cf = ~7. 
In 1973, Strang and Fix proved the following theorem in their seminal paper [26]. The original proof 

is made for a general case of multiple scaling window functions. Here, we only state the case of a single 
scaling function. 

THEOREM 3.1 ((261). Let @J E W,k;‘(lR”). Then the following are equivalent: 

(i) V 14 < k 

(ia) 4(O) = 1, $(27rj) = 0, Vj E Z”\(O) 

(ib) Dr$(27~j) = 0, ‘dj E 2” 

(ii) 

c 4(x/h - j)j” = xa 
jCZ” 

(115) 

(116) 

(117) 

(iii) For each u E Wt(lRn) there exists weights such that 

(iiia) J(u - uh(f$ *’ ch)h -n’PIILp(f2) < const.hk]u]~;(x(nj 

(iiib) IIc~IIP(z~J G const.l141~p(f2) 

(118) 

(119) 

Note that the condition (i) was later relaxed into the standard Strang-Fix condition (43) (see de Boor 
and Jia [9] for discussion). 
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It should be noted that the characterization of the &-approximation in Strang and Fix’s original paper 
is not quite right, a counterexample was given by Jia [El. The modified characterization of controlled L,- 
approximation is due to de Boor and Jia [9] and Dahmen and Micchelli [11,12]. The detailed procedure 
is out of the scope of this paper. Nevertheless, the discovery made by Strang and Fix reveals a profound 
regulation: if a shape function satisfies kth order Strang-Fix condition, it can then generate a kth order 
controlled L,-approximation, vice versa. And, this will be our departure point. 

As will be shown later, since the MLSRK approximation is a ‘controlled’ &-approximation, the 
kernel function does satisfy specific Strang-Fix conditions. However, the real purpose of this work is 
not to claim that the MLSRK algorithm is a controlled L,-approximation. but to use the notion of 
controlled L,-approximation to enhance the computational capacity of the MLSRK algorithm. To be 
precise, instead of asking what kind Strang-Fix condition that the kernel function should meet, our 
question is: what is the order of the Strang-Fix condition that the window function should meet? and 
how it affects the behaviors of the kernel function which it generates. This is vitally important even for 
the problem with non-uniform particle distribution, since the order of the convergence rate of a uniform 
background particle distribution provides adequate information for the interior error estimate. To us, 
the meaning of controlled L,-approximation is really two-fold: first, as its original interpretation, the 
discrete norm of the weighted coefficients is controlled by the L, norm of the approximating function; 
second. as Theorem 3.1 states, the power of the convergence rate is characterized, or controlled by the 
order of the Strang-Fix condition that the scaling function satisfies. This does, in particular, make a lot 
of sense for constructing a powerful MLSRK function. This is another type of control problem; i.e. by 
manipulating and controlling the Fourier transform of the window function (not the kernel function!). 
one is able to control the convergence rate of the corresponding MLSRK approximation-a controlled 
L,-approximation. We shall devote Section 5 to illustrate our theory. Before we get more involved, it may 
be expedient to find out first what characterization the MLSRK method possesses as a L, approximation. 

The following statement is an adaptation of the similar results of Schoenberg [24,25] and Aubin [2] 
under the different scenario. 

THEOREM 3.2. The m-order moving least-square reproducing kernel approximation satisfies 

(ia) jlu-RihuIIH~ < Cl~~+‘~~lluII~~+,, Vk=O,l,... ,m 

W) IIJYP~z~, 6 C~II~IL~(R~~ 

where )Iah~~l~z~~ := h’~/2(Cjtz~(‘ljh)2)1/2, if one of the following sets conditions are satisfied. 

(120) 

(121) 

I 
(iia) C (Xj - X)"Ki(Xj - X, X)Wj = sOa 

jFZ” 

I (iib) C(Xj - X)“D,PKh,(Xj - X, X)Wj = cU!6,p 

jEZ” 

Ah (iiia) K,(O,x) = 1, R,(27rja,x) = 0 , j E Z”\(O) 

(iiib) DFRh(27rja,x) = 0, j E Z” a E IR” 1 6 Ia], I/3 6 m 

where a := c/h > 0 is the dilation coeficient. 

W-2) 

(123) 

PROOF: In Part I, we have shown (ii) + (i). Therefore, here we only need to show (ii) _ (iii). 
We first show (ii) + (iii). Applying the Poisson summation formula (37) to (iia) and letting wj = h”, 

one has 
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= &la (124) 
Since {exp(-i(2nj)/hx)} are linear independent, it yields 

and 

q&o,., = DpyO,X) = &J, (127) 

We now show (iii) + (ii). 
(1) (iii) -+ (iia) 
By the Poisson summation formula (37), it is straightforward that 

C( “j - .,V?; 
jEZ” 

(7,x) h” ==D;i;(O,x) = &, 

(2) (iii) + (iib) 
Applying the Poisson summation formula (37) to (iib) yields 

C( Xj - X)“D,Pkh(Xj - X, x)h” e 
iEZ” 

= C (i)“O~((-iS)~~~{S,x))I,_p exp (-i y X) 
jEZ” 

G by (iiib) 
<=O 

where y = a - p. One may find that Eq. (129) is not equal to zero, if only y = 0. Hence, 

(i)tal-IPI a!P! 

(CY - p)!p! 
SO(a-p, = a!6ap 

(128) 

(129) 

WfV 

It follows that 

IE( Xj -X)aDPKh( - x e xI x,x)h" = 1~!6,~ 0 (131) 
j&Z" 

REMARK 3.2. (i) The above theorem shows that the m-order moving least-square reproducing kernel 
function satisfies 

K?(.,X) E SF;:; (132) 
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However, there is no explicit requirement for generating window function. Meyer [22] has shown that if 
4 E S, then at least 4 E S3(‘). The tricky point here is that even if 4 E S3(” and r > m, it may not be 

true that 4 E .3$; that brings the second point. 

(ii) In the moving least-square reproducing kernel formulation, the invariant translation unit e is not 
necessarily equal to the unit of sampling interval, h. As a matter of fact, 

e:=ah, and a 3 1 (133) 

4. Multiresolution approximation 

4.1. Riesz basis and numerical stability 

As claimed in [19] and Part I of this work, the MLSRK approximation is a multiresolution analysis in 
Cm(W), though argument presented there was intuitive. Rigorously speaking, if a moving least-square 
reproducing kernel function generates a multiresolution analysis, it must satisfy one of the following 
conditions. 

THEOREM 4.1 ((51). For any function 4 E L*(W) and constants 0 < A 6 B < 03, the following two 
statements are equivalent. 

(i) {4(. - k) : k E Z”} satisfies the Riesz condition with Riesz bounds A and B; that is for any {ck} E 
e’(zy 

(ii) The Fourier transform 4 of 4 satisfies 

A < c I$(0 +21~j)l~ < B, a.e 
j-52” 

where 6 t IR”. 

(135) 

One might think that the above condition is purely a mathematical restriction without too much 
practical implication. On the contrary, the above condition is the major concern of the numerical stability 
of the practical algorithms. 

For example, if function 4 generates a set of finite element basis functions, the fundamental Gram 
matrix generated by this particular set of finite element shape functions will be 

Gh := {g;} (136) 

where 

g; := s 4hhxi - x)4hh(xj - x> dX 
R” 

(137) 

Fix and Strang [13] have shown that the condition number of the Gram matrix (136) can be expressed 
as 

SUP c Ii@ +2vY* 
K(G~) := 

BER" jEZ” 

inf C ]$(0 + 27rj)12 
8tR” 

jeZ” 

(138) 

Obviously, the denominator, inf&nn cjEzn I$(0 + 2Tj)]*, cannot be zero, otherwise, the condition 
number K(G~) will be unbounded. The condition is further shown by Fix and Strang [13] to be equivalent 
to the other two conditions: 
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THEOREM 4.2 ((131). Suppose 0, E II?‘, then the following stability conditions on do are equivalent 

(i) J(2~rj + 13,) = 0 V j E 2” (139) 

(ii) C exp(-ijoe)& = 0 (140) 
jEZ” 

(iii) C 1~5 (27~j + &))I2 = 0 (141) 
jEZ” 

The point here is that the stability condition imposed on the basis functions is the same as the Riesz 
bound condition, which is required by a multiresolution analysis. In other words, if the MLSRK is a 
multiresolution analysis, it automatically satisfy the stability condition; vice versa, if the kernel function 
family satisfies the stability condition (4.2), it generates a multiresolution analysis. 

For our MLSRK formulation, the Fix-Strang stability condition should be slightly modified as: there 
exists no 0, E lR” such that one of the following conditions holds 

(i) R(2rja+af-$) = 0, Vj E Z”, 

(ii) C exp( -tij&) i K: %I-? h” = 0 
jGZn ( 1 

(iii) C IR(2mja +a&)l’ = 0 ’ 
jEZ” 

where a = h/e. 

(142) 

(143) 

(144) 

In what follows, we shall show that for the MLSRK function, the above stability condition is satisfied, 
provided that the particle distribution is reasonably dense. 

THEOREM 4.3. Assume that (p is compact supported, and the FE-MLSRK approximation 3yi0 := ‘Ry,, : 

C(IR”) H C’” (IR”) is non-degenerated, then, the corresponding reproducing kernel function always satisfies 
the Riesz bound condition-stability condition. 

A < c 1 @!rja t a&J 12< B, 0, E IR” (145) 
jtZ” 

PROOF We first show the left inequality. By the Taylor expansion, 

exp(ixjO) = exp(ix0) + 
(rmitI)al (rmif?)“t -I 

uj ! 
exp(iue)(xj - n)“l + . . . + I fff -1’ 

exp(ixe)(xj - x)~~+I 

+ c ii!T exp(ixtO)(xj - x)(yt 
Q?! 

where xc = x + n(xj - x) and 177) < 1. By (76), it follows that 

xexp(ix,e) $?C(y)h’ 
jcZ” 

(146) 

=exp(i_d)+C C 
jEZ" [afl=nr+l 

~ex~i*~~) (Xj -x)ar :K (7) 

= exp (tie) 
{ 

1 + em+’ C 1 
(ie)af 
(ypl exl@ q(Xj - X)) 

]EZ” lupl=m+l . 

(“)” $K (y)} (147) 
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Since the kernel function Kc(.) is compact supported, Vx E lR” there are only finite number of i, such 
that 

Ix, -xl < ke 

where kp is the characteristic length of the compact support. 
Hence, 

Consequently, if 1~1 W’ Cp < 1, one will have 

,g,exp (kjO)$ K(F) - exp(ix0)fO. 

048) 

(149) 

Let 8 = -0,. By using the Poisson summation formula (37) and the frequency shifting property of 
Fourier transform (5) and the scaling property of Fourier transform (8), one has 

C eXp(-iXjf&) h” K xi 
e” ( > e 

= C R(21rja + a&J exp(-i2Irjax) 
jG?Y jEZ” 

#O + by Eq. (150) (151) 

It follows that 3 J E Z”, such that 

R (2?rJa + a&)) # 0, V e, E IR” (152) 

then let 

(153) 

On the other hand, since the window function K is compact supported, by the Bessel’s inequality 

K(x)2 dx 

jGZ” 

Let B = C’,. We have just shown 

c 1 fi(27rju +a@“) I*< B 0 
jCZ” 

5. Synchronized convergence 

5.1. How to make Ct = I? 

(154) 

(155) 

The convergence results of MLSRK obtained in Part I of this work [21] is not quite satisfactory in 
the sense that there are conspicuous discrepancies between the theoretical prediction and the numerical 
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experiments. It is true that this is a complicated matter, especially, in our formulation, there is a distinction 
between the dilation interval and the sampling interval. 

In fact, the actual convergence results obtained in numerical experiments show a higher convergence 
rate than the theoretical prediction. In Part I, we implicitly admit that the order of approximation of 
MLSRK is the same as that of the finite element method, if its shape function contains the same order 
piecewise polynomials. This implies that the window function has nothing to do with the convergence 
rate, and it only serves as localization instrument. This is a typical stereotyped thinking, which is in- 
fluenced by the conventional wisdom of traditional finite element method; i.e. we take the following 
proposition for granted: if one wishes to increase the approximation order, one has to increase the or- 
der of the polynomial basis-the central idea behind the p-finite element. Is this still a universally true 
statement, even in the MLSRK formulation?-our challenge starts from here. 

In the MLSRK formulation, the kernel function has the form 

WY -x) = C,(Y -x)4,0, -x) (156) 

or 

Kh,(Xj -X,X) =Ct(Xj -X,X)+p(Xj -X) (157) 

where C,~(_V - x,x) is the so-called correction function (see Appendix A for details). 
One basic requirement on the window function is that 4 E C,S (0) s >> m or 4 E S, n C~(L2) , r >> 

m at least, where m is approximation order of the MLSRK algorithm. 
Apparently, if 

c,ho, -x,x) = 1 (158) 

in the interior of 0. Then, suddenly, 

x;ol - x,x) = &sY - x) (159) 

By doing this, we liberate the window function from the nest of the polynomial basis, which essentially 
lift the kernel function to a higher-order approximation level. The following theorem tells us one way 
to do it. 

THEOREM 5.1 (A sufJicient condition for C,hO, - x,x) = 1). For the m-order MLSRK function, if win- 

dow function (b (.) E S3$, and 

q&o, = 0, Vl < IcyI 6 m (160) 

the corresponding correction function 

qy -x,x) = 1 

with respect to the uniform mesh hZ”. 

(161) 

PROOF The proof is straightforward. By the assumption (160), if 1 < Iai( < m, 

mh,(x)=g$ (y>“+ (xy) 

= C D:JQnjn)exp (-i?) 
jEZ” 

=Dp$(O) =o (162) 

Thus, the moments matrix will have the form 

(163) 
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It is then easy to verify that the cofactors of moment matrix M, satisfy 

Ali(x)=O, V2<i<e 

Considering the fact that mo = i(O) = 1, 

A,,(x) 1 1 q 
=-=-= 

DI m0 

179 

(164) 

(165) 

In what follows, we shall show how such class of window functions can be constructed in a systematic 
manner. 

EXAMPLE 5.1. Consider the kernel function that is generated by a linear polynomial basis and choose 
cubic B-spline function as the choice of the window function. The Fourier transform of the cubic spline 
is 

sin([/2) 4 &s(5) = (7 
) 

066) 

If a := e/h E ZT, it is always true that 

&.(.) E LW”“) (167) 

because in this case m = 1 < 3. Since 

&j(l) = 1 - ; 62 + o(p) 

=+ $&(O)=O 
(168) 

Hence, the cubic spline function satisfies all the conditions in Theorem 5.1, which means that if one 
chooses the cubic spline as the window function to generate the linear polynomial based kernel function, 
the corresponding correction function in the interior will be equal to one. One can verify that the higher- 
order (than cubic) B-spline functions can all be the window function candidate in this particular case. 

Before we go on to illustrate our next example, we would like to state a key lemma. Several equivalent 
forms of the lemma are stated or proved by various authors [11,16,27]. 

LEMMA 5.1. If c$ E S3 cm), there exists a constant sequence b supported on NL := {j/j E Z”; ljl < 
m, card(Ni) < n. (m + 1)) such that the mapping +!I := C#I *’ b satisfies 

4(x) E S3@) 

and 

D,“+(O) = 0, 1 < ]a] < m 

or equivalently, J+II reproduces polynominals up to (a 1 = m order, i.e. 

C +!I *’ (j)” = xa 
jEZ” 

(169) 

(170) 

(171) 

The construction of the following proof is basically Strang’s idea [27], which may be credited to BabuSka [3] 
as well. 
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PROOE Here, we only prove the lemma for one dimensional case; the multi-dimensional extension is 
straightforward. Let 

$(x) = c 4(x - j)bi 1 IN, := {jlj E 2; ljl < m, card(N,) < m + 1) (172) 
jcN, 

Then, by the spatial shifting property of the Fourier transform (4), one has 

$(5) = C J(t) exP(-ilj)bj 
jeN, 

Consequently 

(173) 

oF$(i)l[=*nja = 0 * D~ljr(S)(i=2?rjo = 0 

It remains to show that 

I&O) = 1 

D;&(o) = 0, 16 n < m 

(174) 

(175) 

(176) 

Without losing generality, assume 

~(J)=1+a,f+a252+...+cymr+0(5m+‘) 

where at, cr2, . . . , a, are not all zero (otherwise we have done!). 
We can choose {bj} in such a way to enforce the condition 

~;i(o) = &X 

(177) 

(178) 

Substituting (173) into Eq. (178) yields the following algebraic equations, 

c bj = 1 

jet% 

C (-ij)bj = -al 

(179) 

(180) 

C (2al(-ij) + (-ii)‘) bj = -2!~ 
j@G 
. . . . . . . . . 

(181) 

am-l(-ij)+$ am_2(-ij)2+...+z (-ii)” 
> 

bj = -m!a, (182) 

Since {1,x,x2,. . . ,xm} are independent, the coefficient matrix of the above algebraic equation is 
always nonsingular. We then conclude that the sequence { bj} is uniquely determined, and it automatically 
yields Eqs. (175) and (176). For simplicity, let a = 1, then 

C (x - j)*$(n - j) = C DF$(2rj) exp{ -i2Tjx} 

ieN,,, I‘EN, 

= D;$(o) = s,, 

Consequently, 

Cj”+(j-x)=C(ti-.x)+X)*(Fl(j-X) 
jCZ jEZ 

(183) 

=CC (;) (j - x)a-yxy$(j -x) 
jEZ da 

=x y 0 ; h-Y) 
=.X LI q (184) 
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EXAMPLE 5.2. For the kernel function with a cubic polynomial basis, in order to enforce the correction 
function to be equal to 1, the window function candidate has to satisfy the following conditions: 

4 E SFc3) and $(O)=O 1 <n<3 (185) 

Obviously, the B-spline function family is no longer satisfying the requirements, since d2/d12$ (0) # 0. 
Nevertheless, we can modify the B-spline function based on Lemma (5.1) such that the modified window 
function can meet the requirements. For B-spline functions, there is a smart, easy procedure to follow, 
which was devised by Schenoberg in his celebrated papers [24,25], so that we do not need to solve the 
algebraic equations (179)-(182). Let the fifth-order B-spline function be the pre-choice window function 
(there is no advantage of doing this by using cubic spline). The Fourier transform of the fifth order 
B-spline function is 

sin (12 ’ 
&)5(0 = (r/2 

1 
(186) 

and 

&(5) = 1 - ; !z2 + we> (187) 

One can see that 

To remedy the situation, set 

The Fourier transform of $(x) takes the form 

s(J) = c &(J) exp(-iljj)bj 

since 

(189) 

(190) 

(191) 

we can choose 

(192) 

=+ 4(l) = 1+ w? (193) 

Thus, q(x) meets all the requirements for Ci(y - x,x) = 1 in the interior domain. On the other hand, 

&(S) = c &(6)exp(-iljPj = &Cl) 
i 

(194) 

which leads to 

b_, = -; , bo=;, b, =-; (195) 

q(x) = b-l&(X - 1) + bod&) + h4& + 1) 
where 

(196) 
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i 

& (33 - 30x2 + 15x4 - 5x5), O<X<l 

J- (51+ 75x - 210x2 + 150x3 - 45x4 + 5x5), 
#s(x) = 120 

l<x62 

I y&j (3 - XI527 

0, 

6x63 

3<x 

(197) 

and 45(-x) = Mx). 
The modified new window function is plotted in comparison with the original window function-the 

fifth-order spline in Fig. 1. In this case, the radius of the compact support increases from 3~ to 4~. 

EXAMPLE 5.3. In this example, we consider the kernel function that is generated by a quadratic 
polynomial basis. Readers may notice that our presentation is in a reverse order, i.e. instead of discussing 
this example first, we discussed the kernel function with cubic polynomial basis first. The reason is 
following. 

In the last example, we have constructed new window function +!J, $ E SFc5) and d”/dr$ (0) = 0 , n = 
1,2,3; If we use this rl, as our window function to construct the quadratic polynomial based kernel 
function, the moment matrix will be singular, i.e. 

m,=o m -0 
M= 

( 

Wz;Yo m -0 m210 - 2- 3- (198) 
Wz2 =o IT23 =o m4 ) 

Principally, we can still use the method stated in Lemma 5.1 to construct the qualified window function 
without causing singularity in moment matrix. In doing this, we have to enforce another condition 

d3/dS3$(O> # 0 (199) 

Taking this into the consideration, we choose 

3(c) = &({) [(t - F) + i (2sin 5 - sin(2[))] (200) 

=+ $(i> = 1 + ICI3 + (x5) (201) 

0.8 I I I I I 

Fig. I. The original B-spline function and the modified new window function. 
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1 I I , I 

-0.4 I I 
-6 -4 -2 0 2 4 6 

x 

Fig. 2. The original B-spline function and the modified new window function. 

After inversion, one may find that 

bmz = ;, b_, = -;, b,,=;, bl = ;, b2=-; 

$(x) = f &5(x - 2) - 1 #Js(X - 1) + 2 &5(X) f ; $j(X + 1) - ; #%5(X + 2) 

(202) 

(203) 

It should be noted that there is a drawback of the modified window function, i.e. it is no longer 
symmetric with respect to y-axis. 

Again, the newly modified window function q(x) is plotted against the original window function-the 
fifth-order spline. From Fig. 2, one can clearly see that the profile of the modified window function is 
asymmetric with the y-axis, and the length of the compact support of the modified window function has 
increased significantly. 

5.2. Synchronized convergence 

If the correction function is successfully enforced to be 1 in the interior region of a domain. The 
MLSR kernel function immediately takes the position of the window function in the interior domain. 

As shown previously in Section 3, the mth order MLSRK function only satisfies Kc:: E SF:::. On the 
other hand, in order to construct a mth order MLSRK partition of unity, we may require the window 
function r#~ (.) E H~+‘(IR”) or at least +(.) E S, n Cr(IR”) and r 3 m + s for some positive integer s > 0. 

As shown by Meyer [22], the condition 4(.) E S,, r > m + s is equivalent to 4(.) E S.@+S) at least. 
This means that when we tune the irregular particle distribution into a uniform distribution, there is 

a leap in the order of Strang-Fix condition for the kernel function. The implication of this development 
is that there could be an increase in the approximation order of the numerical calculation in the interior 
domain of the problem. 

The primary gain we get from the process is that 

Kh E S;F;;h) d Kh = cf~ E SF'm+S' 11" (204) 

How can we take advantage of the situation? there are two obvious ways: 
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N Using Lemma 5.1 again to reconstruct the kernel function, (not window function this time ! i.e. 
one need not to recompute the moments), such that 

(ii) 
The 

d”/d~“@(O)=O, n=1,2 ,..., m ,..., m+s (205) 

This is the best that can happen. However, how to match the interior interpolation with the 
boundary interpolation need further study. 
Doing nothing. Just enjoying the improvement of the solution. 
followings are the main results in this section. 

LEMMA 5.2. Suppose the correction function C$O, - x,x) = 1, Vx E JR”, and the window function C$ E 

S3$:“‘. The mth order MLSRK function satisfies 

C (xi - x)“D,Plch,(xj - x)h” = CX!~,O (206) 
iG” 

where 0 $ IpI < max{s,m}, 0 6 ((~1 < m +s. 

PROOF In Part I, we have shown that the mth order MLSRK function satisfies the condition (206) up 
to the order, ((~1, lp 1 6 m. Hence, here, we only need to show 

C(xj-x)4DXPJi-::(xj-x)h”=~!6,a, VIP1 <max{s,m},lal <m+s 
i&5” 

(207) 

By the general moment theorem (2.2) 

- J R” 0, - x)*D!KJy - x) dy = -e n-akn (~)aDf,&(v-4dy 
=e a-P 42 
= ~"-fi(i)'~+PI (~ $), Df-%(O)(~Y - p) 

For IpI < max{m,s}, and J(Y/ < m + s, it is always true that 

la-PI <m 

By Theorem (3.2) (iiia)-(iiib), 

DTl?(O) = oil?(O) = aooy, JyI < m 

Then by substituting (Y and p into Eq. (208), one can readily verify that 

J R" (y - x)“D!x;,(y - x) dy = a!6+ YIPI B max{m,s}, IaI 6 m + s 

On the other hand, since C.! = 1, 

n;(x) = 4,(x) E s3irn+$) 

which leads to 

(208) 

(209) 

C(Xj -x)“D,BIct(xj -x)h”= Rm~ -x)“D~IC,O, -x)dy 
jEZ” 

J 

=a!&~ 0 

The consequence of Lemma 5.2 is the so-called synchronized convergence phenomenon. 

cw 



S. Li, WK. LiulComput. Methods Appl. Mech. Engrg. 139 (1996) 159-193 185 

THEOREM 5.2 (Synchronized convergence). Suppose that the correction function C,“(_y - x,x) = 1, kfx E 

lR”; u E Hmfs+‘(lR”); and the window function 4 E S3\7”‘l’. The mth order MLSRK function can 
achieve a synchronized convergence rate for global interpolation, i.e. 

IIs - R;@//H”(~“) G ck@ m+f II4 ffk+m+l(R”) O<k<s (213) 

REMARK 5.2. The assumption made in the theorem that 4 E S3$;“+” is just for convenience. One 

may easily show that the theorem holds, if only 4 E S3i;h”‘. 

PROOE The following proof is very similar to the proof of Young’s inequality [1,31]. except this is a 
semi-discrete version. 

= D,Pu(x) - C { $(Xj - x)“D:u(x)D~K~(x~ - x)h” 

jcZ” ’ 

+ C $(Xj -X)“DmU(X+ 0(Xj -x))DfXt(Xj -x)h”} 
lal=m+s+l 

where IpI <s, and O< lel< Ih(. 
By Lemma 5.2, we may have 

-D,P (UpREhU) = C C A (Xj -xX)~D~U(X + O(Xj - x))D~IC~(X. -x)h” e J 
j&T” Icrl=m+s+l 

(214) 

(215) 

Let tj := xi - X. Then, Eq. (215) can be rewritten as 

-D,P (U - R$u) = C C 2 D~u(x + Otj)(tj)*DfKh(t~)h” e I 
j&Z” Icul=m+s+ll . 

(216) 

Applying the Cauchy-Schwartz inequality to (216) and considering the fact that 1~11 = m + s + 1 is 
finite, one may find a constant, 0 < Ce < 00, such that 

L(D,"~(~ + ~tj))2(tj)“D~K~(tj)h” 

By the Poisson summation formula (37) and the assumption 4 E SF!?‘), one has 

C (I,/e)*D,P~~(tj)h” = c(i) l”l-‘P1[D,*(SP!?([)) exp(-i5x)]l~=271ja 
jcZ” jcZ” 

= (i)l”l-IPI 
(ff $3)! 

D;-PRh(0) 

(217) 

(218) 

(219) 

Substituting (219) into (217) yields 
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. 

{ 

C C & (D,“U(X + etj))’ (fj)"DfKh,(fj)h" 
jcZn lal=m+s+l 1 

Thus, 

WV 

For the sake of simplicity, without losing generality, one can assume that functions U, Ki are smooth 
enough, such that the integral-summation in the left side of Eq. (221) can be bounded by a double 
integral form, i.e. 

1 S,. c [ (D_Fu(x + efj))2 tfjl”D!K~(oP”] dX 1 
JCZ" 

< ch IJJ [ R” R” 
(D,"u(x + 00, -x)))~ (y -x)W~K'd(y -x)] dydx 

Let z = y - x. Then, 

6 them+’ IJJ [ R” R” 
(D,*u(x+ Hz))~(z)~D~K(L)] dzdx 

< ch,fl @“+I IIDx”u(x#,,(Rn, iJ z”D$k+(z) dz 

R” m+l (i)“C&X! 
= ch,6e 

(a - PY 
D;-PIZh(o) 1 ~lD~u(x)~l;,(Rn, 

(224 

(223) 

Subsequently, one can find a constant, C@$,O,+ > 0, such that 

s 
R” @b - R;hUw2 dx 6 Ca,p,h,0,4 @2m+2 c ~lDx”u(x)~lt,(R”, 

lal=m+s+l 
(224) 

Finally, we conclude that, 3 0 < C, < 03, such that 

IIU - R~h”bfk(Rn) 6 eke m+* IMI fb+m+~W’)~ VO<k<s 0 (225) 

It should be noted that the synchronized convergence phenomenon has been observed in some other 
numerical methods as well, such as the numerical example reported by Carey and Oden in [6], which is 
calculated by using the Galerkin-collocation method. 
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5.3. Numerical examples 

Two sets of numerical examples have been computed to verify the theoretical prediction. As mentioned 
above, for the kernel function with linear polynomial basis, all the functions in B-spline family whose 
order are greater than 3 can be a candidate window function. since they all satisfy the conditions: 

4 (.) E S@2) , and $d(O)=O, (226) 

in order that C.,hfy - x,x) = 1 in the interior region of a specific domain. For instance, for the cubic 

spline, & E SFc3), and for the fifth-order B-spline, 4s E L!Y$~), and so on. 
By choosing both the cubic spline function and the fifth order spline function as the window function, 

numerical calculations are carried out in solving the following Neumann problem in a finite domain. 

-$u+u =f(x) ‘dx E (-1,l) (227) 

(228) 

In the numerical computation, the particle number varies from 11 to 200. Some convergence results 
are tabulated as well as plotted in both Tables 1,2 and Figs. 3 and 4. In Tables 1 and 2, the error norms 
are compared with the length of the compact support of the window function, which is proportional to 
the dilation parameter, i.e. R = no. In these examples, y1 = 2 for cubic spline window function, and n = 3 
for the fifth-order splines window function, though they may not be important to the final results of the 
convergence rates at all. 

From Figs. 3 and 4, one can observe a strikingly prominent ‘synchronized effect’-all the error norms 
have the same convergence rate! 

In numerical example I, m = 1, s = 2, (m + s = 3); Theorem 5.2 guarantees the effect of synchronized 
convergence up to Hz error norm. Similarly, in numerical example II, m = 1, s = 4, (m + s = 5): Theorem 

Table 1 
Convergence results by using cubic spline with C, = 1 and n = 2 

log(ne) 

-0,3688879454E+Ol 
-0.391202300.5E+Ol 
-0.4094344562E+Ol 
-0,4248495242E+Ol 
-0.4382026635E+Ol 
-0449980967OE+Ol 
-0.4605170186E+Ol 

Wllerr41~2) 
-O.l136431870E+02 
-O.l169823788E+O2 
-O.l199565056E+02 
-O.l225887402E+02 
-O.l249353413E+02 
-O.l270465718E+O2 
-O.l289628599E+02 

-O.l035178324E+02 
-0.11355943918+02 
-O.l17998948OE+O2 
-0.1210113021E+02 
-O.l235519383E+02 
-O.l258149130E+02 
-0,1278076822E+02 

-0.5262474429EiOl 
-0.6199262484E+Ol 
-06676681866E+Ol 
-0,6990833887E+Ol 
-0.7273819430E+Ol 
-0.7503394557E+Ol 
-0.7675119133E+Ol 

Table 2 
Convergence results obtained by using fifth-order B-spline with C, = 1 and n = 3 

Wne) ~odllerrorll~,) Wlle~o+f, 1 kWrorllff,) ~wOlerrorllff,) 
-0.4199705E+Ol -O.l516584E+O2 -O.l509792E+O2 -O.l476808E+02 -O.l098707E+O2 
-0,4295015E+Ol -0,1544146E+02 -O.l537354E+02 -O.l506008E+02 -O.l224574E+02 
-0.4382027E+Ol -O.l569229E+02 -O.l562437E+02 -O.l531028E+02 -O.l2747731E+02 
-0.4462069E+Ol -O.l592232E+O2 -O.l58544OE+02 -O.l554048E+02 -O.l3022686E+02 
-0.4536177E+Ol -0.16134648+02 -O.l606673E+02 -O.l575287E+02 -O.l3244296E+02 
-0.4605170E+Ol -O.l633172E+02 -O.l626380E+02 -O.l594997E+02 -O.l3451707E+02 
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-6 H-2 norm 

g 
-13 

$ 
e 

$ 
-14 

-16 

-17 

H-3 norm 

-4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6 -3.4 -4.6 -4.55 -4.5 -4.45 -4.4 -4.35 -4.3 -4.25 -4.2 
log (dilation parameter) log (Idilation parameterl) 

Fig. 3. Synchronized convergence. case I: ( cubic spline). 

Fig. 4. Synchronized convergence case II: (fifth-order B-spline). 

5.2 actually guarantees the synchronized convergence up to H4 error norm. Nevertheless, Fig. 4 only 
displays numerical results up to H3 error norm. 

6. Closure 

The development of technology as a human endeavor is hardly aiming at a higher moral cause, but 
simply to make life easier. While judging whether this or that technology has the enduring quality or 
not, we are often in favor of that, which will liberate us from the tedious, monotonous, physical labor. 
In this sense, the meshless method is a winner at the philosophical level at least. 

At this point, some people might feel that the meshless method is a secondary improvement or 
complementary revision over the conventional finite element method. From our perspective, it may be 
more than that. There are some fundamental changes in the ways that we used to look at the problems. 
For instance, here, the basic premise of p-finite element, in which accuracy is enhanced only by increase 
the order of interpolation polynomials, is challenged, because, as shown in the paper, one may achieve an 
increase of accuracy by only tuning the particle distribution from an arbitrary distribution to a uniform 
distribution, such that the order of regularity of the kernel function can increase drastically, which 
subsequently leads an increase in the approximation order of the numerical computation. 

Once again, the reader should be reminded that the results presented in this paper are only valid for 
uniform meshes, or uniform particle distributions. Nevertheless, as pointed out earlier, these results can 
serve as an interior estimate, and this is actually the usual way that is performed in practice. The same 
argument can be applied to the synchronized convergence phenomenon, since in practice the correction 
function is usually at order 1, i.e. 

ce” N 0(l) (229) 

A subsequent question is: would the synchronized convergence effect vanish, if Ci # 1, or how far would 
general case deviate from the ideal case. To answer this question, one might need a further in-depth 
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Fig. 5. Synchronized convergence case III: (C, # 1). 

study. Here, without much involvement and further complication, we only show a convergence result of 
a numerical experiment in Fig. 5, in which the correction function is not constant, i.e. C,“(y - X,X) # 1. 
One may find that there is still a strong background ‘synchronized effect’ for the Hi error norm as 
anticipated. 

Some readers may wonder that since the window function has a higher-order approximation power, 
why do we not use it as the kernel function in the first place, rather going through all these troubles 
instead. The reason are again two-fold: first, if one uses the window function as the kernel function, most 
likely, the numerical algorithm won’t be a meshless method. Second, it may also not satisfy the boundary 
condition generally, whereas MLSR kernel function remains its meshless status and at the same time 
enjoys a background high power convergence rate. 
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Appendix A. Moving least-square reproducing kernel formula 

For the sake of self-contained presentation, we append some basic MLSRK formulas here, which are 
taken from Part I of this work [21]. 

Let U(X) be a sufficiently smooth function, which is defined on a simply connected open set R E IR”. 
Thus, by the Stone-Weierstrass theorem, we can define a local function as follows, V’x E a, 

vx E B(2) 
otherwise (A.1) 

where the open sphere B(Z) is defined as 

B(x) := {X : Ix - X( < E ,x E fin) (A.2) 
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If the function u(x) is smooth enough as assumed, there exists a local operator, such that 

d(X, X) 2 L,fU(X) := k Pi (7) di(i) 
1=l 

=P ( 1 x$ d(i) (A.3) 

The operator Li is a mapping 

L,- : C”(B(X)) - PyB(x)) (A.4) 

which is characterized by its basis, 

P(x) := {Pl,P2,... ,P!HX) 

where 

PI(X) := 1; 

(A.51 

(A@ 

(A.7) 

and 

d’(x) := {d,,&, . . . ,dp}(x). (A4 

Since the polynomial expansion is a finite sum, there exists an error residual distribution rQ over the 
ball B(x) 

r&j):= u’(x)- P 7 d(f), x E B(x) 
( -) 

(A.9) 

A functional associated with this residual is defined as 

J(d(f)) := (A.10) 

The weight function inside the integrand satisfies the requirements 

4(.) E S, n C,M(LZ) r >> m , and 
s 

$dfi=l (A.1 1) 
R 

And since 4 is compact supported, 3 B(e,Z) c B(x), such that 

(A.12) 

By minimizing the quadratic functional J(d(x)), one may obtain the following normal equation 

(A.13) 

Since supp{&,(x - X)} C B, Eq. (A.13) leads to 

(J,pt (Y) 4&-4P (y) dm)d(i)=~~P’(~)u(x)0,(x-i)d~2, (A.14) 

To this end, one can define the local moment matrix M,(x) as follows 

M,(i):= 12Pf (7) +,(x -X)P (y) dR (AX) 

or simply 
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(PI 146,f& > Pl I&P2> - . ’ 

M,(9 := (P’I4plP)x = 
(~2lhPd (~2144~2) * * ’ PZI#Pl~~) 

. . *. 

PnIIiwv Pd#%P2) * *: P&&J 

where the inner product operation (I, I) is defined as 

(AX) 

(A.17) 

By inverting M,(Z), the unknown vector d(i) is uniquely determined as, 

Substituting (A.18) back into (A-3) and noting that the argument x in (A.18) is a dummy variable, 
one can derive a local reproducing kernel formula as 

u’(x,x) 2 L,u(x) := P ‘+ d(i) 
( -> 

=P (~)ql(i)~yP’ (y)u(y)$,(y-X)daY (A.19) 

Note that here Eq. (A.19) is only a local approximation: V’x E B(i). In order to obtain a global 
approximation, we introduce a global approximation operator G, 

U(X) Z C&(x), iJX E fi (AX) 

where 

G : Co(h) w Cm@) (A.21) 

More precisely, the global approximation operator G is defined in such a way that it is the globalization 
of the local approximate operator L,, and the globalization is realized through the moving process, viz. 

Gu(x) := Fz &U(X), Vx E 6! (A.22) 

At the end of the sweeping process, one can get Gu(x) := L,u(x), viz. 

Gu(x) = P(U)M,‘(x) J, P’ (‘+) u(y)4& - x> df$ 
Y 

(A.23) 

Eq. (A.23) is the so-called ‘moving least-square reproducing kernel’ formulation, which is named by 
Liu et al. [20]. 

The components of the moment matrix can be defined as follows: 

Mij I= 
s 

Pi (X)Pj (x)4 (X) da 
a 

= 
s 

X((Yl-lf121-])4(X) dR, i, j = 1, . . . ,! 
R 

where De := det]M,(, and Aij are the minors of the momnet matrix M,. 
Eq. (A.23) can then be rewritten in a succinct manner, 

Gu(x) := P(O)M,‘(x) s, 
Y 

P’ (“> uCj+&(J - x) dK& 

ZZ 
J 

R C,(Y - w)uW+,CY - x) d& 
Y 

(A-24) 

(A.25) 

(A-26) 

where function C,(y - x, x) is the so-called correction function [20], which is defined as follows: 
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C,(y - x,x) := P(O)M,‘(x)P’ 

The expression for the correction function can be further simplified as follows 

c,(y -x,x) =P(O)M,‘(x)P’ 

(-l)‘+‘Ati . . . (-l)‘+eAl, 
. . . . . (-1)2+PA2t 

. . 

(-l)i+iAji 

. . 

Pl 

p2 

Pj 

(_l)‘+‘Ali . . . Ate 

= -&A,lf’l - AIZPZ.. . , +(-l)‘fiAliPi , . . ,+(-~)“‘AI~PBI 

(A.28) 

where the vector b is defined as 

b’(x) := ol(X> -%AII(x), -A&),A&), . . . > (-l>l+eA~eW 

Let 

(A.29) 

&(v -x,x) := c,o, - x,x)C#$(y -x). (A.30) 

The moving least-square reproducing kernel integral representation takes the form 

R;u(x) := 
J 

&Y)&& -y,x)dfl 
R 

(A.27) 

(A.31) 

here the supscript m represents the highest order of the generating polynomial. It should be noted that 
since the moments of the window function are constants for infinitive domain, e.g. IR”, both kernel 
function and correction function can be simplified as one argument functions, i.e. 

WY - x,x) = &(Y - XL qY - x,x) = C,(Y - x) , (A.32) 

whereas the discrete kernel function as well as discrete correction function are always the functions with 
two arguments. Accordingly, the discrete MLSRK formula is defined as follows: 

RzhU(X) = 5 U(Xi)Kh,(Xi - X,X) AV; = 5 U(Xi)C,h(Xi - XT X)+e(X, - x) AVi 
i=l i=l 

(A.33) 

with the compatible discrete moment matrix 

&fh,(x) = {Mjf) (A.34) 

&j’;(x) := 2 (7) a’-‘+ai-’ &(xk _ x) AV, 

k=l 

(A.35 
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