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In this work, we study invariant properties of defect potentials that are capable of
describing defect motions in a continuum. By formulating two canonical defect
theories, a generalized Nye theory and the Kröner–de Wit theory, we have found
three defect potentials that are variational, i.e. their associated Euler–Lagrange
equations are differential compatibility conditions of the continuum and defects.
Consequently, symmetry properties of these variational functionals render several
classes of new conservation laws and invariant integrals that are related with
continuum compatibility conditions, which are independent of the constitutive
relations of the continuum. The contour integral of the corresponding conserved
quantity is path-independent, if the domain encompassed by such an integral is
specifically defect-free. The invariant integral is applied to study macroscopically
brittle fracture, and a multiscale Griffith criterion is proposed, which leads to
a rigorous justification of the well-known Griffith–Irwin theory.

Keywords: compatibility; conservation laws; configurational force; dislocation;
fracture; multiscale analysis; path-independent integral

1. Introduction

It is well established today that the mathematical structure of the configurational force is
the conservation law of continuum mechanics, which is based on Noether’s invariant
theory, e.g. [1,2], and the physical origin of the configurational force is from the balance
law of continuum thermodynamics, e.g. [3], which is a manifestation of the symmetry
properties of the free-energy density. The configurational force that we refer to is
a material force acting on defects in the sense of Eshelby [4,5], which has been eloquently
elaborated in several monographs [6–9].

However, classical elasticity, both linear and finite deformation theories, does not have
an intrinsic length-scale. Therefore, in the realm of classical elasticity, the configurational
mechanics do not have a multiscale character, which is in contrast or in conflict with
physical reality where defects and the effects of defect evolutions are multiscale in nature.
To bring the length-scale into configurational mechanics, some workers have explored the
multiscale paradigm of Gauge theory (e.g. [10–13]), and others have studied symmetry
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8 properties of the free-energy with strain gradient contribution, e.g. [14–17]. The latter

requires materials exhibiting strong strain gradient effects, which may not be as common

as we thought before as recent evidence suggests, e.g. [18].
In conventional continuum mechanics, the motion of the continuum is governed by

both force equilibrium and compatibility conditions, whereas in configurational
mechanics, defect motions are only subjected to material force without considering any

kinematic constraints. To fix this imbalance, Li et al. [19] proposed a concept of

configurational compatibility in the hope of finding additional governing equations for

defect motions by combining the defect equilibrium approach and the defect compatibility

approach. The present work is concerned with two other aspects: (1) variational symmetry

of defect potentials; Li et al. [19] only discusses one particular defect potential, which may

not even be variationally meaningful; as will be shown in this work, there are other distinct

types of defect potentials depending on the types of defects, for instance dislocations or
disclinations; (2) to explore the possibility of a multiscale configurational mechanics.

In this paper, we shall systematically study invariant (symmetry) properties of defect

potentials by exploring their links to configurational compatibility and multiscale

configurational forces, and we shall apply them to study brittle fracture. The presentation

is organized into five sections. We start in Section 2 with the construction of various defect

potentials based on the linear continuum theory of dislocations. By utilizing these defect

potentials, new classes of compatibility conservation laws are derived in Section 3 by

applying Noether’s theorems [1,20]. In Section 4, we apply one of the compatibility–
momentum tensors to formulate a multiscale energy–momentum tensor and to study

brittle fracture. A multiscale Griffith criterion is proposed. We close the presentation in

Section 5 with a few remarks.

2. Variational defect potentials

In order to study variational symmetry of defect potentials, we first proceed to identify

variationally meaningful defect potentials, by which we mean that a defect potential will

provide differential compatibility equations in a variational statement such as its Euler–

Lagrange equations. We refer to such a defect potential as the variational defect potential.

For the sake of a self-contained presentation, we start by reviewing the continuum theory

of dislocations.

2.1. The linear continuum theory of dislocations

To fix the notation, we first introduce the convention used in the continuum description of

defects. We identify a perfectly ordered state as a defect-free state. Considering

dislocations as the main defect in this work, we incorporate plasticity into the continuum

model as the manifestation of the dislocation ensemble state, which is achieved by
decomposing the total strain field � of the solid into an elastic part �e, which gives rise to

stresses based on the general assumptions of elasticity theory, and a plastic or inelastic

part �p, which changes the shape of the solid and leads to permanent deformation. In the

infinitesimal case, this decomposition is given as

� ¼ �e þ �p: ð1Þ

1060 S. Li
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8 Contrary to �, which is always a compatible field, �e and �p are, in general, not compatible
fields. Since plastic deformation is permanent, the elastic strain �e no longer satisfies the
compatibility equations, which will be commensurate with defect distributions that
constitute inelastic deformations. Thus the continuum defect theory can be formulated
with elastic or inelastic kinematic variables that represent the defect distribution. In order
to describe a defect state, one uses other kinematic variables. For example, the curvature,
which may serve as another state quantity, plays a dominant role in the continuum theory
of defects, as will be shown below. Following [21,22], we introduce the corresponding anti-
symmetric rotation tensors x,xe, xp, and distortion tensors b, be, bp as

b ¼ �þ x, be ¼ �e þ xe and bp ¼ �p þ xp, ð2Þ

with the analogous decomposition as (1), namely

x ¼ xe þ xp and b ¼ be þ bp ð3Þ

and

b :¼ r � u, � ¼
1

2
ðbþ bTÞ, and x ¼

1

2
ðb� bTÞ ð4Þ

where u is the total displacement field. Note that the infinitesimal rotation tensor,
x, defined in this paper differs by a minus sign from the conventional definition of the
infinitesimal rotation in the literature.

Remark 2.1: In this paper, we mainly use Cartesian tensors. To conform with the
notation of the existing literature on continuum dislocations, especially [21,22], we adopt
the following conventions on gradient and divergence operators,

r � u :¼
@uj
@xi

ei � ej ¼ @iujei � ej ¼ uj,iei � ej, and r � A ¼ Aij, iej ð5Þ

where ei, i¼ 1, 2, 3 are the basis vectors in Cartesian coordinate, and A¼Aijei� ej
represents an arbitrary differentiable second-order tensor. Please note the subtle difference
between this convention and the convention used in many mathematics reference books.
Consequently, the Divergence Theorem reads asZ

�

r � A d� ¼

Z
@�

n � AdS, or

Z
�

Ak�, k d� ¼

Z
@�

Ak�nkdS: ð6Þ

In order to describe how a body is deformed by the total distortion b, we may write the
change of the total displacement vector

du ¼ dx � b or duj ¼ �ijdxi: ð7Þ

The term ‘distortion’ is used instead of displacement gradient, because the b’s are gradients
as in (7) only if the corresponding deformation is compatible. This is the case for the total
distortion but in general does not hold for either elastic or plastic distortion.

To describe the defect, we define the geometrically necessary dislocation density
according to [23] in terms of the plastic distortion

Philosophical Magazine 1061
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8 dGND :¼ r � bp, or in component form dGND
ij ¼ eik‘@k�

p
‘j ¼ eik‘�

p
‘j, k ð8Þ

where the permutation symbol eik‘ is used. Since the total distortion �t‘j has to remain

compatible, namely eik‘�
t
‘j, k ¼ 0, which means that the body is not allowed to break,

we can rewrite (8) as

a :¼ �r � be ¼ dGND: ð9Þ

As pointed out in [22], the second equality in (9) is no longer a definition; it is a physical

law. In this paper, we use a to represent the curl of the negative elastic distortion, and the

compatibility law is: a¼ dGND.
The condition of conservation of the Burgers vector follows directly from (9) as

r � a ¼ 0, ð10Þ

which implies that dislocations do not end inside the body. The physical interpretation of

(10) is the conservation or the balance of the net Burgers vector becauseI
S

n � adS ¼ b, ð11Þ

where b is the Burgers vector, and the net Burgers vector for a closed contour integral

inside the body has to be zero.
As usual we can express an anti-symmetric tensor by its axial (rotation) vector

xe ¼ E : h
�
!e
ij ¼ eijk�k

�
or h ¼

1

2
E : xe

�
�k ¼

1

2
eijk!

e
ij

�
, ð12Þ

where E :¼ eijk ei� ej� ek is the alternating tensor, eijk is the permutation symbol, and hk is

the axial vector of elastic rotation !e
ij. By virtue of (12), we can further write

eik‘!
e
‘j, k ¼ eik‘e‘jm�m,k ¼ �k, k�ij � �i, j, ð13Þ

where the Kronecker symbol �ij is used. Now we can use (2), (9), and (13) to express the

geometrically necessary dislocation density in terms of the elastic strain and elastic

rotation

�ij ¼ �eik‘�
e
‘j, k þ �i, j � �k, k�ij: ð14Þ

If we introduce the curvature j and the curl of the elastic strain f as

j :¼ r � h ð15Þ

and

f :¼ r � �e, ð16Þ

we can rewrite (14) as

�ij ¼ ��ij þ �ji � �kk�ij: ð17Þ

1062 S. Li
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8 Because �e‘i ¼ �
e
i‘, �ii ¼ eik‘�

e
‘i, k � 0. We can link the trace of the curvature �kk with

the trace of the geometrically necessary dislocation density �kk as �kk ¼ �ð1=2Þ�kk,
which further allows us to write the inverse relation of (17) as

�ij ¼ �ji þ �ji �
1

2
�kk�ij: ð18Þ

Summarizing (17) and (18), we have the following set of kinematic relations,

a ¼ �fþ jT � trðjÞIð2Þ and j ¼ fT þ aT �
1

2
trðaÞIð2Þ ð19Þ

where I
(2) is the second-order unit tensor, and tr is the trace operator.

Nye [23] made an approximation to (19) by neglecting the contribution from the curl of

the elastic strain f, which is only valid for small elastic strain gradients. This allows us to

approximate (19) as

a ¼ P : j and j ¼ Q : a, ð20Þ

where we introduce the tensors P and Q given as

P ¼ I
T
� I
ð2Þ
� I
ð2Þ, and Q ¼ I

T
�
1

2
I
ð2Þ
� I
ð2Þ ð21Þ

where I
(2)
¼ �ij ei� ej is the second-order unit tensor, and

I
T :¼ �i‘�jkei � ej � ek � e‘ ð22Þ

is a fourth order tensor that maps any second-order tensor, A, to its transport, i.e.

AT
¼ I

T : A:

Moreover P :Q¼ I where

I ¼ �ik�j‘ei � ej � ek � e‘

is the fourth-order unit tensor.
In passing, we note that both P and Q have major symmetry, i.e.

Pijk‘ ¼ Pk‘ij and Qijk‘ ¼ Qk‘ij,

and they do not have minor symmetry, i.e.

Pijk‘ 6¼ Pjik‘ 6¼ Pji‘k and Qijk‘ 6¼ Qjik‘ 6¼ Qji‘k:

Alternatively one may write (20) as

aT ¼ S : j, j ¼ T : aT; or a ¼ S : jT, jT ¼ T : a, ð23Þ

where we introduce the tensors S and T defined as

S ¼ I� I
ð2Þ
� I
ð2Þ, and T ¼ I�

1

2
I
ð2Þ
� I
ð2Þ ð24Þ

Philosophical Magazine 1063
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8 and S :T¼ I. Similarly, both S and T have major symmetry, i.e.

Sijk‘ ¼ Sk‘ij and Tijk‘ ¼ Tk‘ij,

but not minor symmetry, i.e.

Sijk‘ 6¼ Sjik‘ 6¼ Sji‘k and Tijk‘ 6¼ Tjik‘ 6¼ Tji‘k:

Remark 2.2: (a) All mapping tensors are not projection tensors. In fact, it is easy to verify

that

P : P ¼ Sþ 2Ið2Þ � I
ð2Þ, and Q : Q ¼ Tþ

1

4
I
ð2Þ
� I
ð2Þ:

S : S ¼ Sþ 2Ið2Þ � I
ð2Þ, and T : T ¼ Tþ

1

4
I
ð2Þ
� I
ð2Þ:

ð25Þ

(b) All mapping tensors, P,Q, S and T, are indefinite, i.e. they are neither positive definite

nor negative definite.
The beauty of Nye’s theory is that it is a canonical defect theory in the sense that it only

depends on two kinematic state variables, and the two kinematic state variables are related

to each other (see (20)), so one can define a defect potential such as

W ðN ÞðaÞ ¼
1

2
a : j ¼

1

2
a : Q : a ¼

1

2
j : P : j: ð26Þ

However, the weakness of Nye’s theory is that it is an approximate theory. We show

next that without the approximation made in [23], i.e. without neglecting the contribution

from the curl of elastic strains, we can still reduce (19) to a canonical form.

(I) The generalized Nye theory: Combining a and f : We can combine the geometrically

necessary dislocation density a with the curl of the elastic strains f to define a new

geometric object c as

c :¼ fþ a: ð27Þ

Equation (2) allows us to write this new object as the curl of elastic rotations if

a¼�r� be,

c ¼ �r � xe: ð28Þ

Since the divergence of the geometrically necessary dislocation density aij vanishes by (10)

and partial derivatives commute, one can immediately find the following governing

equation for the defined quantity:

r � c ¼ 0: ð29Þ

Substituting (27) into (19) and using the fact that fkk¼ 0 we obtain ckk¼ akk, and we find

that the relation between the negative curl of elastic rotations, c, and the curvature

tensor, j, is given by

c ¼ P : j, or cT ¼ S : j;

j ¼ Q : c, or jT ¼ T : c;
ð30Þ

1064 S. Li
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8 in terms of the tensors P and Q or the tensors S and T. When f¼ 0, Equations (30)

degenerate to the original Nye relation in terms of the geometrically necessary dislocation

density, a, and the curvature tensor, j, given in (20). This recombination of kinematic

variables enables us to construct defect potentials solely based on either elastic rotation,

xe, or its axial vector, h. We call this combination the generalized Nye theory.

Remark 2.3: The divergence-free identity (29) holds true for

r � a ¼ 0, and r � f ¼ 0 ð31Þ

because in the absence of disclinations,

a ¼ �r � be, ð32Þ

and it is always true that f:¼r� �e. If there is a disclination distribution, the first equality,

or definition, of (9) will no longer be valid, instead

a ¼ ~a� r � be, ~a ¼ ~jT � trð ~jÞIð2Þ, and j ¼ ~jþ r � h ð33Þ

where the additional curvature ~j is induced by disclination distributions.
In one of the disclination theories, i.e. [24,25], one can determine ~j by the disclination

distribution density, w, through a differential relation, i.e.

w ¼
1

2
E : n, and n ¼ �r � ~j: ð34Þ

The dislocation continuity equation under the combined dislocation and disclination

distributions will become

r � aþ 2w ¼ 0 or r � cþ 2w ¼ 0: ð35Þ

An interpretation of Equation (35) is that in the presence of disclinations the Burgers

vector is no longer conserved.

(II) The Kröner–de Wit theory: Combining j and f : Another way to achieve a canonical

defect theory is by combining the curvature tensor, j, with the curl of elastic strains, f,

to define a new geometric object, the contortion K, as

K :¼ j� fT: ð36Þ

Substituting (36) into (19) and using the fact that the trace fii� 0 and therefore Kii¼ jii,

we find that the relation between the geometrically necessary dislocation density a and the

contortion K is given as

a ¼ P : K, or aT ¼ S : K,

K ¼ Q : a, or KT ¼ T : a:
ð37Þ

Again the kinematic field variables are related with each other in terms of the tensors P

and Q introduced in (21). When f¼ 0, Equations (37) degenerate to the original

Nye relations in terms of the geometrically necessary dislocation density, a, and the

curvature tensor, j, given in (20). This recombination of the kinematic variables provides

a basis for constructing defect potentials solely dependent on a single state variable – either

Philosophical Magazine 1065
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elastic distortion, be, or elastic strain �e. We term this recombination of kinematic variables

the Kröner–de Wit theory.

Remark 2.4: A similar quantity to the curl of elastic strains f has been used in [26].

Contrary to our definition of f¼r� �e in (16) in terms of elastic strains, in [26] the total

strain has been used. In [27] a quantity identical to c in (27) has been derived by

linearization of the geometrically necessary dislocation density in a rigid plastic material,

i.e. a material with vanishing elastic strains. Therefore we can also view c as a measure of

the dislocation density.

For easy reference, in Table 1, we summarize all the relationships among the kinematic

variable fields that are used to describe defect distributions.

2.2. Variational defect potentials

We now define the variational defect potential. There are two criteria about this definition:

(1) the potential solely consists of kinematics variables that are used to measure defect

distributions, and (2) the Euler–Lagrange equation resulted from the defect potential

functional is a physical law or a physically meaningful ‘balance law’, such as the

integrability condition of strains or the conservation of a defect variable. In short,

the variational defect potential provides an action functional density for a variational

principle that can yield kinematic compatibility conditions in a continuum.
Obviously, not all defect potentials are variationally meaningful. Next we shall screen

all possible defect potentials to identity which are the variational defect potentials.

Depending on whether the defect potential depends on a vectorial field such as the rotation

vector h, or a tensorial field such as the elastic distortion �e, the elastic rotation xe, or the

elastic strain �e. We shall denote them either as vectorial or tensorial defect potentials,

respectively.

2.2.1. Vectorial defect potentials

Consider the following four possible defect potentials in terms of the kinematic variable h:

W ðA1ÞðhÞ ¼
1

2
j : j, ¼

1

2
j : I : j, ð38Þ

W ðA2ÞðhÞ ¼
1

2
j : jT ¼ j : I

T : j, ð39Þ

Table 1. Kinematic field quantities describing distributed dislocations.

Field a f c h

�e �r� be

�e r� �e

xe
�r�xe

ð1=2ÞE : xe

j �fþP : j �aþP : j P : j r� h
K P :K iT�KT

1066 S. Li
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W ðA3ÞðhÞ ¼
1

2
j : c ¼

1

2
j : P : j ¼

1

2
c : Q : c ð40Þ

W ðA4ÞðhÞ ¼
1

2
j : cT ¼

1

2
j : S : j ¼

1

2
c : T : c ð41Þ

where (�)T represents the transpose of (�). The dependence on h is based on the facts that
j¼r� h and c¼P : j. All four defect potentials in (38–41) quadratically depend on the
curvature tensor j.

To check the variational character of the above defect potentials, we consider the
following action functionals:

�ðAiÞðhÞ ¼

Z
�

W ðAiÞðhÞd�, i ¼ 1, 2, 3, 4: ð42Þ

The Euler–Lagrange equations corresponding to the four potentials in (38–41) are given
as follows:

r � j ¼ 0, r � jT ¼ 0, r � c ¼ 0, r � cT ¼ 0: ð43Þ

To the best of the author’s knowledge, among them, only the third Euler–Lagrange
equation in (43), the one corresponding to the defect potential W (A3)

¼ 1/2 c : j, is
a meaningful balance law in physics, and its physical meaning is the manifestation of the
conservation of the Burgers vector. In fact, by definition it reads exactly as

r � c ¼ r � ðfþ aÞ ¼ r � a ¼ 0, ( r � f ¼ r � r � �e � 0: ð44Þ

Therefore we deem this defect potential as being variationally meaningful, because its
Euler–Lagrange Equation (29) yields a valid balance law for the compatibility condition.
This particular compatibility balance law or symmetry will be broken when there is
a disclination distribution, see (35). For the other three defect potentials in (38), their
validity as the variational potential are not clear to us at the moment, and it requires
further study. Thus, in the rest of this paper, we shall only consider invariant properties of
the defect potential

W ðI ÞðhÞ :¼W ðA3ÞðhÞ

from this group of defect potentials. Again, we would like to point out that W (I)(h) is not
convex in general.

2.2.2. Tensorial defect potentials

We now consider the defect potentials that can be expressed solely in terms of elastic
distortion be, elastic rotation xe, and elastic strain �e. So there are three groups of them.

(i) Defect potentials in terms of elastic distortions be.
Consider the following four possible defect potentials in terms of elastic distortion be:

W ðB1Þð beÞ ¼
1

2
a : a ¼

1

2
a : I : a, ð45Þ

Philosophical Magazine 1067
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W ðB2Þð beÞ ¼
1

2
a : aT ¼

1

2
a : I

T : a, ð46Þ

W ðB3Þð beÞ ¼
1

2
a : K ¼

1

2
a : Q : a ¼

1

2
K : P : K ð47Þ

W ðB4Þð beÞ ¼
1

2
a : KT ¼

1

2
a : T : a ¼

1

2
K : S : K: ð48Þ

The dependence on be occurs through the fact that a¼�r�be and K¼Q : a. All four

defect potentials are quadratically dependent on the density of geometrically necessary

dislocations, while only the first defect potentials in (45) is convex, and its Hessian tensor is

positive definite. The first defect potential in (45) has been used as the elastic free energy

in [28–32], among others. The third and the fourth defect potentials in (47) and (48) were

first proposed by [11] as a Yang–Mills-type ansatz. Moreover, a related Euler–Lagragian

equation has also been derived in [11]. Nonetheless, [11] attributed them to the Nye

potentials, ð1=2Þa : jT and ð1=2Þa : j. [33] proposed a defect potential with a general form

ð1=2ÞBijk‘�ij�k‘. However, its variational character has not been studied.
To examine their variational characters, we consider the action functionals

�ðBiÞðbeÞ ¼

Z
�

W ðBiÞðbeÞd�, i ¼ 1, 2, 3, 4: ð49Þ

Assume that the proper boundary conditions are prescribed. The Euler–Lagrange

equations corresponding to the four potentials in (45–48) are as follows:

r � a ¼ 0, r � aT ¼ 0, r � K ¼ 0, r � KT ¼ 0: ð50Þ

The first, the second, and the fourth Euler–Lagrange equation in (50) can be written in

terms of the primary variable be:

��ðB1Þ ¼ 0) r� a ¼ 0! r2be � r � ðr � beÞ ¼ 0, ð51Þ

��ðB2Þ ¼ 0) r� aT ¼ 0! r� be � r ¼ 0, ð52Þ

��ðB4Þ ¼ 0) r� KT ¼ 0! r2be � r � ðr � beÞ ¼ 0 and r � be �r ¼ 0: ð53Þ

All three equations will become identities, if there is no defect in a solid. However, we are

not certain that they can serve as physical laws to characterize the compatibility condition

in continuum. In other words, their variational characters are not very clear to us.
When there is no disclination in the solid,

r � a ¼ 0, ) r� j ¼ r � r � h � 0, ð54Þ

one can show that

r � K ¼ r � j� r � fT ¼ r � �e �r: ð55Þ

Furthermore, if there are no dislocations or any other defects, the third equation in (50),

�� (B3)
¼ 0)r�K¼ 0, will reduce to the Saint-Venant compatibility equations.
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8 Therefore, the third Euler–Lagrange equation is a meaningful physical law in its own
right1. In fact, one can show that

r � K ¼ r � �e � r ¼ �ða�rÞsym ¼: Y ð56Þ

where Y is the so-called incompatibility tensor [22]. Thus we deem W (B3)( b)
as variationally meaningful. We note that W (B3) may not always be convex and its
Hessian tensor is not positive definite, because both P and Q are not positive definite.
The convexity of W (B3) may depend on the actual dislocation distributions. In the rest of
the paper, we only study the invariant properties of W (II)( be):¼W (B3)( be) among this
group of defect potentials.

In [19], we take W (B4) as a primary variational defect potential. Whether or not that is
a good choice and whether or not W (B4) is a variational defect potential remain to be seen.
Moreover, we would like to point out that the defect potential W (II) ( be) is independent of
the defect potential W (I)(h), and W (II)(b) is essentially a defect potential for dislocations
while W (I)(h) is basically a defect potential for disclinations.

(ii) Defect potentials in terms of elastic rotations xe.
Next we consider the following group of tensorial defect potentials in terms of elastic
rotations xe,

W ðC1ÞðxeÞ ¼
1

2
c : c ¼

1

2
c : I : c, ð57Þ

W ðC2ÞðxeÞ ¼
1

2
c : cT ¼

1

2
c : I

T : c, ð58Þ

W ðC3ÞðxeÞ ¼
1

2
c : j ¼

1

2
c : Q : c ¼

1

2
j : P : j, ð59Þ

W ðC4ÞðxeÞ ¼
1

2
c : jT ¼

1

2
c : T : c ¼

1

2
j : S : j: ð60Þ

All four defect potentials are dependent quadratically on either c or j, which link to xe

through the fact that c¼�r�xe and j¼Q : c. Following the procedures used in the
previous two group defect potentials, we can study their variational characters by
examining the physical validity of the corresponding Euler–Lagrange equations.

One may find that the defect potentials W (C3)(xe) and W (C4)(xe) are identical to the
defect potentials W (A3)(h) and W (A4)(h). So one may expect that they have the same
invariant properties.

The Euler–Lagrange equations corresponding to the four potentials in (57–60) are
given as

r � c ¼ 0, r � cT ¼ 0, r � j ¼ 0, r � jT ¼ 0: ð61Þ

Both the first and second Euler–Lagrange equations in (61) are related to the compatibility
condition of small rigid body rotation. In fact, the second Euler–Lagrange equation in (61)
can be written as

r � cT ¼ 0! r� xe �r ¼ 0, ð62Þ

Philosophical Magazine 1069
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8 resulting in compatibility equations in terms of elastic rotations xe. However, how to

relate this condition to the integrability of strains is not clear to us. Similarly, we are not

certain of the physical validity of the fourth equation.
As mentioned before, the third equation in (61) is an identity regardless of the presence

of a continuous dislocation distribution, i.e.

r � j ¼ r � r � h � 0: ð63Þ

Its physical meaning is the conservation of the Burgers vector. So W (C3) (xe) is

a variational defect potential, which is exactly the same as W (A3) (h). The reason that the

defect potential of (40) is identical to the defect potential of (59) is because of the

relationship between the rotation vector h and the elastic rotation xe given in (12).

No matter which of the two potentials is used in deriving conservation laws, the result will

be the same, since they are both describing the defect state measured by local elastic

rotation of the continuum. Therefore, we shall not treat it as an independent case in the

study of variational symmetry. We note, however, both (40) and (59) are essentially

disclination defect potentials, and Equation (63) is no longer held when there is

disclination distribution. Therefore, to be absolutely certain that the two defect potentials

are identical, it may depend on the choice of disclination theory adopted in calculations.

For now, we denote W (Ib) :¼W (C3)(xe) as an alternative of W (I):¼W (A3)(h).

(iii) Defect potentials in terms of the elastic strain �e.
Finally, we consider the following two defect potentials in terms of the curl of the elastic

strain f,

W ðD1Þð�eÞ ¼
1

2
f : f ¼

1

2
f : I : f ð64Þ

W ðD2Þð�eÞ ¼
1

2
f : fT ¼

1

2
f : I

T : f: ð65Þ

The dependence on �e stems from of the fact that f¼r� �e.
The Euler–Lagrange equations corresponding to the two potentials in (64) and (65) can

be obtained by considering the stationary condition

��ðDiÞ ¼ �

Z
�

W ðDiÞð�eÞd� ¼ 0, i ¼ 1, 2

which leads to

r � f ¼ 0 and r � fT ¼ 0: ð66Þ

W (D1)(�e) is always convex. However, its Euler–Lagrange Equations (66) are not strain

compatibility conditions, even though they become identities when there is no defect in the

solid. For the time being, we cannot identify their physical meanings.
The second set of Euler–Lagrange equations in (66), which correspond to the defect

potential W (D2)(�e), was first derived in [34] via a so-called Saint-Venant variational

principle. This can be written as

r � fT ¼ 0! r� �e �r ¼ 0, ð67Þ
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8 resulting in the Saint-Venant compatibility equations in terms of the elastic strains �e.
Therefore, between the defect potentials, W (D1)(�e) and W (D2)(�e), we deem

W (III)(�e):¼W (D2)(�e) as variationally meaningful.

3. Compatibility conservation laws

In this section, we study the variational symmetry of defect potentials chosen in the last

section. Once the potential functionals are chosen, the derivation of conservation laws is

a straightforward application of Noether’s theorem [1,20,35]. Depending on the nature of

the primary variable of the chosen variational defect potential, meaning that whether its

argument is vectorial or tensorial, different versions of Noether’s theorems are applied.

We proceed by first listing all three variational defect potentials

W ðI ÞðhÞ ¼
1

2
c : Q : c, W ðII ÞðbeÞ ¼

1

2
a : Q : a, and W ðIII Þ ¼

1

2
f : I

T : f: ð68Þ

The Euler–Lagrange equations corresponding to the following potential functionals,

�ðiÞ ¼

Z
�

W ðiÞðhÞd�, i ¼ I, II, III ð69Þ

are

ðI Þr � c ¼ 0, ðII Þr � K ¼ 0, and ðIII Þr � �e �r ¼ 0: ð70Þ

Applying Noether’s theorem to the potential functionals (69), we obtain the following

three classes of compatibility conservation laws (CL-1)–(CL-3),

ðI Þ

S
ðI Þ
k� ¼W ðI Þ�k� � �‘,��k‘ ! LðI Þ� ¼

I
S

S
ðI Þ
k�nkdS

T
ðI Þ
k� ¼ e�‘�

�
x‘S

ðI Þ
k� þ �‘�k�

�
! FðI Þ� ¼

I
S

T
ðI Þ
k�nkdS

U
ðI Þ
k ¼ x�S

ðI Þ
k� �

1
2 �‘�k‘ ! GðIÞ ¼

I
S

U
ðI Þ
k nkdS

P
ðI Þ
k� ¼ �k� ! HðI Þ� ¼

I
S

P
ðI Þ
k�nkdS

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð71Þ

ðII Þ

S
ðII Þ
k� ¼W ðII Þ�k� � ekmiKmj�

e
ij, � ! LðIIÞ� ¼

I
S

S
ðII Þ
k� nkdS

T
ðII Þ
k� ¼ ej��

�
xjS
ðII Þ
k� þ epkiKpj�

e
i�

�
þ�k�Kmj�

e
mj � K�j�

e
kj ! FðIIÞ� ¼

I
S

T
ðII Þ
k� nkdS

U
ðII Þ
k ¼W ðII Þxk þ

1

2
emkiKmj �

e
ij þ 2�eij, ‘x‘

� �
! GðIIÞ ¼

I
S

U
ðII Þ
k nkdS

P
ðII Þ
k ¼ �emkiKmjfij ! HðII Þ ¼

I
S

P
ðII Þ
k nkdS

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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8 

ðIII Þ

S
ðIII Þ
k� ¼W ðIII Þ�k� � emki�mj�

e
ij, � ! LðIII Þ� ¼

I
S

S
ðIII Þ
k� nkdS

T
ðIII Þ
k� ¼ ej��

�
xjS
ðIII Þ
k� þ emki��m�

e
ij

�
��k��j��

e
�j þ �j��

e
kj ! FðIII Þ� ¼

I
S

T
ðIII Þ
k� nkdS

U
ðIII Þ
k ¼W ðIII Þxk �

1

2
emki�mj �

e
ij þ 2�eij, ‘x‘

� �
! GðIII Þ ¼

I
S

U
ðIII Þ
k nkdS

P
ðIII Þ
k ¼ emki�jmcij ! HðIII Þ ¼

I
S

P
ðIII Þ
k nkdS:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Since �e2Sym, we have two more conservation laws as follows:

P
ðIII Þ
k� ¼ emk��mjcj þ emki�m�ci ! HðIII Þ� ¼

I
S

P
ðIII Þ
k� nkdS

P
ðIII Þ
ijk ¼ emki�mj ! H

ðIII Þ
ij ¼

I
S

P
ðIII Þ
ijk nkdS:

8>>><
>>>:

ð72Þ

The first class of conservation laws (CL-1) has the following equivalent class (CL-1b):

ðIbÞ

S
ðIbÞ
k� ¼W ðIbÞ�k� � ekmi�mj!

e
ij, � ! LðIbÞ� ¼

I
S

S
ðIbÞ
k� nkdS

T
ðIbÞ
k� ¼ ej��

�
xjS
ðIbÞ
k� þ epki�pj!

e
i�

�
þ�k��mj!

e
mj � ��j!

e
kj ! FðIbÞ� ¼

I
S

T
ðIbÞ
k� nkdS

U
ðIbÞ
k ¼W ðIbÞxk þ

1

2
emki�mj !

e
ij þ 2!e

ij, ‘x‘

� �
! GðIbÞ ¼

I
S

U
ðIbÞ
k nkdS

P
ðIbÞ
k ¼ �emki�mjfij ! HðIbÞ ¼

I
S

P
ðIbÞ
k nkdS:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð73Þ

For all three (four) variational defect potentials selected, none of them are convex,

therefore they may not be suitable as the exact elastic free energy expression for stable

materials in a continuum thermodynamics theory. However, they may serve as part of the

free-energy measure in defect zones.
The physical meaning of the derived quantity, SðiÞk�, i ¼ I, II, III, is the change of the

defect potentials W (i), i¼ I, II, III when a defect moves. In an analogy to Eshelby’s

energy–momentum tensor, we denote the new quantity as the compatibility–momentum

tensor. The origin of the variational defect potential discussed in this paper is different

from or independent of the dislocation free-energy, and they stem from kinematic or

geometric compatibility conditions rather than energetic conditions, though the

variational defect potentials may be used to measure or calibrate the dislocation core

energy. Indeed, in the dislocation gauge theory, several constitutive relations have been

postulated by using similar potentials to construct a total elastic free-energy expression,

e.g. [11,36,37] among others. We label this approach as the free-energy formulation
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8 approach or the free-energy formalism. In fact, one reason to do so is to seek
a ‘generalized free-energy expression’ that reflects the compatibility condition, e.g.
[38,39]. This, in the author’s opinion, is beyond the original notion of the configurational
force in the sense of Eshelby, which is completely based on energetic conditions at the
thermodynamics equilibrium state, though it might be included in the sense of Gurtin,
which is based on irreversible continuum thermodynamics arguments. Moreover, many
dislocation free-energies proposed in the literature may not be variationally meaningful,
that is: the Euler–Lagrange equations derived from the corresponding potential
functional may not be a physical law or an established geometric relation, e.g. [27,32].
Moreover, most of the proposed free-energy potentials are convex, and their Hessian
matrices are positive definite in order to satisfy thermodynamics constraints. On the
other hand, we are not certain that the non-convex variational defect potentials
discussed here can be used as legitimate candidates for the strain gradient free-energy of
stable materials. Thus the conservation laws discussed here mainly provide integrability
conditions for defect motions, which are, in principle, not related to the configurational
force derived from energetic conditions at the equilibrium state. We shall discuss this
issue again in later sections.

It is noted that the related contour integrals of compatibility conservation laws (71) are
path-independent, even if there is a dislocation distribution, or as long as the Burgers
vector is conserved. This type of conservation law breaks down when there is a disclination
distribution. If the kinematic defect potential is rescaled to a proper energetic quantity,
a configurational force stemming from this type of conservation law may serve as the
material force acting on the disclination.

Remark 3.1: It is true that in linear elasticity the Saint-Venant compatibility conditions
can be obtained as the Euler–Lagrange equation of the minimum complementary potential
energy principle, e.g. [40]. This is often done in terms of the stress function formulation.
Because it is often believed that the complementary energy–momentum tensor of the
complementary potential energy is different from that of strain energy potential, e.g.
[41,42], the present author has studied the variational symmetry of the two-dimensional
complementary potential energy in terms of the Airy stress function ([43]).

However, the stress function approach has several limitations. First, it is only valid for
linear elastic materials, whereas the compatibility conservation laws derived in this paper
are much more general and independent of the constitutive relations, and hence they can
be applied to any material. In fact, the objective of this paper is to develop invariant
integrals for inelastic media to measure the energy release rate due to defect motions or
distributions. Second, the stress function approach is not directly related to kinematic
variables such as strains, distortions, etc. and it is often difficult to convert the stress
function to kinematic variables due to different orders of derivatives.

4. A multiscale Griffith criterion

It has become a consensus now that macroscopically brittle fracture is a multiscale
phenomenon. The first milestone of fracture mechanics is A.A. Griffith’s energy criterion
for brittle crack growth [44], which has been extensively used in solving elastic fracture
mechanics (LEFM) problems. For ductile fracture, the matter is more complex, and the
Griffith criterion may not be applicable. By recognizing that ductile fracture is a multiscale
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8 problem, Irwin [45] proposed the Griffith–Irwin criterion for ductile crack growth under

the condition of small-scale yielding. Even though Irwin’s criterion has been illustrated

convincingly through physical arguments, it has never been justified in rigorous

mathematical analysis. In this section, we shall use one of the compatibility–momentum

tensors derived in the previous sections to study macroscopically brittle fracture under

small-scale yielding conditions.
To distinguish the different scales, we decompose the displacement field of a deformed

solid into a coarse-scale field and a fine-scale field:

uðxÞ ¼ �uðxÞ þ u0ðxÞ ð74Þ

where �u is the coarse (macro)scale displacement field, which may be viewed as

a homogenized field, and u0 is the fine (micro)scale displacement field, which may be

affected by the fluctuation of defect distributions or micro-structures. Moreover, we

assume that the fine-scale defect distribution is localized – the very assumption of the

small-scale yielding condition–so that a global homogenization will still yield a linear

elastic coarse-scale deformation field. The total strain field can thus decompose to

b ¼ �bþ b0 ¼ �bþ be0 þ bp0 ¼ be þ bp ð75Þ

where �b ¼ �be ¼ r � �u, and both b0e and b0p are incompatible elastic and plastic strains.

Note that be ¼ �be þ be0 and bp ¼ bp0. We now define a multiscale free-energy measure,

Wmð�u, �e0Þ ¼Wcð�uÞ þWfðbe0Þ ð76Þ

where the coarse-scale strain energy density is

Wc ¼
1

2
��e : �C : ��e ð77Þ

and �C is the coarse-scale elastic stiffness tensor. The fine-scale free-energy measure is

constructed as

Wfðbe0Þ :¼ 	‘2W ðII Þðbe0Þ ¼
	‘2

2
a : K ¼

	‘2

2
a : Q : a ð78Þ

where 	 is the elastic shear modulus, and ‘ is a length-scale, below which the coarse-scale

observer cannot see. Note that the scaling factor, 	‘2, makes the unit of the re-scaled W (II)

up to strain energy density. Since a¼�r�be
¼�r� be0, one can choose either of them as

the state variable. Note that a :Q : a� 0, though it is convex for the special anti-plane

problem that will be discussed next. We note that there are major differences between the

multiscale free energy measure approach proposed here and the free energy formulation

approach commonly used in strain gradient theories, e.g. [26,46,47] as well as in the

dislocation gauge theory, e.g. [76]:

(1) In the multiscale theory, �e
0

(x) is not related to any displacement gradient, and (76)

suggests a mixed variational principle. Under the small-scale yielding assumption

(Irwin’s argument), the fine-scale defect distribution or fluctuation is highly

localized, so it won’t affect the macroscale constitutive relation. In other words,

the coarse-scale displacement field �uðxÞ is decoupled from the fine-scale strain field,

�e
0

(x). One may also argue that because a given macroscale displacement field can

1074 S. Li



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 B

er
ke

le
y]

 A
t: 

23
:0

9 
21

 M
ay

 2
00

8 correspond to many microscale strain fields, in mathematics, the inverse of a given
homogenized field is never unique. Therefore, the coarse-scale fields and the fine-
scale fields are virtually independent. Consequently, one can decouple Wcð�uÞ and
Wfð�e0Þ in multiscale theory; whereas in the strain gradient theory or the
dislocation gauge theory, the two free-energy terms are always coupled, either
through equilibrium equation or constitutive relations. Hence the macroscale
elastic strain free-energy will always affect, or be affected by, the microscale
constitutive relations.

(2) The multiscale free energy measure is not a free energy expression or a free energy
per se, it is rather a free energy measurement or calibration. The fine-scale free
energy measure standard is given a priori, no matter what the actual microscale
constitutive relations are and no matter where the actual fine-scale free energy
comes from. We can only use the fine-scale free-energy measure, which may be an
approximation of an essential part of fine-scale free-energy, to extrapolate existing
elastic free energy information from given defect distributions. However it is not
enough nor is it intended to determine the fine-scale constitutive relation. In the
multiscale approach, the fine-scale free-energy measure is a universal entity, which
is independent of the actual constitutive make-up, whereas in the strain gradient
theory or the dislocation gauge theory one usually has a higher-order (fine-scale)
free-energy first, and then one uses it to derive the constitutive relations at the fine
scale, and eventually one would hope to use them solving for defect distributions as
well as defect motions. Only until after that is done, one can come back again to
calculate the configurational force at the equilibrium state, provided that the
problem is still tractable. In short, the free-energy formalism approach determines
both macro- and microscale constitutive relations, whereas the multiscale free-
energy measure approach proposed in this work only provides a universal measure
to calibrate the existing free energy stored in a solid, which is actually independent
of the microscale constitutive relations.

(3) Another distinguishing feature of the fine-scale free-energy measure approach
proposed in this work is that its defect potentials are non-convex, therefore their
stationary points may not be related to the attainment of an equilibrium state, and
it is possible that they are related to the attainment of a metastable state. Thus, the
subsequent configurational force derived based on the present approach may be
considered as a generalization to the classical Eshelbian configurational force of
thermodynamical equilibrium states.

To illustrate the validity of the free-energy calibration approach, we assume that:
(1) �r :¼ @Wc=@��e where �r is the coarse-scale Cauchy stress, and (2) there is an a priori
defect distribution represented by the incompatibility tensor

Y :¼ �incð�pÞ ¼ �r � �p �r, and T :¼
	‘2

2
ðIþ I

T
Þ : Y ð79Þ

where T is the related internal stress. Consider the following multiscale elastic potential
with the prescribed deformation condition,

�m ¼

Z
�

�
Wmð�u, be0Þ � f � �u� T : be0

�
d�, with ��u ¼ 0 and �be0 ¼ 0, 8x 2 @�:

ð80Þ
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8 One may find that

��m ¼

Z
�

� @Wc

@��e
: ���e þ

@Wf

@a
: �a� f � ��u� T : �be0

�
d�

¼ �

Z
�

�
r � �rþ f

�
� ��uþ

�
	‘2incð�e0Þ � T

�
: �be0

n o
d� ð81Þ

which leads to a set of universal multiscale field equations

r � �rþ f ¼ 0, and 	‘2incð�e0Þ ¼ T, 8x 2 �: ð82Þ

Obviously, the detailed fine-scale constitutive relations do not come into play, except that

we use the fine-scale shear modulus 	 in the construction of multiscale free energy

measure.
Based on Noether’s theorem, the coordinate translation invariance leads to the

following multiscale energy–momentum tensor

Sk� ¼ Sc
k� þ Sf

k�
ð83Þ

where Sc
k�, S

f
k� are the coarse and fine scale energy-momentum tensors with superscripted

indicators, respectively. The coarse-scale energy momentum tensor Sc
k� is the Eshelby

energy momentum tensor [4,5] for the background elastic medium,

Sc
k� ¼Wc�k� � u‘, �
k‘ ð84Þ

where u‘ are the total displacements of the elastic fields, and 
k‘ are the Cauchy stress

components. Note that the subscript, ( ), i, denotes the spatial derivatives.
The fine-scale energy–momentum tensor is obtained as the scaled compatibility tensor

S2
k� (see Table 2),

Sf
k� ¼Wf�k� � 	‘

2ekmiKmj�
e
ij,�: ð85Þ

We can then obtain a multiscale configurational force,

L� ¼ J� þ L� ð86Þ

where the coarse-scale configurational force is the J-integral [48] for the linear elastic solid,

�J� :¼

I
S

Sc
k�nkdS

Table 2. List of compatibility–momentum tensors, SðiÞk�,
i ¼ I, Ib, II, III.

W (i), i¼ I, Ib, II, III E-L equations S
ðiÞ
k�, i ¼ I, Ib, II, III

WðIÞ ¼ ð1=2Þj : c r � c0 WðIÞ�k� � �‘,��k‘
WðIbÞ ¼ ð1=2Þj : c r� i¼ 0 WðIbÞ�k� � ekmi�mj!

e
ij, �

WðIIÞ ¼ ð1=2Þa : K r�K¼ 0 WðIIÞ�k� � ekmiKmj�
e
ij, �

WðIIIÞ ¼ ð1=2Þf : fT r� fT¼ 0 WðIIIÞ�k� � ekmi�jm�
e
ij,�
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8 and the fine-scale configurational force is the re-scaled L-integral,

L� :¼

I
S

Sf
k�nkdS ð87Þ

Table 3. Field quantities in the elastic region �e and the plastic region �p.

Field Elastic region �e Plastic region �p

p
KIIIffiffiffiffiffiffiffiffi
2�r
p

0 0 � sin
�

2

0 0 cos
�

2

� sin
�

2
cos

�

2
0

2
666664

3
777775 �0

0 0 � sin
�

2

0 0 cos
�

2

� sin
�

2
cos

�

2
0

2
666664

3
777775

ee
KIII

2	
ffiffiffiffiffiffiffiffi
2�r
p

0 0 � sin
�

2

0 0 cos
�

2

� sin
�

2
cos

�

2
0

2
666664

3
777775

�0
2	

0 0 � sin
�

2

0 0 cos
�

2

� sin
�

2
cos

�

2
0

2
666664

3
777775

be
KIII

	
ffiffiffiffiffiffiffiffi
2�r
p

0 0 � sin
�

2

0 0 cos
�

2
0 0 0

2
66664

3
77775

�0
	

0 0 � sin
�

2

0 0 cos
�

2
0 0 0

2
66664

3
77775

Table 4. Defect densities in the elastic region �e and the plastic region �p.

Field 8x2�e 8x2�p

a

0 0 0

0 0 0

0 0 0

2
64

3
75 �

�0
2r	

0 0 0

0 0 0

0 0 cos
�

2

2
664

3
775

c �
KIII

4r	
ffiffiffiffiffiffiffiffi
2�r
p

cos
3�

2
sin

3�

2
0

sin
3�

2
� cos

3�

2
0

0 0 0

2
66664

3
77775 �

�0
4r	

cos
�

2
cos � sin

�

2
cos � 0

cos
�

2
sin � sin

�

2
sin � 0

0 0 cos
�

2

2
666664

3
777775

f �
KIII

4r	
ffiffiffiffiffiffiffiffi
2�r
p

cos
3�

2
sin

3�

2
0

sin
3�

2
� cos

3�

2
0

0 0 0

2
66664

3
77775 �

�0
4r	

cos
�

2
cos � sin

�

2
cos � 0

cos
�

2
sin � sin

�

2
sin � 0

0 0 � cos
�

2

2
666664

3
777775
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which can be used to measure the elastic free-energy stored inside the plastic zone in front

of an elasto-plastic crack of small-scale yielding. Because both integrals are path-

independent, their linear combination should also be path-independent, if the solid is

defect-free. In the rest of this paper, we denote the first component of La as the multiscale

L-integral, i.e. Lm
¼L1, which may represent the driving force for a macroscopically brittle

crack.
For simplicity, we consider a self-similar and steady state crack growth solution of

mode-III crack (see Figure 1) in a linearly elastic and perfectly plastic solid, whose solution

is available ([49]). As a benchmark solution, we view the Hult–McClintock (HM) solution

as a reasonably good approximation of such multiscale problems. For easy reference, we

document the HM solution in terms of defect measures in Tables 3 and 4.
We now calculate Lm–integral for the mode-III steady state solution of the elasto-

plastic crack (the Hult–McClintock solution). The integration contour is taken as the

boundary of plastic zone, S. The coarse-scale J-integral is taken over on a slightly

larger contour, �c¼Sþ, than the plastic zone in order to include the crack tip.

The fine-scale L1 integral path is over a slightly smaller contour, �f¼S� (see Figure 2).

Suppose the crack length is denoted as a, and the remote stress is �1. The multiscale

driving force is

Lm ¼
��21
2	

� �
aþ

3	‘2��20
16	c

� �
ð88Þ

in which the radius of the plastic zone, c, can be related to the crack length a by

c ¼ a�21=2�
2
0 and hence

Lm ¼
��21
2	

� �
aþ

3‘2��40
8	�21

� �
1

a
: ð89Þ

A fundamental task of fracture mechanics is to determine the critical stress, �cr, under
which the crack advances. Based on the Griffith criterion, the critical stress is obtained by

setting the equilibrium condition, i.e. the driving force equals the resistance force. We now

θ

O

C

Y

X

Figure 1. Schematic illustration of a macroscopically brittle crack.
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invoke Griffith’s energetic argument [44] and equate the multiscale driving force to the

resistance:

Lm ¼
�a

2	

� �
ð�crÞ

2
þ

3‘2��40
8	a

� �
1

ð�crÞ
2
¼ 2�t: ð90Þ

We observe that the multiscale driving force has two parts: (1) the coarse-scale part,

i.e. the release of elastic strain energy, or the value of the J-integral in a purely elastic

medium,

J ¼
�að�crÞ

2

2	
,

and (2) the fine-scale part due to the release of the elastic free-energy stored inside

a dislocation distribution zone, or plastic zone,

~L ¼
3‘2��40
8	a�2cr

� �
:

Note that in the multiscale Griffith equation the first part of the driving force may no

longer be equal to the resistance due to surface separation, i.e. 2cs. In other words, the

strain energy release due to the reduction of elastic potential in the elastic region will not

be solely consumed in the surface separation. To expedite the analysis, we introduce

a critical length-scale, ‘cr :¼ 4=
ffiffiffi
3
p
ð�t	=��

2
0Þ, which may depend on the resistance.

We scale the energy release with a reference resistance energy, 2c0 :¼�‘�0
2/2	, which

may be viewed as the fracture resistance that the theoretical strength of the material can

offer for an ideally brittle crack. Then, the ratio

Ið‘Þ :¼
J

2�0
¼
�að�crÞ

2=2	

�‘�20=2	
¼

a

‘

� � �crðaÞ

�0

� �2

ð91Þ

Figure 2. Schematic illustration of the contour path of the multiscale invariant integrals.

Philosophical Magazine 1079



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 B

er
ke

le
y]

 A
t: 

23
:0

9 
21

 M
ay

 2
00

8 

is a function of the length-scale ‘. The symbol I is in honor of G.R. Irwin. Subsequently,

the multiscale Griffith Equation (90) is normalized as

Ið‘Þ þ
3

4

1

Ið‘Þ
¼

4�t	

�‘�20
¼

ffiffiffi
3
p ‘cr

‘

� �
: ð92Þ

Unlike the classical Griffith equation, the multiscale Griffith Equation (92) is a quadratic

equation in terms of I(‘); it yields two solutions:

Ið‘Þ1, 2 ¼
Itð‘Þ

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

� �2
s2

4
3
5 ¼ �t

2�0

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð

‘

‘cr
Þ
2

r� 	
ð93Þ

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5(a)

(b)

l/lcr

I(
l)

It

I1
I2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

a/l

tcr
/ t

0

Griffith-Irwin
Griffith:  tau^{cr}_1
tau^{cr}_2

Figure 3. (a) Bifurcated solutions Ii(‘), i¼ 1,2 vs. ‘/‘cr; and (b) the critical stresses vs. a/‘:
(1) Griffith–Irwin stress �crI =�0, (2) multiscale solution �cr1 =�0, and (3) multiscale solution �cr2 =�0.
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where It(‘) is the normalized total resistance at the equilibrium,

Itð‘Þ ¼ �t=�0 ¼
ffiffiffi
3
p ‘cr

‘

� �
: ð94Þ

To compare the different energy release rates, we plot the two normalized Ii(‘), i¼ 1, 2

and It in Figure 3(a). One may find that the two solutions of Ii bifurcate at ‘¼ ‘cr. The
total energy release rate or the resistance at equilibrium, It, is the sum of the two.

Using the definition (91), we find the corresponding critical stresses as follows:

�cr1, 2 ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘I1, 2ð‘Þ

a

r
¼

ffiffiffiffiffiffiffiffiffiffi
4	�t
a�

r
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

� �2
s0

@
1
A

2
4

3
5

1=2

¼ �crI f ð‘Þ1, 2 ð95Þ

where

�crI :¼

ffiffiffiffiffiffiffiffiffiffi
4	�t
a�

r
ð96Þ

denotes the critical Griffith–Irwin stress, and the two scaling factors are defined as

f1, 2ð‘Þ :¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

� �2
s0

@
1
A

2
4

3
5

1=2

, ð97Þ

0 0.5 1 1.5
−0.5

0

0.5

1

1.5

l / lcr

f 1
 a

nd
 f

2

f1
f2

Figure 4. Scaling factors of energy release rates.
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8 which are plotted in Figure 4. To fully understand the meanings of these two solutions

of energy release rate, we calculated the asymptotic expression for the critical stresses �cr1 ,
and �cr2 ,

�cr1 ¼ �0

ffiffiffiffiffiffiffiffiffiffi
I1ð‘Þ

a=‘

s
�

ffiffiffiffiffiffiffiffiffiffi
4�t	

�a

r
þOð‘Þ, and �cr2 ¼ �0

ffiffiffiffiffiffiffiffiffiffi
I2ð‘Þ

a=‘

s
� �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�‘2�20
16a�t	

s
þOð‘Þ: ð98Þ

One can find that the stress corresponding to I1(‘) is independent of the yield stress, �0.
This indicates that the first solution, I1(‘), may be related to the resistance to the

surface separation, i.e. I1(‘)� cs/c0, where cs is the resistance due to surface separation.

On the other hand, one may find in (98)(b) that �2 depends on the yield stress �0, and hence

we identify that I2(‘) corresponds to the normalized resistance due to incompatible defect

fields, or the dislocation field. That is I2(‘)� cp/c0, where cp denotes the energy dissipation
due to the incompatible field evolution.

Fortuitously, the two roots of the multiscale Griffith Equation (93) have an interesting

property,

I1ð‘Þ þ I2ð‘Þ ¼ Itð‘Þ ¼
�t
�0
: ð99Þ

At equilibrium I1 and I2 can be interpreted as resistances, and based on the above

arguments, we know that I1 and I2 link to different types of resistances. This suggests that

we can express the total fracture resistance as an addictive superposition of two distinct

sources.

�t ¼ �s þ �p:

This conclusion is not trivial because the problem under consideration is nonlinear

(the HM solution is a nonlinear solution). It then leads to a modified critical stress

expression:

�crI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4	ð�s þ �pÞ

�a

r

which is the essential result of Irwin’s multiscale theory of elasto-plastic fracture under

small-scale yielding (see Figure 3(b)). In the multiscale analysis �crI 	 �
cr
1 , �

cr
2 : Thus, it is

natural to choose �crI as the critical stress, because it captures the overall effects of both I1
and I2. To the best knowledge of the author, this is the first rigorous justification of Irwin’s

theory [45] by using multiscale analysis and the continuum theory of dislocations.
A summary of the results presented here has been reported early in a letter [50].

However, in ([50]), we choose Wf
¼W(III)(�e), though the numerical results of the two

approaches are identical. This confirms our early speculation that W (II)( be) is equivalent
to W (III)(�e).

5. Closure

In this paper, we have studied the invariant theory of continuum dislocations and its
application to fracture. We presented a variational defect potential theory and derived

three classes of compatibility conservation laws and the corresponding invariant integrals.
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8 In contrast to the conservation laws of classical continuum mechanics, which are based on
equilibrium conditions, the derived conservation law was based on compatibility
conditions, therefore they can be valid at a much smaller length-scale. We would like to
point out again that by no means have we exhausted all the possibilities of compatibility
conservation laws in continuum mechanics. By utilizing such conservation laws, we first
formed a multiscale configurational force, and then we proposed a multiscale Griffith
criterion for elasto-plastic fracture under small-scale yielding. The proposed multiscale
formulation rigorously justifies the well-known Griffith-Irwin theory. We note that the
multiscale Griffith criterion proposed in this paper has its own limitation too. It may only
be valid at sub-micron length-scales where the strain gradient effect is most significant.
Any scale effects below that scale cannot be captured by the present theory. An extension
of the present theoretical framework to solids under finite deformation will be reported in
subsequent work.

Acknowledgements

This work is supported by a grant from NSF (Grant No. CMS-0239130), which is greatly
appreciated.

Note

1. See the comments made in [22], pp. 245–246.
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