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Abstract

A con-current multiscale non-equilibrium molecular dynamics is proposed. The notion of multiscale canonical element ensemble is put
forth, which enables us to employ the coarse grain field as a heat bath, and it is accomplished by using a distributed Nośe–Hoover ther-

mostat network. In doing so, it guarantees that the non-equilibrium molecular dynamics returns to a canonical equilibrium state when
external disturbances vanish, which may have not been the case for the non-equilibrium molecular dynamics in the literature. We have
shown that the non-equilibrium distribution function is canonical.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The non-equilibrium thermal–mechanical process at
small scales, for instance nanoscale heat transfer, in which
the length and/or time scales span from the molecular to
the continuum, is a subject of increasing importance to
energy conversion, biotechnology, microelectronics,
biochemical detection, and material synthesis and failure
analysis. The capacity to simulate thermal–mechanical
couplings in non-equilibrium states at small scales are vital
to the understanding of transport mechanisms of energy
conversion and to the advancement of reliability of micro
and nano-electronics.

The conventional molecular dynamics (MD) is a dynam-
ics of the micro-canonical ensemble, and it is unable to pro-
vide statistical characters to the physics problem that it
simulates. To extrapolate statistical thermodynamics infor-
mation from molecular dynamics simulations, the simula-
tions of equilibrium ensemble molecular dynamics
(EEMD) are required at a fixed temperature or fixed pres-
sure or specified chemical potentials. Various EEMDs have
been implemented by using different thermostats, e.g. [1–5].
However, the EEMD is unable to simulate problems with
spatial or temporal temperature gradients.
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Since early 1980s, the non-equilibrium molecular
dynamics (NEMD) has become a major simulation tool
for simulations of non-equilibrium processes. The NEMD
has been used to compute transport coefficients [6–8] and
to simulate viscous flows [9–11] and plastic deformations
[12]. In the literatures, there are mainly three types of
NEMDs:

(1) Prescribed-flow-driven NEMD
(2) The synthetic NEMD, and
(3) Boundary-flux-driven NEMD

The representatives of the first type NEMDs are the well-
known DOLLS and SLLOD algorithms, e.g. [9–11,13–16],
in which the MD system is driven out of equilibrium by pre-
scribed constant flow field. To the best of the authors’
knowledge, this type of NEMDs are only used in special
cases such as simulation of the Couette flows for extrapolat-
ing the viscous coefficient. In the second type of NEMDs
[7,14,17–19], an artificial external field is prescribed to drive
the system out of equilibrium, however, the artificial exter-
nal field is judicially chosen such that it renders the phase–
space flux divergence-free, or it enforces the so-called adia-
batic incompressibility condition (AIC) [14]. The synthetic
NEMD is related to the Green–Kubo linear response
theory, and it has been mainly used to extrapolate the
transport coefficients of non-equilibrium states from an
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equilibrium state simulation, which is usually not used as a
direct non-equilibrium multiscale simulation.

Although both the first and second types of NEMDs
have firm statistical physics foundation, they are not
intended as the direct simulation tools. The third type of
NEMDs are the most popular NEMDs used in practice,
and it has been the workhorse in performing direct atomis-
tic or molecular simulations, and it has been extensively
used in the field of heat transfer and thermal engineering,
e.g. [20–24], among many others. In this type of NEMDs,
the system is driven out of equilibrium by prescribed
boundary heat fluxes, which are either heat sources or heat
sinks, and they are enforced by either thermostat or veloc-
ity scaling techniques.

A main shortcoming of the this type of NEMDs is: when
the boundary heat flux is absent, the system cannot auto-
matically return to a thermodynamic equilibrium state,
instead it becomes a micro-canonical ensemble molecular
dynamics system. In the literature, many researchers auto-
matically assumed that phonons in such system are bosons
that obey the Bose–Einstein distribution. In fact, it has
been quite popular that the phonon distributions obtained
in such simulations are being used to extrapolate transport
coefficients.

In recent years, several multiscale methods have been
proposed to solve nanoscale thermal–mechanical prob-
lems, and they have been successful for certain problems,
for examples, Abraham and his co-workers’ macroscopic,
atomistic, ab initio dynamics (MAAD) [25], Rudd and
Broughton’s coarse-grained molecular dynamics (CGMD)
[26,27], Liu and his co-workers’ bridging scale method
[28,29], E and his co-workers’ heterogeneous multiscale
method [30,31], and others.

In this Letter, we report a novel multiscale non-equilib-
rium molecular dynamics (MS-NEMD) method that pro-
vides a NEMD simulation capable of spontaneously and
automatically returning or reaching to an equilibrium state
when external disturbances are absent, and it generalizes
the NEMD to the setting of con-current multiscale simula-
tions that can simulate nano-scale thermal–mechanical
interactions of realistic size.

2. Formulations

We start with the multiscale decomposition proposed in
[28,32], which decomposes the discrete atomistic displace-
ment field, q, into a coarse scale part and a fine scale part:
q ¼ �qþ q0. The symbol � indicates coarse scale quantities,
and the symbol 0 indicates the fine scale quantities. We
assume that the coarse scale atomistic displacements can
be described by a continuous mean field, �uðXÞ, which can
be represented by a finite element (FE) interpolation field

�u ¼ NðXÞd ) �q ¼ NðXaÞd ð1Þ
where X denotes the spatial position vector, Xa are the spa-
tial positions of atoms, d is the FE nodal displacement
array, and NðXÞ is the matrix of FE interpolation func-
tions, or shape functions evaluated at X. It is assumed that
atoms or molecules are moving in a continuous ambient
space. In one-dimensional case, the linear FE shape func-
tion NðXÞ ¼ fN iðX Þgnnode

i¼1 can be expressed as:

NiðX Þ ¼
X�X i�1

X i�X i�1
if X 2 ½X i�1;X i�

X iþ1�X
X iþ1�X i

if X 2 ½X i;X iþ1�

(
ð2Þ

Here nnode is the number of FE nodes.
With the bridging scale formulation, both the coarse

scale components and the fine scale components can be
obtained from the total scale variable [28]: �q ¼ PðXaÞq;
q0 ¼ QðXaÞq, where P and Q are projection operators
defined as

P ¼ NM�1NTMa and Q ¼ I� P

where superscript T denotes transpose, Ma ¼ diagðm1;
m2; . . . ;mNÞ is the diagonal mass matrix for atoms,
M :¼ NTMaN is the coarse scale mass matrix, and I is iden-
tity matrix.

The essence of the con-current multiscale simulation is
that the coarse scale motion is solved over the entire domain

by using a coarse graining model driven by initial/bound-
ary conditions, from which we can obtain the continuous
mean field �u; whereas fine scale fluctuations are solved
via a first-principle based model for specific regions, or
con-current regions, where atomistic resolution is desired.
The fine scale model is seamlessly and simultaneously
incorporated into the coarse scale computations by provid-
ing updated constitutive and thermodynamics information
that are based on the fine scale computations. A main dif-
ference between the proposed MS-NEMD and other
molecular dynamics is that in the MS-NEMD the fine scale
model alone cannot provide statistics details even within
the fine scale region. The fine scale molecular dynamics
depends on inputs of the coarse scale mean field in different
ways. First the fine scale molecular dynamics is driven out
of the equilibrium by the coarse scale mean field that
depends on external force field and mechanical boundary
condition, and second, as we shall explain later, the ampli-
tude of fine scale fluctuations is regulated by thermody-
namic temperature, which is a macroscale quantity
depending on boundary heat fluxes, interior heat sources,
and coarse scale heat convection.

We first consider the adiabatic multiscale simulation in
the con-current region. The multiscale displacement
decomposition implies similar decompositions for the
velocity and the linear momentum, i.e. v ¼ �vþ v0; p ¼ �pþ
p0. This suggests the following multiscale adiabatic Hamil-
tonian for a single element ensemble e

H adia
e ¼

XNe

i¼1

1

2mi
�pi � �pi þ

XNe

i¼1

1

2mi
p0i � p0i þ UðqÞ ð3Þ

where Ne is the number of atoms in the element ensemble e,
pi and mi are, respectively, the momentum and mass of the
atom i, and UðqÞ is the atomistic potential. Note that the
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coarse scale momentum is orthogonal to the fine scale
momentum, i.e.X

i

�pi � p0i ¼ 0 ( PQ ¼ PðI� PÞ � 0 ð4Þ

The two-scale equations of motion are then given as

_qi ¼
oH adia

e

opi

¼
�pi

mi
þ p0i

mi
ð5Þ

_pi ¼ �
oH adia

e

oqi

¼ � oUðqÞ
oqi

¼ f i ð6Þ

_�qi ¼
oH adia

e

o�pi
¼

�pi

mi
ð7Þ

_�pi ¼ �
oH adia

e

o�qi
¼ � oUðqÞ

o�qi
¼ fj

oqj

o�qi
ð8Þ

where f i is the external force acting on the atom i.
The coarse scale displacement and velocity fields are

approximated by FE interpolations, i.e.

�q ¼ Nd; and �p ¼MaN _d ð9Þ
we can then deduce that

_�pi ¼ mi
d

dt

X
J

N JðxiÞ _dJ

 !

¼ mi

X
J

N JðxiÞ€dJ þ
X

J

BJ ðxiÞ _dJ _�qi þ
X

J

BJðxiÞ _dJ
p0i
mi

 !

�
X

J

BJ ðxiÞ _dJ � p0i ¼
o�vi

ox
� p0i

ð10Þ
where BJ ðxiÞ ¼ oN J ðxiÞ=oxi. Note that the above expres-
sion is exact when there is no coarse scale external force,
because

d

dt

X
J

NJ ðxiÞ _dJ

 !
coarse scale

¼
X

J

N J ðxiÞ€dJ

 

þ
X

J

BJ ðxiÞ _dJ _�qi

!
¼ 0

In this case, the MS-NEMD algorithm degenerates to a
generalized DOLLS formulation.

Moreover, we note that the fine scale kinetic tempera-
ture can be determined by the fine scale momentums or
the fine scale velocities – a generalization of peculiar veloc-
ities in NEMD simulations

3

2
ðN e � 1ÞkBT e ¼

X
i

p0i � p0i
2mi

* +
ð11Þ

where kB is the Boltzmann constant, T e is the kinetic tem-
perature for the element ensemble e, and h�i denotes aver-
aging in time. Note that at the end of each fine scale time
integration cycle, we use the kinetic temperature T e to up-
date the temperature at the FE node e [33]. The instanta-
neous kinetic temperature T ins is defined as
3nðx; tÞkBT insðx; tÞ
2

¼
X

i

p0i � p0i
2mi

dðxi � xÞ

where dðxi � xÞ is the Dirac delta function, and nðx; tÞ is
defined as the instantaneous local particle number density.

To couple the local equilibrium state with the coarse
scale heat conduction, we introduce a local Nosé–Hoover
thermostat in each element ensemble such that the fine
scale equations of motion become

_qi ¼
�pi

mi
þ p0i

mi
; _p0i ¼ f i � _�pi � nep

0
i; 8i 2 Ne;

Ne ¼ f1; . . . ;Neg ð12Þ

and

_ne ¼
1

Qe

X
i2Ne

p0i � p0i
2mi

� 3N ekBT e

 !
ð13Þ

where ne is an auxiliary variable and Qe is its pseudo mass,
and the temperature T e for each element ensemble is the
coarse scale FEM nodal temperature at node e. The main
novelty of the present multiscale formulation is the use of
the Nośe–Hoover thermostat network defined in (12),
(13), which is illustrated in Fig. 1. One may compare this
with the canonical ensemble equilibrium MD [1,2], in
which the temperature is a constant. In the MS-NEMD,
the coarse scale temperature distribution is non-uniform
and evolving with time, the FE nodal temperature changes
from node to node and time to time. Therefore, the ther-
modynamics temperature varies among different element
ensembles and from different coarse scale time steps.

The conventional Nośe–Hoover thermostat renders the
molecular dynamics system a canonical ensemble. Will
the proposed Nośe–Hoover thermostat network provide
a similar role in the non-equilibrium simulation? Consider

H �e ¼
XNe

i¼1

�pi � �pi

2mi
þ
XN e

i¼1

p0i � p0i
2mi

þ U eðqÞ þ J eþ1 � J e�1

where J eþ1 and J e�1 are boundary fluxes of the element
ensemble e. It then can be shown that

d

dt
H �e � _J eþ1 þ _J e�1 ¼

X
i

1

mi
ð _p0i � p0i þ _�pi � �piÞ � f i � _qi

� �

¼
X

i

�1

mi
p0i � _�pi þ nep

0
i � p0i

�
þ �pi � _p0i þ ne�pi � p0i

�
¼ �ne

X
i

1

mi
p0i � p0i

 !

� ne

X
i

1

mi
p0i � �pi

 !

� d

dt

X
i

1

mi
p0i � �pi

 !

By virtue of (4) and (13), we have



Fig. 2. The concept of multiscale canonical ensemble.

Fig. 1. The structure of distributed Nośe–Hoover thermostat network.
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d

dt
H �e þ

1

2
Qen

2
e

� �
¼ �3NenekBT e þ _J eþ1 � _J e�1

It should be pointed out that each element ensemble is an
open system with fluxes exchange among themselves. As-
sume that the multiscale boundary is adiabatic and inter-
element fluxes cancel each other if we sum the above
expression in all elements. Thus

Xnelem

e¼1

d

dt
H �e þ

1

2
Qen

2
e

� �� �
¼ �

Xnelem

e¼1

3N enekBT e

where nelem denotes the total number of element ensembles.
On the other hand, the Liouville equation for distribution
function in each element ensemble is

dfe

dt
¼ �fe

XNe

i¼1

o _qi

oqi

þ o _p0i
oqi

� �
� fe

o _ne

one
¼ 3N enefe

where fe is the probability density distribution function.
This leads to

Xnelem

e¼1

d

dt
H �e þ

1

2
Qen

2
e

� �
þ 1

be

d

dt
log fe

� �
¼ 0

where be ¼ ðkBT eÞ�1.
A possible solution for the distribution function in each

element ensemble is

feðq; p0; ne; tÞ ¼ C exp �be H �e þ
1

2
Qen

2
e

� �� �
ð14Þ

where C is an arbitrary constant. We can then conclude
that the proposed fine scale dynamics model does indeed
produce a canonical non-equilibrium thermodynamics,
e.g. [34,35], which is superior to the algorithm proposed
early in [36]. Moreover, when external disturbances disap-
pear, the MS-NEMD will degenerate to the Nośe–Hoover
canonical ensemble MD.

The classical canonical ensemble, or NVT ensemble, is a
system embedded within an infinitely large thermal reser-
voir, whose temperature remains constant during an
equilibrium process. What is the thermal reservoir in
non-equilibrium multiscale simulations? To answer this
question, we propose a notion of multiscale canonical

ensemble: We argue that the coarse scale of MS-NEMD
may be served as ‘the coarse scale reservoir’ within the
duration of the coarse grain time scale length. This postu-
late may be valid because the coarse grain is defined based
on the ‘slow variable approximation’ and the ‘Markovian
approximation’ [37]. Each approximation is characterized
by a specific time scale length. Therefore, the coarse scale
thermodynamic temperature may be considered to be con-
stant within duration of the coarse scale time scale, which
can be chosen as the coarse scale time step in computa-
tions. The fine scale dynamics and the coarse scale dynam-
ics can exchange thermal–mechanical information through
a thermostat network (12), (13), equations of motions
(5)–(8), and the multiscale decomposition (1). Figuratively,
the fine scale system may be thought as saturated within
the coarse scale system. During each coarse scale time step,
the fine scale system may reach to a local equilibrium, so
we may call each element ensemble as a multiscale canonical

ensemble system in the sense of local equilibrium approxi-
mation (LEA). Fig. 2 compares the classical thermal reser-
voir with the proposed coarse scale reservisor.

Last, the coarse-grained model used in this work is
based on a coarse-grained Helmholtz free energy, which
is constructed by assuming the Cauchy–Born rule and the
quasi-harmonic approximation [38,39]. The coarse-grained
free energy function allows us to derive macroscopic cou-
pled thermo-mechanical equations. If the local deforma-
tion is homogeneous, the total atomistic potential U 0 can
be written as: U 0 ¼ U 0ðFeÞ, where Fe is the deformation
gradient. The coarse-grained Helmholtz free energy in an
element ensemble has the following form [40]:
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FðFe; T eÞ ¼ U 0ðFeÞ þ kBT e

XNe

i¼1

log 2 sinh
�hxiðFeÞ
4pkBT e

� �� �

where �h is Planck’s constant divided by 2p, and xi are nor-
mal mode frequencies for the lattice, which can be deter-
mined via harmonic approximation. Subsequently, we
can derive the expressions for the state variables such as
the entropy S and the first Piola–Kirchhoff stress P

S ¼ � oF

oT e
¼ kB

T e

X
i

�hxiðFeÞ
4pkB

� �
coth

�hxiðFeÞ
4pkBT e

� �

� kB

X
i

log 2 sinh
�hxiðFeÞ
4pkBT e

� �� �

PðFe;T eÞ ¼
1

Xe

oF

oFe

¼ 1

Xe
U 00ðF

eÞ þ �h
4p

X
i

coth
�hxiðFeÞ
4pkBT e

� �
x0iðF

eÞ
� �( )

where Xe denotes the volume of the element ensemble e.
Other transport coefficients, e.g. the specific heat at con-
stant volume CV and the specific heat at constant tempera-
ture CT are defined as

CV ðFe; T eÞ ¼ �T e
o

2F

oT 2
and CT ðFe; T eÞ ¼ �T e

o
2F

oT oFe

Note that in the proposed MS-NEMD, the above trans-
port coefficients will be later updated via the response the-
ory by utilizing the fine scale computation results [33].

The equation of motion at coarse scale is

rX � Pþ q0B ¼ q0
€�u 8X 2 X0 ð15Þ

where q0 is the density in material configuration, B is the
body force,rX is the material gradient operator in contract
to r as the spatial gradient operator, and X0 denotes the
entire coarse scale domain in the referential configuration.
Consider the first law of thermodynamics

_w ¼ q0z�rX �Qþ P : _F;

where w is the internal energy per unit reference volume, z

is the heat source per unit mass, and Q is the heat flux vec-
tor. By exploiting the Fourier law: Q ¼ �KT � rT where
KT is the thermal conductivity tensor, we can write the fol-
lowing coupled heat conduction equation

CT

X0

: _Fþ CV

X0

_T ¼ q0zþrXJF�1 � KT � F�T � rXT ð16Þ

where J is the determinant of the Jacobian. Eqs. (15) and
(16) form the complete set of governing equations for the
coarse grain model. A detailed coarse scale finite element
formulation and time integration is presented in [33].
3. Numerical example

To demonstrate effectiveness of the MS-NEMD, we
have carried out a numerical example on one-dimensional
shock wave propagation. In computations, a special Fren-
kel–Kontorova potential, or the FPU-b potential [22,41], is
used

UðqÞ ¼
X

i

k
2
ðjxi � xjj � aÞ2 þK

2
ðxi � a intðxi=aÞÞ2

�

�K

24
ðxi � a intðxi=aÞÞ4

�
; ji� jj ¼ 1: ð17Þ

This type of potential has been used in other multiscale
simulations [30]. In the present simulation, we use the fol-
lowing normalized parameters: a ¼ 1; k ¼ 1;K ¼ 0:7;m ¼
1; ~kB ¼ kBt2

c=mcL2
c , and ~�h ¼ �htc=mcL2

c . The characteristic
mass, length and time are chosen as: mc ¼ 26:98 amu;
Lc ¼ 3:253 A and tc ¼ 2:0� 10�13 s, respectively. A domain
of [0, 1000] with 1001 atoms is considered. There are 50 fine
scale FE elements and each of them consists of 20 atoms.
Linear FEM shape functions are used. The coarse scale
time step is 0.1 and the fine scale time step is 0.01.

In the first simulation, we use the MS-NEMD to simu-
late a shock wave or a dislocation propagation. A constant
external force f ¼ 0:04 is applied to every atom, which is
slightly higher than the critical force that moves the dislo-
cation. The critical force should be understood as the crit-
ical lattice friction, i.e. the Peierls force [42]. When the
driving force is above such value, a dislocation or a strong
discontinuity can move by overcoming its barrier [43,44].
The initial temperature in this example is chosen as
T 0 ¼ 100 K. Fig. 3 shows snapshots of displacement,
instantaneous kinetic (fine scale) temperature, and thermo-
dynamic (coarse scale) temperature profiles. One can
observe extreme high temperature peak moving with the
shock front, which generates coarse scale heat wave prop-
agation. This example reveals the capacity of the MS-
NEMD to simulate a non-equilibrium process with both
spatial and temporal temperature gradients.

In the second simulation, a sub-critical load, f ¼ 0:03, is
applied along the lattice, which is initially heat up to
T 0 ¼ 200 K. The results of the MS-NEMD simulation
are compared with that of conventional NEMD (the third
type). In this case, the simulation results of the conven-
tional NEMD predict a stationary shock wave, which does
not propagate along the lattice (Fig. 4a). In the MS-
NEMD simulation (Fig. 4b), under the same external load
and the same initial temperature, the shock wave moves
from right to left, which indicates the thermal activation
of dislocation motions. Note that similar conclusions
may have been drawn based on the Nośe–Hoover equilib-
rium MD simulation. However, in reality the shock wave is
propagating in a non-equilibrium state far away from the
equilibrium, in which both spatial and temporal tempera-
ture gradients are present and changing. To the best of
the authors’ knowledge, this is the first successful numerical
simulation of thermal activation of ‘dislocation’ under non-
equilibrium state. The fine scale calculation provides the
essential source for thermal–mechanical coupling at both
scales, and the activation of dislocation is clearly due to



Fig. 3. Shock wave propagation under an above-critical load f ¼ 0:04: displacement profiles: (a, b); fine scale temperature: (c, d); and coarse scale
temperature: (e, f).

Fig. 4. Shock wave motion under a sub-critical load f ¼ 0:03: (a) conventional NEMD simulation with initial temperature T ¼ 200 K; (b) MS-NEMD
simulation with initial temperature T ¼ 200 K.
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thermal fluctuation. For detailed information, readers are
referred to the related full-length exposition [33].

In the third simulation, we compare the simulation
results between the Nośe–Hoover equilibrium MD and
MS-NEMD under the same initial temperature,
T 0 ¼ 0 K. For the equilibrium MD, its coarse scale or ther-
modynamic temperature will remain 0 K, whereas in the
MS-NEMD simulation, the system’s temperature will rise



Fig. 5. Shock wave propagation: displacement profiles by (a) the Nośe–Hoover equilibrium MD and (b) MS-NEMD; instantaneous temperature profiles
by (c) the Nośe–Hoover equilibrium MD and (d) MS-NEMD.
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above to the initial temperature T 0 ¼ 0 K, and its spa-
tial distribution is non-uniform. In Fig. 5, we juxtapose
both displacement profiles and instantaneous temperature
profiles obtained from each method.

Since in the equilibrium MD simulations, the thermody-
namic temperature is enforced at T ¼ 0 K, subsequently it
then puts the constraint on the kinetic energy distribution.
Hence the instantaneous temperature distribution is visibly
smaller than that of the MS-NEMD simulations. In other
words, under the equilibrium state, the thermal–mechani-
cal interaction is constrained, while under the non-equilib-
rium state, the thermal–mechanical interaction obeys the
second law, and there will be thermal–mechanical energy
conversion due to dissipations.

Recently, we have reported a multi-dimensional simula-
tion by using MS-NEMD in [45], and it will be further dis-
cussed in the context of different atomic potentials in
coming Letters.
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