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SUMMARY

This paper focuses on the non-linear responses in thin cylindrical structures subjected to combined
mechanical and thermal loads. The coupling effects of mechanical deformation and temperature in the
material are considered through the development of a thermo-elasto-viscoplastic constitutive model at finite
strain. A meshfree Galerkin approach is used to discretize the weak forms of the energy and momentum
equations. Due to the different time scales involved in thermal conduction and failure development, an
explicit–implicit time integration scheme is developed to link the time scale differences between the two
key mechanisms. We apply the developed approach to the analysis of the failure of cylindrical shell
subjected to both heat sources and internal pressure. The numerical results show four different failure
modes: dynamic fragmentation, single crack with branch, thermally induced cracks and cracks due to the
combined effects of pressure and temperature. These results illustrate the important roles of thermal and
mechanical loads with different time scales. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is a continuing interest in the study of material failure in cylindrical shell structures subjected
to internal pressure loads. It has been suggested that failure modes in this type of structures are
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triggered by the onset of bifurcation, which further leads to the development of shear bands in ductile
materials and, subsequently, fracture. To date, theoretical and numerical studies on this subject have
been based on different material models, which include elastic [1, 2], rigid-plastic [3, 4], elasto-
plastic [5–10], nonlocal plastic [11] and elasto-viscoplastic models [12–15]. Experimental studies
of the failure have been performed in [8] for pressurized cylinders made of either aluminum or
copper with different shell wall thicknesses. The failure modes observed for these two materials are
very different. Diffusive necking was reported in copper, while surface waves appeared in aluminum
tubes.

From the analytical point of view, the initiation of localized failure is a manifestation of material
and structural instability. The specific mechanisms can be very different for the cases of quasi-
static and dynamic loading. In the former case, the classical bifurcation analysis based on [16–18]
applies. It states that localization can be considered as the instability in the macroscopic constitutive
description of the inelastic deformation. This condition can be further reduced to the loss of
strong ellipticity in the rate form of the governing momentum equation. If a numerical approach
such as the finite element method (FEM) is used for the study, one also needs to be cautious
about the mesh sensitivity [19] while tracking the post-bifurcation response. In the dynamic
case, the governing equation is regularized due to the strain-rate sensitivity of the material. The
developments of strain localization and material failure are known to be very sensitive to factors
such as initial imperfections and the inertia effects [12, 14, 15, 20]. Compared with the quasi-static
case, different failure modes such as multiple necking have been reported [14, 15] due to geometric
imperfection.

In most of the numerical simulations discussed above, the focus has been on responses of
cylindrical shells under plane strain condition. Under such an assumption, the 3D cylinder model
degenerates into a ring model. As noted in [15], this approach is not able to capture the development
of material instability modes that are inclined with respect to the tube axis. In addition, the
geometric imperfection can only be prescribed in two dimensions. As a result, the effects on the
failure mode due to any imperfections in material or geometry along the tube axis are not included.
Based on these considerations, one of the main objectives of this paper is to develop a simulation
method for pressurized cylinders in three dimensions.

Aside from the dimensional consideration, there also seems to be very little knowledge of the
response of cylinders subjected to combined dynamic load and heat. Study of this topic is important
for many engineering systems that routinely use cylindrical shell structures and may be exposed
to dramatic temperature change. Examples include fuel and gas storage tanks, oil pipes, motor
and engine cases and many aerospace components. For instance, the next-generation air vehicles
are expected to fly at hypersonic speed range and experience the combinations of extremely high
mechanical and thermal loads. Performing experiments to study and verify these applications will
be very costly and challenging. As such, we are particularly interested in developing simulation
methods to study the roles of the heat-induced softening and strain-rate dependence on the material
and structural failure modes. To our knowledge, no systematic study has been presented on this
subject in the past.

Two scenarios are possible in the coupled responses between thermal conduction and stress
evolution in the materials. If the mechanical (pressure) load is so intensive that the material fails
in a relatively short time before the thermal effect takes place, one could adopt the adiabatic
approximation and the thermal–mechanical coupling is only reflected in the plastic dissipation.
This can greatly simplify the numerical procedure. On the other hand, if the material fails as a
result of the combined mechanical load and thermal softening, the effect due to heat conduction
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should also be included in the analysis. In the present formulation, the contributions from both
adiabatic heating and conduction are fully taken into account.

In terms of the numerical implementation, the following aspects are considered:

(1) There are large differences in the time scales between heat conduction and mechanical wave
propagation. This is reflected in the critical time steps corresponding to the two different
mechanisms in the numerical simulation.

(2) The full coupling between thermal and mechanical equations requires careful formulation
of the governing equations and material model within the framework of finite deformation.

(3) Simulation of the post-bifurcation requires an efficient numerical algorithm in tracking the
initiation and propagation of failure.

In addressing the first aspect, a multi-time-stepping algorithm is developed to bridge the time
scale differences between heat conduction and wave propagation. In terms of the material model
mentioned in the second aspect, we describe a thermo-elasto-viscoplastic model that accounts for
the rate and temperature dependencies, along with two damage criteria that are used for modeling
the initiation of material failure.

In terms of numerical approximation, meshfree method has been chosen in this paper because
of its unique ability to construct high-order interpolants, which are important for modeling
the non-linear responses of shell structures. General reviews on the meshfree and particle
methods can be found in [21, 22]. For thin structures such as plates and shells, there are
three types of numerical formulations. The first is derived directly from the classical plate
or shell theory, the second is based on the so-called continuum-based approach [23] and the
third is from the direct application of 3D continuum theory. The first approach is the most
difficult as it deals with non-linear plate or shell equations and curvilinear coordinates [24].
Most meshfree methods proposed so far have focused on a continuum-based approach or simply
modeled the shell or plate as a standard continuum. A meshfree thin shell formulation based
on Kirchhoff–Love theory and element-free Galerkin (EFG) method [25] has been developed
by Krysl and Belytschko [26] in the context of small strain, linear elastic framework. Rabczuk
et al. [27] extended this work with the consideration of finite strain, non-linear elastic material and
focused on fracture. In the following work, Rabczuk and Areias [28] have simplified the treatment
of cracks in thin shell by using an extrinsic basis. Donning and Liu [29] noted the advantage
of meshfree approximations in addressing shear locking in Mindlin type of beams and plates
and have developed a meshfree formulation based on the reproducing kernel particle method
(RKPM) [30, 31] and a spline-based meshfree approach. This methodology is further extended
by Kanok-Nukulchai et al. [32] with the use of EFG. It is noted that both EFG and RKPM can
be derived based on moving least-squares procedure [21] and therefore the approximations are
similar. EFG has been employed by Noguchi et al. [33] for shell and membrane structures in
which bi-cubic and quartic basis functions are introduced in order to avoid shear and membrane
locking. Garcia et al. have applied the method of hp-cloud [34] in the analysis of the Mindlin plate
and demonstrated that shear locking can be controlled with high-order hp-cloud approximation.
Leitao [35] developed a meshfree method based on radial basis functions (RBF) for modeling a
Kirchhoff type of plate. Extension of RBF approach to the Mindlin type of plate was presented
in Liew and Chen [36, 37]. The meshless local Petrov–Galerkin was proposed by Atluri et al.
[38] for solving beam problems and application of this meshfree approach to plates and shells
can be found in [39–43]. Wang and Chen showed that the Kirchhoff mode in the Mindlin plate
can be reproduced using EFG or RKPM if second-order polynomial basis is used in the moving
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least-squares approximation. By implementing this with a nodal integration and stabilization
scheme, they have shown that the formulation is stable and free of shear locking. This approach
is further extended to the cases of shells [44] and curved beams [45]. Yagawa and Miyamura
[46] developed a free mesh method in which the discrete Kirchhoff theory is combined with the
mixed approach. In the case of 3D continuum models, Li et al. [47] have presented a formulation
based on RKPM and have studied non-linear large deformation of thin shells. Lu et al. [48] have
combined the RKPM method with an enrichment approach for the simulation of buckling in sheet
metal forming.

In this paper, the 3D meshfree continuum approach developed in Li et al. [47] is extended
to the case of thermo-mechanical coupling. As shown in [47], this approach is relatively
simpler in its formulation and implementation than the continuum-based approach. Moreover,
the high-order approximations effectively alleviate shear locking, which are typically asso-
ciated with the use of low-order finite elements. A shortcoming associated with the use of
the 3D continuum approach in the explicit computation of thin structure is the short time
step, which is limited due to stability requirements. Although several techniques such as mass
scaling and artificial damping can be used to alleviate this problem for specific applications,
no attempts have been made in this paper as the problem of interest here is transient in
nature. Furthermore, the validity of the kinematic assumptions used in plate or shell theory
remains unknown for the case of large deformation and non-linear material [24]. Therefore, the
direct 3D formulation may lead to better accuracy for the problems that are of interest in this
paper.

Based on the simulation results on pressurized cylinder with an initial short narrow opening, we
report our observations of different failure modes as different combinations of thermal and pressure
loads are applied. In the case of instantaneously applied high pressure and high body heat, the initial
opening branches into two cracks that are parallel to the axis of the cylinder on each side. Further
loading leads to fragmentation of the cylinder due to the additional cracks initiated from the two
sides. In the second loading case, the pressure loading rate is adjusted lower without any heat source.
The initial opening is observed to further propagate to both sides without changing the direction.
In the third case, it is found that the initial opening will not propagate when very high intensity of
body heat is applied instantaneously. Instead, the material fails at the outer edge of the heated zone
and is dominated by the extra-high heat input. Finally, multiple cracks due to combined thermal
and mechanical loading are observed in the last loading case, which includes both high body heat
intensity and pressure load. To our knowledge, the transition among the fragmentation, single crack,
thermally induced material failure and combined failure mode in this paper is the first of the kind
reported for pressurized cylinders. It is a further extension of the ductile-to-brittle failure transition
phenomena previously studied in [49, 50] for an asymmetrically impact-loaded prenotched plate
(Kalthoff problem).

The technical details of these implementations as well as the results are outlined in the
remainder of the paper, which is organized as follows: In Section 2, the variational forms
of the governing equations of momentum and temperature equations are derived. Section
3 describes the shape functions generated from the meshfree method and the discretized
equations are presented. The rate- and temperature-dependent constitutive models and the
corresponding solution scheme are discussed in Section 4. In Section 5, we further describe
a multi-time-stepping algorithm that is designed to accommodate the different time scales
associated with the temperature response. Finally, results and discussions are presented in
Section 6.
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2. GENERAL VARIATIONAL FORMULATIONS

2.1. Momentum equation

The formulation presented below follows or departs from [50]. We have used the weak form of
the conservation of linear momentum within the total Lagrangian framework. This is equivalent
to stating that the weak form of the momentum equation is derived in the initial configuration and
it is given as [24]

∫
� 0

P :dFT d�=
∫

� 0

�0b0 ·dud�+
∫

�t0

T0 ·dud�−
∫

� 0

�0
�2u
�t2

�u d� (1)

where T0 is the prescribed traction on the surface �t0 and b0 is the body force on volume �0.
Both volume and surface are defined in the reference configuration. The first term on the left of
Equation (1) is the first Piola–Kirchhoff stress P, which can be related to the Kirchhoff stress
tensor as with s=F ·P with F as the deformation gradient. Finally, u is the displacement and
u=u0 on the essential boundary �u0 and �0 is the mass density.

2.2. Energy equation

In the reference configuration, the rate form of the energy balance is given as
∫

� 0

�0ėd�=
∫

� 0

s :Dd�−
∫

�� 0

JN̂ ·F−1 ·q̄dS+
∫

� 0

�0s0 d� (2)

where e is the internal energy density, D is the rate of deformation, J =det(F), N̂ is defined as
the normal of the surface element in the reference configuration, q̄ is the heat flux through the
boundary with surface normal n̂ in the current configuration and n̂dS= J N̂F−1 dS0. Finally, s0 is
the internal heat source.

The heat flux is proportional to the temperature gradient on the boundary of the body, i.e.

q̄=−j· �T
�x

=−j · �T
�X

· �X
�x

=−j · �T
�X

·F−1=−j·F−T · �T
�X

(3)

where j is the heat conductance tensor.
We assume that the thermo-elastic contribution to the internal work is negligible, i.e. s :(De+

DT)=0 and postulate that the major part of the plastic work will be converted to heat using the
factor � according to [51]. Furthermore, we will use the specific heat at constant pressure cp
to approximate the specific heat at constant stress. The energy balance equation can be further
expressed as the following using the Gauss divergence theorem:

∫
� 0

�0cp
�T
�t

d�=
∫

� 0

(�s :Dp+�0s0)d�+
∫

� 0

∇X

(
JF−1 ·j·F−T · �T

�X

)
d� (4)

As Equation (4) holds for arbitrary closed volume �⊂�0, it gives the following strong form:

�0cp
�T
�t

=�s :Dp+�0s0+∇X (JF−1 ·j ·F−T∇XT ) (5)
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The weak form of the energy balance equation can be derived based on Equation (5) with the
use of integration by parts

∫
� 0

�0cp
�T
�t

�T d� =
∫

� 0

(�s :Dp+�0s0)�T d�+
∫

�� 0

J (F−1 ·j ·F−T∇XT ) ·N̂�T dS

−
∫

� 0

J (F−1 ·j·F−T∇XT ) ·(∇X�T )d� (6)

There are two ways to prescribe the heat source. One can either directly apply body heat s0
or assume that a spatial heat flux q0 comes towards the object, such that, at part of the object’s
surface �temp⊂��0, one may prescribe

j ·F−T∇XT =−q0 ∀X∈�temp (7)

Therefore, the weak form (Equation (6)) can be rewritten as
∫

� 0

�0cp
�T
�t

�T d� =
∫

� 0

(�s :Dp+�0s0)�T d�−
∫

�� 0

J (F−1 ·q0) ·N̂�T dS

−
∫

� 0

J (F−1 ·j·F−T∇XT ) ·(∇X�T )d� (8)

which is the final form of the energy equation.

3. MESHFREE APPROXIMATIONS BASED ON RKPM

To discretize the momentum and temperature equations derived in the last section (Equations
(1) and (8)), the meshfree interpolation based on the RKPM developed by Liu et al. [30] is
introduced. The RKPM was originally developed to improve the robustness of the smoothed
particle hydrodynamics (SPH) method. It modifies the kernel function in SPH by introducing a
correction function in order to enforce the completeness of the SPH interpolant. Based on RKPM,
the meshfree shape function defined at node I is given as

NI (X)=P(0)M−1(X)PT
(
X−XI

�

)
��(X−XI )�VI (9)

where P is the base function. In this paper, the tri-linear polynomial base function is used and
P(X)={1 X Y Z XY Y Z X Z XY Z}. In addition, M is called a moment matrix, �� is the
window function and �VI is the quadrature weight associated with node I . Readers are referred
to [30] for the detailed procedures to construct the shape function based on Equation (9).

Compared with FEM, generating the meshfree shape functions involves an additional procedure
to obtain the solution to enforce the reproducing condition [30]. However, as we are adopting a
total Lagrangian form [24] of the governing equations, this calculation is implemented only once.
In general, meshfree shape functions have larger support size than the FEM shape functions. In
computing the nodal internal and external forces in the meshfree method, it is more efficient to
construct the loop that occurs over nodes instead of elements due to the nonlocal nature of the
approximation. There are also differences in enforcing the essential boundary conditions between
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the two methods as meshfree shape function does not satisfy the Kronecker delta condition. In this
paper, we have modified the shape functions at the boundary using a collocation method described
in [47, 52] so that the essential boundary conditions can be directly imposed on the nodes. Detailed
implementations can be found in these two references.

Based on Equation (9), the displacement and temperature fields are interpolated as

uh(X, t) =
NP∑
I=1

NI (X)dI (t) (10)

Th(X, t) =
NP∑
I=1

NI (X)TI (t) (11)

where dI and TI are the nodal displacement and temperature vectors, respectively. In terms of the
discretization based on the meshfree approximation above, three nodes and four Gauss quadrature
points are placed through the thickness for the cylinder structure studied in this paper. More details
are provided in the results section.

Following the weak form of the governing equations for momentum (Equation (1)) and energy
(Equation (6)), the corresponding discrete equations are given as

Müh+f int = fext (12)

CṪh+KTh = h (13)

and M, C and K are the mass matrix, heat capacitance and conductance matrix, respectively. Both
lumped mass matrix and lumped capacitance matrix are used in the computation, i.e.

MIJ =
∫

� 0

�0NI NJ d�≈

⎧⎪⎨
⎪⎩

∫
� 0

�0NI d�, I = J

0, I �= J

(14)

and

CIJ =
∫

� 0

�0cpNI NJ d�≈

⎧⎪⎨
⎪⎩

∫
� 0

�0cpNI d�, I = J

0, I �= J

(15)

The other terms in Equations (12) and (13) are given as

f intiI =
∫

� 0

�NI

�X j
Pji d� (16)

f extiI =
∫

� 0

NI�0bi d�0+
∫

��0

NI t̄
0
i dS (17)

KIJ =
∫

� 0

NI, j JF
−1
j i ·jim ·F−T

ml NJ,l d� (18)

hI =
∫

� 0

NI (��i j D
p
i j +�0s0)d�−

∫
�� 0

NI JF
−1
kl q0k N̂l dS (19)
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4. CONSTITUTIVE RELATIONS AND FAILURE MODEL

In this section, we outline the constitutive relation of the thermo-elasto-viscoplastic solid adopted
from [49] in order to evaluate the stress term in Equation (16). The rate form of the constitutive
equation reads as follows:

s∇ =C :(D−Dvp−�Ṫ 1) (20)

where C is the elastic stiffness tensor, 1 is the second-order identity matrix, � is the thermal
expansion coefficient and s∇ is the Jaumann rate of the Kirchhoff stress, which is defined as

s∇ ≡ ṡ−W·s−s·W (21)

A von Mises overstress viscoplastic model is considered, i.e.

Dvp=
(
3˙̄�
2�̄

)
s′ (22)

where

s= s− 1
3 tr(s)1 (23)

s′ = s−a (24)

�̄2 = 3
2 s

′ :s′ (25)

where a is defined as the back stress. In the present formulation, the evolution of the back stress
at finite strain is not considered and a=0.

The thermo-viscoplastic flow is governed by the power law, which is described as

˙̄� = �̇0

[
�̄

g(�̄,T )

]m
(26)

g(�̄,T ) = �0

(
1+ �̄

�0

)N {
1−�

[
exp

(
T −T0

�

)
−1

]}
(27)

In Equations (26) and (27), �̇0 is a reference strain rate, m is the rate sensitivity parameter,
�0 is the yield stress, �0=�0/E is the corresponding reference strain and E is Young’s modulus,
N is the strain hardening exponent, T0 is a reference temperature and �, j are thermal softening
parameters. Specific values of the model parameters are given in Section 6. The function g(�̄,T ) is
the stress–strain relation measured at quasi-static strain rate of �̇ at temperature T . The equivalent
plastic strain �̄ is defined as

�̄=
∫ t

0

˙̄�dt=
∫ t

0

√
2
3D

p :Dp dt (28)

To consider the temperature dependency of the materials, softening in material due to temperature
rise is accounted for in the following manner based on [53]:

E(T ) = E0−1.6×106(T −T0)−105(T −T0)
2 Pa (29)

	(T ) = 	0+5×10−5(T −T0) (30)
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�0(T ) = �0−1.5×103(T −T0)
2 Pa (31)

�(T ) = [2.2+0.0016(T −T0)]×10−5K−1 (32)

where E and 	 are Young’s modulus and the Poisson ratio at temperature T . Furthermore, E0=
200GPa, 	0=0.3 and �0=2.0GPa are chosen for steel.

The constitutive update scheme for the thermo-elasto-viscoplastic model largely follows the rate
tangent modulus approach developed by Peirce et al. [54]. The essence of the rate tangent modulus
method is to approximate any function of time in the interval tn+
 ∈[tn, tn+1], 
∈[0,1], as

f
 =(1−
) fn+
 fn+1 (33)

Thus, if we choose the predicted velocity field at tn+1 as vtrialn+1=vn+�tan , then it follows that

v
 = (1−
)vn+
vtrialn+1=vn+
�tan (34)

u
 = (1−
)un+
un+1=un+
�tvn+
2�t2an (35)

L
 = v
∇x =(v
∇X ) ·F−1
n+1 (36)

D
 = 1
2 (L
+LT


 ) (37)

W
 = 1
2 (L
−LT


 ) (38)

If we choose 
= 1
2 , the prediction step, or trial step, corresponds to the central difference scheme

mentioned above.
Our goal here is to update the Kirchhoff stress

sn+1 = sn+ ṡ
�t (39)

ṡ
 ≈ s∇
 +W
 ·sn+sn ·WT

 (40)

To accomplish this, one has to first find ˙̄�
 and then s∇
 . Let

˙̄�
 =(1−
)˙̄�n+
˙̄�n+1 (41)

where ˙̄�n+1 is approximated by a first-order Taylor series expansion in �̄, �̄ and T ,

˙̄�n+1=˙̄�+�tn

[
�˙̄�
��̄

∣∣∣∣
n

˙̄�
+ �˙̄�
��̄

∣∣∣∣
n

˙̄�
+ �˙̄�
�T

∣∣∣∣
n
Ṫ


]
(42)

Assume that the temperature update proceeds first, and Ṫ
 comes in handy; based on plastic
consistency condition and constitutive relations, one may find that

˙̄�
 ≈ ˙̄�n
1+�


+ 1

H


�


1+�


[
P
 :D
+ Ṫ


(
�˙̄�/�T
�˙̄�/��̄

)
n

]
(43)
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where

P
 =C :pn (44)

p= 3

2

s′

�̄
(45)

H
 ≈ − �˙̄�/��̄

�˙̄�/��̄

∣∣∣∣
n
+(p :L :p)n (46)

�
 ≈ 
�t

(
�˙̄�
��̄

)


H
 (47)

�˙̄�
��̄

= m ˙̄�
�̄

(48)

�˙̄�/�T
�˙̄�/��̄

= −
(

�̄

g(�̄,T )

)
�g
�T

(49)

Subsequently following the rate tangent modulus approach [54], the objective rate of the
Kirchhoff stress can be given as

s∇
 =Ctan

 :D
− ˙̄�n

1+�

P
− �


(1+�
)H


(
�˙̄�/�T
�˙̄�/��̄

)
n
Ṫ
P
−�Ṫ
C :1 (50)

where

Ctan

 =C−

(
1

H

�

1+�

)


P
⊗P
 (51)

Once the objective rate is obtained, the Kirchhoff stress can then be updated according to
Equation (39). The corresponding first Piola–Kirchhoff stress in the momentum equation
(Equation (1)) is then given as P=F−1 ·s.

To model the damage failure of the solid, the following two failure conditions are used:

(1) Loss of shear-stress-carrying capacity: This failure condition is explicitly expressed as

�̄cr=�1+(�2−�1)
�̇r

(�̇r +˙̄�) (52)

where �1, �2 and �̇r are given parameters. After ˙̄� reaches ˙̄�cr, the material is assumed to be
damaged and therefore it no longer has the shear-stress-carrying capacity. The stress at this
stage is modeled by a Newtonian viscous fluid model outlined in [50] and is given as

s= �[1− J+�(T −T0)]
J

E

(1−	)
1+D (53)

in which � is the stiffness parameter and  is the viscosity. The justification to choose such
a fluid-type constitutive law is to model the melting process of the inelastic solid at high
temperature. More details on the motivation of the model can be found in [50].
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(2) Loss of normal-stress-carrying capacity: To measure the tensile stress failure, the following
criterion used in Zhou et al. [49] is adopted

�max��cr (54)

in which the critical stress is set as �cr=3�0. When the maximum principal stress reaches
3�0 at a material point, that material point is considered to be completely damaged.

The damage model is implemented at each quadrature point during the constitutive update. Due
to the fact that the numerical discretization is meshfree, a particle erosion algorithm is developed
to model the initiation and propagation of the crack. The basic idea is as follows: once the
complete stress collapse is located at the quadrature point, the particles that are associated with the
corresponding integration cell are considered to be completely damaged and thus removed from
the simulation. The particle erosion algorithm described here is similar to the element erosion
algorithm that has been widely used in FEM. While the numerical implementation of this algorithm
is straightforward, it is desirable to have a fine particle density particularly in the vicinity of the failure
zone in order to accurately capture the crack propagation. In the current application, the choice of
the particle density is limited by the computational hardware that is available for this calculation.

5. THE MULTI-TIME-STEPPING ALGORITHM

In this section, we discuss the time integration algorithm to couple the momentum and temperature
equation. The physical process of thermally induced material failure can be divided into two stages
based on their time characteristics. The first stage is the temperature rise at extended time durations
in which both the heat input and heat conduction are the important contributing factors. The second
stage covers a relatively short time period. It starts from the initiation of the material failure and
is followed by the crack propagation. Because of the nature of the transient responses in the
second stage, one can adopt the adiabatic assumption by neglecting the contribution from the heat
conduction. To address the thermo-mechanical coupling in the first stage, we employ the so-called
operator-splitting technique developed by Armero and Simo [55]. The basic idea of the operator-
splitting approach is to decouple the thermo-mechanical system into two sub-systems: an adiabatic
mechanical system and thermal system based on heat conduction. The specific implementations
involve two steps: an isentropic step in which the entropy of the system is held fixed and a
conduction step at fixed space/time configuration. Following the same philosophy, the contributions
to the temperature can be split into two parts: one due to the internal plastic dissipation and
instantaneous input and the other due to the conduction. The solution to the temperature equation
(Equation (6)) is then decomposed into

(1) Adiabatic: �0cpṪ
a = �s :Dp+�0s0 (55)

(2) Conduction: �cpṪ
c = ∇ ·(j·∇T ) (56)

in which Ṫ a and Ṫ c represent the temperature rate due to adiabatic factors such as plastic dissipation
and heat source and conduction. Based on the discussion above, the time integration algorithm for
the first stage is given as a multi-stepping scheme, which has been developed in the general context
of structural dynamics in [56, 57]. If the time step used for solving the discretized temperature
equation (Equation (6)) is given as �t , then the discretized momentum equation (Equation (1)) is
solved in m fractional steps with step size �t/m. Furthermore, we will use an implicit scheme

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1159–1184
DOI: 10.1002/nme



1170 D. QIAN ET AL.

for solving the temperature due to the conduction while using an explicit scheme for updating the
mechanical fields and temperature rise due to the internal dissipation. The rationale for the use of
this mixed time integration scheme is mainly based on the time characteristic of the temperature
responses due to the two different mechanisms and the attributes of the explicit and implicit
algorithms. Implicit time algorithms are mostly unconditionally stable, which makes the use of
a large time step possible. However, the computational cost to achieve convergence is high and
iteration becomes expensive for large-scale problems. On the other hand, explicit algorithms are
much less expensive per time step but require small time step size due to the stability requirement.
The conduction and dissipation mechanisms provided in this application automatically provide a
decomposition of the slow and fast time scale responses. Using explicit time integration for solving
the temperature due to the conduction will not be appropriate as the temperature response due to
the conduction takes place on a slow time scale. On the other hand, using a implicit algorithm
for dissipation-induced temperature rise is likely to have problem with convergence as the time
response is of small time scale and oscillatory in nature. In the following, we briefly summarize
the solution scheme. An index 	 is used for the subincremental steps within step n.

(1) Within each subincremental step 	, the mechanical fields defined at the nodes are updated
through a central difference scheme given as follows:

f	 = fext	 −fint	 (57)

a	 =M−1f	 (58)

v	+1/2 = v	−1/2+ �t

m
a	 (59)

u	+1 = u	+ �t

m
v	+1/2 (60)

The plastic dissipation can be obtained while solving fint	 based on the constitutive law.
Correspondingly, the adiabatic contribution to the temperature at each node is computed as

Ṫa
	 =C−1h	 (61)

Ta
	 =Ta

	−1+Ṫa
	
�t

m
(62)

(2) At each time step n, the contribution from the heat conduction is computed as

Ṫc
n =C−1KTc

n (63)

We will employ the �-method for updating the temperature at step n+1. The basic idea
is to develop a predictor

T̃c
n+1=Tc

n+��tṪc
n (64)

and solve

C
Tc
n+1−T̃c

n+1

(1−�)�t
+KTc

n+1=0 (65)

The final temperature at step n+1 is then updated through

Tn+1=Ta
n+1+Tc

n+1 (66)
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For the example problem to be outlined later, the parameter � is chosen to be 1
2 . The fractional

step number m=100. Once the failure is initiated, the contribution from the conduction is regarded
as negligible and therefore the implicit algorithm outlined above is no longer being implemented.

6. RESULTS AND DISCUSSIONS

The configuration of the problem is shown in Figure 1. The cylinder considered has an axial length
of 1.2m. The circular cross-section has a mean radius of 22.575 cm and thickness of 0.15 cm. With
the exception of a region in which an initial short narrow opening is prescribed in order to initiate
the crack, the whole structure is discretized with uniformly distributed 121 nodes in the axial
direction, 240 nodes in the circumferential direction and 3 nodes in the radial direction. This leads
to a total of 87 063 computational particles. The prescribed opening is aligned with the axis of
cylinder and dimension is given as 0.2m×0.012m×0.0015m (Figure 1). Due to this imperfection,
meshfree shape functions for the particles in the close vicinity of the opening are modified using
the visibility criterion developed by Krysl and Belytschko [58]. To integrate the momentum and
temperature equations, a total of 460 160 Gauss points are used for quadrature evaluation. The
constitutive equations are then solved at each Gauss point. The numerical discretization based on
the meshfree method is shown in Figure 2. A heat source is applied in the local region marked in
Figure 2. Different types of body heat are used to examine the effect of thermal softening. The
heat zone has a circular shape with a radius of 0.15m if the cylinder is unfolded onto a plane. All
the computational particles are assigned with an initial temperature of 293K before the body heat

Figure 1. Dimension of the pressurized cylinder problem.

Figure 2. The prescribed temperature zone and meshfree discretization for the pressurized cylinder problem.
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is applied. To mimic the effect of a closed cylinder, tractions of magnitude t are applied on both
ends of the cylinder. It is related to the internal pressure p through �= pdi/4t with di being the
inner diameter and t being the thickness.

The thermo-viscoplastic model described previously is used to account for the rate and temper-
ature dependence of the material. A time step of 2×10−8 s is chosen such that the stability criteria
associated with the time integration and constitutive updates are satisfied. The material parameters
for the constitutive model represent steel [50] and are listed in Table I.

Four loading cases are considered in this paper. The histories of the mechanical and thermal
loads are shown in Figure 3. The main differences are in the rate and intensity of the pressure
load and the intensity of body heat. In case I, an internal pressure of 22.8MPa and localized
body heat of 4TW/m3 are applied instantaneously. In cases II and III, the initial internal pressure
is 0 and increased at a constant rate of 0.0152MPa/�s. In both cases II and III, the computation
terminates before 1000�s. Therefore, the final pressure in both cases is less than 15.2MPa. In
terms of the thermal load, no heat is applied in case II, while a body heat of 10TW/m3 is applied
within the same area in case III. In case IV, the pressure load remains the same as in cases II
and III, while a body heat rate of 10TW/m3 per 1000�s is applied. Note that the values on the
axis are for illustration only and not drawn proportionally in Figure 3. Based on the individual
loading cases, the computation is continued until the failure leads to a negative Jacobian in the

Table I. Material model parameters for the proposed simulation.

Parameter Value Definition

�̇0 0.001/s Reference strain rate
m 70 Rate sensitivity parameter
n 0.01 Strain hardening parameter
T0 293K Reference temperature
� 0.5 Thermal softening parameter
� 1000K Thermal softening parameter
� 7830kg/m3 Mass density
cp 448J/(kgK) Specific heat
� 0.9 The fraction of plastic work converted to heat
�1 4�0 Damage parameter
�2 0.3 Damage parameter
�̇r 4×104/s Damage parameter

Figure 3. The pressure and heat loading history for the cylinder problem.
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numerical evaluation of the volume. As a brief summary, the major features of the loading are as
follows:

(1) Case I: Instantaneous high pressure and moderate body heat.
(2) Case II: Relative slow pressure loading rate, no heat.
(3) Case III: Relative slow pressure loading rate, instantaneous high heat.
(4) Case IV: Relatively slow pressure loading rate and body heat rate.

Results generated from these cases are provided below.

6.1. Case I: instantaneous pressure and body heat

In Figure 4 we plotted the time history of the effective stress at 20, 80, 160, 240, 260 and 277.2�s,
along with the deformation in the cylinder. The back half of the cylinder is blanked in order to show
the evolution of the material failure. In the initial stage of the crack, one can see the stress wave
coming from both ends due to the instantly imposed traction t . In the second frame (t=80�s),
the initial sharp crack is blunted and propagates in a radial fashion, centering the original tip. At
∼240�s, multiple cracks are initiated at the two ends of the cylinder in addition to the further
opening of the center crack. Most of the failure developments take place in the last 30�s. At
the initial stage, the prescribed narrow opening branches into two cracks that are parallel to the
axis of the cylinder on both sides. Following this, new cracks initiate from the two ends and they
further propagate towards the inner portion of the cylinder along the longitudinal direction. One
interesting observation in the failure at the final step (t=277.2�s) is that the side and center cracks
do not overlap. Because the side portion of the cylinder is now broken into multiple pieces, this
case is referred to as a case of fragmentation. Such a failure pattern is observed to be driven by
the stress wave. The simulation results are similar to the case of surface wave pattern as reported
in [8]. If a cutting plane is made perpendicular to the cylinder axis at the side portion, we shall
see fragmented rings under intensive pressure load, which is in the same spirit as the simulation
results reported in [14, 15].

Figure 4. From top left to bottom right: the effective stress history at 20, 80, 160, 240, 260 and 277.2�s.
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The corresponding temperature (in Kelvin unit) history is shown in Figure 5 for the same time
steps. Based on the shape of the heated zone, the temperature rise seems to be dominated by the
body heat and plastic dissipation. This can be justified by turning off the solution to the conduction
equation and comparing the results (more discussions are provided later). Therefore, the adiabatic
assumption is a valid approximation in the present case. Zones of higher temperatures are located
in the last three frames and they are all parallel to the cylinder axis. We further note some hot
spots at the intersection of the crack and heated zone. The observed maximum temperature in this
case is 777K.

We further examine the results generated above by trying two more different particle discretiza-
tion schemes in addition to the one already being used. The particle distributions for the three
schemes are listed in Table II and are referred to as fine, medium and coarse. The numbers of
particles for the medium and coarse discretization cases are 43 560 and 21 960, respectively. The
history of the radial expansion obtained from these three different particle discretizations are shown
in Figure 6. Here the radial expansion is defined as the maximum radial displacement measured
from the simulation data. As can be seen, all the results follow the same trajectory. The main
difference is in the time of termination, which is related to the erosion algorithm used here and the
ability of the meshfree approximation to reproduce large deformation before producing a negative
Jacobian. The fine particle distribution provides a more accurate representation of the material
failure.

Figure 5. From top left to bottom right: the temperature history at 20, 80, 160, 240, 260 and 277.2�s.

Table II. Particle discretization schemes used for verifying the results.

Coarse Medium Fine

Axial direction 61 121 121
Circumferential direction 120 120 240
Radial direction 3 3 3
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Figure 6. Radial expansion history obtained for load case I with three different
particle discretization schemes.

Figure 7. Case II: effective stress history at 20, 200, 400, 600, 800 and 889.08�s.

6.2. Case II: constant pressure loading rate without external heat

According to the loading history for case II shown in Figure 3, the rate at which the pressure is
applied is 15.2MPa per 1000�s. Therefore, the load is applied at slower rate compared with the
previous case. In addition, no external heat is applied and the temperature rise is mainly due to
plastic dissipation. The effective stress history and deformation histories are shown in Figure 7.
The frames correspond to 20, 200, 400, 600, 800 and 889.08�s, respectively. The last frame
shows the last step before the computation is terminated and the corresponding pressure at failure
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Figure 8. Case II: temperature history at 20,200,400,600,800 and 889.08�s.

is 13.514MPa. From the snapshots, it can be seen that the single crack initiated from the
prescribed tip further propagates in the direction parallel to the tube axis. Two stress concentration
zones can be located in the close vicinity of the crack tip and they propagate with the crack.
The size of the zone increases as the crack further opens up and the initial crack tips become
blunted. In the last frame, the single crack develops into a branched pattern on both sides. No
shear band formation is observed during the simulation and failure modes are dominated by the
fracture.

By further examining the temperature profile in Figure 8, it is observed that most of the region
shows no signs of significant temperature increase except for those at the crack tip. A relative high-
temperature spot comes in only during the last stage of the load. The highest value of temperature
is 460K.

6.3. Case III: lower pressure loading rate with instantaneous high body heat

In case III, the localized body heat is instantaneously increased to 10TW/m3, whereas the mechan-
ical loads are maintained the same as in case II. The effective stress history is plotted along with the
deformation in Figure 9 at time instances 20, 100, 200, 300, 360 and 379.22�s and the numerical
computation stops at t=379.22�s. In this case, it can be seen that the initial crack tip has shown
little sign of further opening or propagating. At the perimeter of the heated zone, a high-stress
concentration area is shown starting from the third time frame (t=200�s). As the thermal and
mechanical loads further progress, multiple cracks are initiated in the same area. Compared with
case II, the failure pattern is different and such a pattern is clearly the results of dramatically
increased thermal load and the associated loading rate. As the perimeter of the heated zone is
almost completely ‘eroded’ due to the intensive heat, there is a sharp decrease in the effective stress
within the same zone, indicating the separation of the heat zone from the rest of the cylinder and
consequently loss of load-carrying capacity. Figure 10 gives the temperature history corresponding
to those in Figure 9. We noted that the temperature increases faster and the final temperature is
much higher than the previous two cases.
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Figure 9. Case III: effective stress history at 20, 100, 200, 300, 360 and 379.22�s.

Figure 10. Case III: temperature history at 20, 100, 200, 300, 360 and 379.22�s.

6.4. Case IV: lower pressure loading rate and body heat rate

Compared with case III, the only difference in the loading in case IV is that a moderate body
heat rate is imposed. Comparing Figure 9 with Figure 11, we find that the failure patterns are
completely different. The computation terminates at 844�s, which is longer than the 379.22�s in
the previous case. Two types of failure patterns co-exist by examining Figure 11. The first type is
similar to case III and is characterized by the curved cracks at the perimeter of the heated zone.
The second type is similar to case II and is the direct result of the initial crack further opening
and propagation. In the initial stage of the load (before 400�s), the mechanical load seems to be
dominating the process. We can see clearly a stress concentration at the tip of the initial crack.
No initiation of body heat-induced crack is observed. However, as the mechanical and thermal
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Figure 11. Case IV: effective stress history at 4, 200, 400, 600, 800 and 844�s.

Figure 12. Case IV: temperature history at 4, 200, 400, 600, 800 and 844�s.

load further progress, we see a stress concentration near the boundary of the heated zone. This
is an indication that the thermal effect due to applied body heat has started to have an influence.
Based on the deformation shown, the radial expansion in this case is significant and can be clearly
observed. Figure 12 shows the temperature history for the same time instances as in Figure 11.
Based on the legend, we see that the highest temperature is 1444K and is shown in the final stage
of the loading. This temperature is comparable with that of case III.

6.5. Discussion

With the development of the 3D thermo-mechanical coupling approach, different failure modes
have been observed in the simulation of thin pressurized cylinders. These modes are due to the
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initial imperfection and sensitive to the rates and magnitudes of the applied mechanical and thermal
loads. There is a competing mechanism between mechanically and thermally induced failure. The
rate of the pressure load has significant effects on the failure pattern, which are illustrated in cases
I and II. Fragmentations are observed if instantly high pressure is applied, whereas a single crack
with branches is found in the case of pressure being applied at a slower rate. The initiation of the
crack starts at 57.96�s in case I and at 333.38�s in case II. Based on these results, we postulate
that the failure is driven by strain rate if the mechanical loads dominate. This is consistent with the
strain-rate-dependent failure criteria we have used for accounting the loss of shear-stress-carrying
capacity. The thermal-induced failure, on the other hand, is influenced by both the rate and the
magnitude of the body heat imposed. Failure occurs at places where one observes large temperature
gradient.

To quantify the evolution of the material failure, we introduce a damage index, defined as the
ratio of the computational particles being deleted with respect to the total number of particles.
The relationship between the damage index and time is plotted in Figure 13. We observe large
differences between case I and the other cases. The damage grows at a moderate rate before
0.0002 s and then suddenly accelerates. The slope of the curve shows that the damage continues
to accelerate till the last computational step. The final damage index in this case is 0.042 and the
process can be characterized as an ‘unsteady’ crack. In contrast, the damage evolutions in both
cases II and IV are ‘steady’ and are similar to each other before 0.0005 s. Between 0.0005 and
0.0007 s, the damage in the case of pure pressure load develops faster than the case of combined
pressure/thermal loads. The effect of the body heat shows up for time after 0.0007 s in case IV. The
final damage indices for both cases II and IV are close and remain under 0.01. The damage history
for case III corresponds to the intensive heat load and it can be seen that the final damage index
is the lowest of all cases. In addition, the time at the last computational step is relatively short.
The radial expansion history of the cylinder is shown in Figure 14. The trends in the time history
here are very similar to the ones observed in the comparison of the damage. The 3D effects are
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Figure 13. The evolution of the damage index for the four loading cases.
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Figure 15. Comparison of effective stress histories for three points.

clearly illustrated through the propagation patterns of the crack in all of the loading cases. In all
the examples, the geometric imperfection is prescribed mainly in the form of initial opening; no
non-uniform thickness has been considered as in the cited work by other groups.

To verify the effect of thermal conduction, we repeat the computation of case III but turn off
the computation associated with the conduction equation. In both cases, we observe that the crack
initiates at the same time (t=223.06�s). We further pick three points along the center of the initial
opening. The first point is located at the tip. The second is at the outer boundary of the heated
zone and the third is on the left end of the cylinder. The coordinates of the three points are given
as P1: (0.2265,−0.1,0), P2: (0.2265,−0.15,0) and P3: (0.2265,−0.6,0). The effective stress
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Figure 16. Comparison of temperature histories for three points.

history for the three points are shown in Figure 15. The legend P1a stands for the results from
the adiabatic case and the other follows a similar definition. It can be seen that the adiabatic and
conduction cases fit each other. Some minor differences are observed in the computed data for the
effective stresses, but the difference is too small to be visible from the graph. The comparison of
the temperature for the same points is shown in Figure 16. A similar conclusion on the effect of
conduction can be drawn.

7. CONCLUSIONS

With the developments of a non-linear meshfree method and a thermo-visco-plastic material model,
we studied the failure modes in a pressurized cylinder subjected to a localized heat source. Different
failure modes are observed when different types of thermal and mechanical loads are applied.
Based on the observations, we identified four types of failure modes: (1) dynamic fragmentation
due to instantaneously applied pressure; (2) a single crack propagation and branch due to pressure
of constant rate; (3) cracks due to intensive body heat; and (4) cracks due to combined thermal
and mechanical loads. For all of the cases studied here, the initial imperfection is prescribed in
the form of a short narrow opening. The 3D effects of the initial imperfection and the failure
evolutions are clearly illustrated through the four loading cases shown.

Although the parametric study of the loading cases here is limited, it is clear that fast pressure
loading rate with large magnitude leads to fragmentation, which is of a brittle nature and can be
characterized as an ‘unstable crack’ as defined in [14]. On the other hand, formation of steady cracks
is the result of loads being applied at relatively slower load rate. The material failure induced by
thermal softening due to intensive heat is an important mode that should be considered in the case
of combined thermo-mechanical loading. The final failure mode in such a case depends strongly
on both the magnitude and the rate of the mechanical and thermal loads. For the dimensions
considered in this case, a rough estimate on the critical mechanical and thermal loads can be
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derived based on the numerical examples. It is important to note that the present study so far
has only focused on thin cylinders and no geometric effect has been included. The developed
numerical tools can be further extended to explore the effects of these important factors on the
failure. Finally, other numerical techniques such as these using cohesive interfaces or enrichment
based on discontinuities can be introduced for effectively modeling the evolution of the failure.
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