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Abstract

A novel non-equilibrium multiscale dynamics (NEMSD) is proposed to simulate non-equilibrium thermal–mechanical
processes. The model couples coarse-grain thermodynamics with a fine scale molecular dynamics. A Distributed Nośe-Hoo-

ver Thermostat Network is used, which regulates the temperature in each coarse scale Voronoi cell according to the finite
element (FE) nodal temperature. The atoms in each element-cell, namely Voronoi cell-ensemble, are assumed to be in a
local equilibrium state within one coarse scale time step. The change of FE nodal temperature provides a source of random
forces, which drive the system out of equilibrium. The proposed NEMSD can successfully simulate shock wave propaga-
tion in a cubic lattice.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Atomistic simulation; Coarse grain; Multiscale simulation; Nonequilibrium molecular dynamics; Shock wave
1. Introduction

Traditional simulation methods of computational mechanics are confined within a single-scale of physics.
For example, finite element methods (FEM) only can deal with problems of continuum mechanics, while
molecular dynamics (MD) provides estimation of discrete atomistic motions at the atomistic scale. These
‘‘single-scale’’ methods have their limitations, as FEM cannot provide atomistic details while MD cannot sim-
ulate a large domain due to its computational cost. The multiscale computation is a new simulation technique
that aims to bring the best of the two worlds by using continuum simulation methods in the most part of the
domain of interest and using first principle based methods in only places where atomistic precision is required.
Many multiscale methods have been proposed in recent years and they have been successful for certain prob-
lems. They include Abraham and his co-workers’ macroscopic, atomistic, ab initio dynamics (MAAD) (1998),
Rudd and Broughton’s coarse-grained molecular dynamics (CGMD) (1998, 2005), Liu and his co-workers’
bridging scale method (Wagner and Liu, 2003; Wagner et al., 2004; Park et al., 2005), E and his co-workers’
heterogeneous multiscale method (2001, 2003), and among others.
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This paper presents a novel non-equilibrium multiscale dynamics (NEMSD) method that can simulate non-
equilibrium thermal–mechanical coupling process at small scales. The conventional MD and equilibrium MD
are unable to simulate non-equilibrium processes. Since early 1980s, the non-equilibrium molecular dynamics
(NEMD) has become a major simulation tool for simulations of non-equilibrium processes, which is largely
due to the contribution made by Hoover (1983) and Evans and Morriss (1990). According to different ways to
drive the system out of equilibrium, there are mainly three types of NEMDs: boundary-driven NEMD (Bar-
anyai, 1996; Müller-Plathe, 1997; Lepri et al., 2003), prescribed-flow-driven NEMD (Evans and Morriss, 1990;
Tuckerman et al., 1997; Dressler and Edwards, 2002), and the synthetic NEMD (Evans et al., 1983; Zhang
et al., 2000; Bright and Evans, 2005).

The NEMD shares the same difficulties as the conventional MD due to its inability to simulate a realisti-
cally sized domain. The advantages of the proposed NEMSD over NEMD are two folds. First, it is a multi-
scale simulation, so in general it saves computational cost. In the proposed NEMSD, the mean field, or the
coarse-grained thermodynamics field, is solved over the entire domain by using FEM with the inputs from
both boundary and initial conditions; whereas the fine scale fluctuation is solved via a first-principle based
MD model for specific regions where atomistic resolution is desired. The second advantage is in the way
non-equilibrium phenomenon is modeled. The traditional NEMD only introduces a constant external field
to drive the system out of equilibrium, whereas the proposed NEMSD uses the coarse scale mean field or
the nonuniform drift field to drive the fine scale system out of equilibrium. In the proposed NEMSD, a Dis-

tributed Nośe-Hoover Thermostat Network is used, in which each coarse scale finite element (FE) cell may be
viewed as an element ensemble whose statistical properties is regularized by a Nośe-Hoover thermostat
according to the current temperature of the FE node inside the cell.

The change of FE nodal temperature provides a source of random force. In turn, the fine scale simulation
results are used to update temperature and displacement field at coarse-grain level, and it may also be used to
calculate the transport coefficients for the coarse-grain formulation.
2. Multiscale non-equilibrium molecular dynamics

We start with the multiscale decomposition proposed by Wagner and Liu (2003) and Rudd and Broughton
(1998), which decomposes the discrete atomistic displacement field, q, into a coarse scale part and a fine scale
part: q ¼ �qþ q0. The symbol�indicates coarse scale quantities and the symbol 0 indicates their fine scale coun-
terparts. The multiscale displacement decomposition implies similar decompositions for velocities and
momentums, i.e. v ¼ �vþ v0 and p ¼ �pþ p0. We assume that the coarse scale atomistic displacements can be
described by a continuous mean field �uðXÞ, which is defined by a FE interpolation field,
�u ¼ NðXÞd; ) �q ¼ NðXaÞd ð1Þ
where d is FE nodal displacement array, N(Xa) is the FE shape function matrix evaluated at the position Xa of
the atom a. With the bridging scale formulation, both the coarse scale components and the fine scale compo-
nents can be obtained from the total scale variable: �q ¼ PðXaÞq, q 0 = Q(Xa)q, where P and Q are projection
operators defined as P = NM�1NTMa and Q = I � P, Ma is the diagonal mass matrix for atoms and
M = NTMaN is the coarse scale mass matrix.

A conceptual illustration of the multiscale simulation is shown in Fig. 1. The mean field motions are solved
by using FEM over the entire domain based on a coarse-grain model. Whereas the fine scale motions are
solved via a first-principal based MD model for specific regions where atomistic resolution is desired. For a
single cell-ensemble c surrounding the FE node I, the following multiscale adiabatic Hamiltonian can be
written
H adia
c ¼

Xnc

i¼1

1

2mi
�pi � �pi þ

Xnc

i¼1

1

2mi
p0i � p0i þ UðqÞ ð2Þ
where nc is the number of atoms in the cell-ensemble c. Note that the coarse scale momentum is orthogonal to
the fine scale momentum, i.e.
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Fig. 1. The structure of distributed Nośe-Hoover thermostat.
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X
i

�pi � p0i ¼ 0; ( PQ ¼ PðI� PÞ � 0 ð3Þ
The two-scale equations of motion are then given as
_qi ¼
@H adia

c

@pi

¼
�pi

mi
þ p0i

mi
and _pi ¼ �

@H adia
c

@qi

¼ � @UðqÞ
@qi

¼ Fi ð4Þ

_�qi ¼
@H adia

c

@�pi
¼

�pi

mi
and _�pi ¼ �

@H adia
c

@�qi
¼ Fj

@qj

@�qi
ð5Þ
In terms of FE nodal degrees of freedom, Eq. (5) becomes M€d ¼ NT F, whereas the fine scale equations of mo-
tion may be expressed in terms of qi and p0i as follows,
_qi ¼
�pi

mi
þ p0i

mi
and _p0i ¼ Fi � _�pi ð6Þ
In the proposed NEMSD, each coarse scale FE node may be viewed as a thermal reservoir. The atoms sur-
rounding each FE node, namely each Voronoi cell-ensemble (see Fig. 2), are assumed to be in a local equilib-
rium state within the duration of the coarse-grain time scale length. In passing, we note that the length scale of
the Voronoic cell-ensemble should be comparable with the phonon mean free path, which may change from
place to place due to the presence of defects. To couple the local equilibrium state with the coarse scale heat
conduction, we use a local Nośe-Hoover thermostat such that the fine scale equations of motion become
Fig. 2. Coarse-grain FE mesh and Voronoi cell-ensemble.
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_qi ¼
�pi

mi
þ p0i

mi
and _p0i ¼ Fi � _�pi � ncp

0
i ð7Þ
"i 2 nc, nc = {1,. . ., nc} and
_nc ¼
1

Qc

X
i2nc

p0i � p0i
2mi

� 3nckBT c

 !
ð8Þ
where kB is the Boltzmann constant, Qc is the pseudo mass of the auxiliary variable nc, and the local cell tem-
perature Tc for each cell-ensemble is the coarse scale thermodynamic temperature at FE node I. Since the FE
nodal temperature changes from node to node and time to time, the local temperature differs among different
cell-ensembles and from different coarse scale time steps. It results in a distributed Nośe-Hoover thermostat
network, which provides right amount random forces or fluctuations to maintain the specified temperature.
The authors have proved in a recent paper (Li et al., submitted) that the distributed Nośe-Hoover thermostat
network renders the distribution function in each cell-ensemble canonical.

3. Coarse-grain model

In this paper, we adopt non-equilibrium coarse scale thermodynamics, which is associated with a coarse-
grained Helmholtz free energy that is based on both the Cauchy–Born rule and the quasi-harmonic approx-
imation (Diestler, 2002; Jiang et al., 2005). The approximated free energy expression allows us to derive
macroscopic quantities for coupled thermo–mechanical equations. If the local deformation is homogeneous,
the total atomistic potential U0 can be written as: U 0 � U 0ðFcÞ, where Fc is the average deformation gradient
within a cell c, which is approximated as the value of the coarse scale deformation gradient evaluated at the
node I. According to the harmonic approximation, the Helmholtz free energy in a cell-ensemble c has the form
of (Weiner, 1983):
UcðFc; T cÞ ¼ U 0ðFcÞ þ kBT c

Xnc

i¼1

X3

k¼1

log 2 sinh
�hxikðFcÞ
4pkBT c

� �� �
ð9Þ
where �h is Planck’s constant divided by 2p; xik are normal mode frequencies for the lattice, which can be deter-
mined via harmonic approximation; and Tc is the coarse scale thermodynamic temperature. Note that in the
proposed NEMSD, Tc is updated based on fine scale atomistic velocities:
T c ¼
2

3ðnc � 1ÞkB

Xnc

i¼1

p0i � p0i
2mi

* +
ð10Þ
where h Æ i denotes averaging in time. With U c available, one can derive the expressions for the state variables
such as the first Piola–Kirchhoff stress Pc, the specific heat at constant temperature Cc

T and the specific heat at
constant volume Cc

V :
PcðFc; T cÞ ¼
1

Xc

@Uc

@Fc
¼ 1

Xc

U 00ðFcÞ þ �h
4p

Xnc

i¼1

X3

k¼1

coth
�hxikðFcÞ
4pkBT c

� �
x0ikðFcÞ

� �( )
ð11Þ

Cc
T ðFc; T cÞ ¼ �T c

@2Uc

@T c@Fc
¼ ��h2

16p2kBT c

Xnc

i¼1

X3

k¼1

xikðFcÞx0ikðFcÞ sinh2 �hxikðFcÞ
4pkBT c

� �� ��1

ð12Þ

Cc
V ðFc; T cÞ ¼ �T c

@2Uc

@T 2
c

¼ kB

Xnc

i¼1

X3

k¼1

�hxikðFcÞ
4pkBT c

� �2

sinh2 �hxikðFcÞ
4pkBT c

� �� ��1

ð13Þ
The equation of motion at coarse scale is
rX � Pþ q0B ¼ q0
€�u; 8X 2 X0 ð14Þ
where P is the first Piola–Kirchhoff stress, q0 is the density in material configuration, B is the body force, $X is
the material divergence operator, and X0 denotes the whole coarse scale domain. Consider the first law of
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thermodynamics: _w ¼ q0z�DIVQþ P : _F, where w is the internal energy per unit reference volume, z is the
heat source per unit mass and Q is the heat flux. For the heat flux Q, we exploit Fourier’s law: Q = �KT Æ $T,
where KT is the thermal conductivity. Then the first law provides the following heat conduction equation,
Fig. 3.
Instan
CT

X0

: _Fþ CV

X0

_T ¼ q0zþr � K � rT ð15Þ
Eqs. (14) and (15) form the complete set of governing equations for the coarse-grain model. A detailed finite
element formulation is presented in (Li et al., submitted).
4. Numerical example

To illustrate the effectiveness of NEMSD, we simulate shock wave propagation in a cubic lattice. The
dimension of the simulation domain is [�100 ha, 100 ha] · [�100 ha, 100 ha], where ha = 3.253 A is the inter-
atomic spacing. By choosing the characteristic length Lc = ha, the normalized interatomic spacing is 1, and
the normalized dimension of the domain is [�100, 100] · [�100, 100]. We simulate the problem with 40401
atoms and 800 linear triangle elements. There are total of 441 FE nodes and each of them represents a Voronoi
Shock wave propagation: (a) Displacement solution by NEMSD; (b) Coarse scale temperature profile obtained by NEMSD; (c)
taneous temperature profile obtained by NEMSD; (d) Instantaneous temperature profile obtained by equilibrium MD.
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cell-ensemble of 100 atoms. An initial dislocation is prescribed as: q(r) = 1 for r 6 20, where q is out-of-plane
displacement. A constant out-of-plane force f = 0.04, which is slightly higher than the critical force (the Peierls
force), is applied to every atoms. In this example, a special Frenkel–Kontorova potential, or the FPU-b poten-
tial (Lepri et al., 2003), is used,
UðqÞ ¼
X

i

k
2
ðqi � qjÞ

2 þ K
2
ðqi � intðqiÞÞ

2 � K
24
ðqi � intðqiÞÞ

4

� �
; ji� jj ¼ 1 ð16Þ
The following normalized parameters are used: k = 1, K = 0.7, m = 1, ~kB ¼ kBt2
c=mcL2

c , and ~�h ¼ �htc=mcL2
c . The

characteristic mass, length and time are chosen as: mc = 26.98 amu, Lc = 3.253 A and tc = 2.0 · 10�13 s,
respectively. The coarse scale time step is 0.2 and the fine scale time step is 0.02. The initial temperature is
chosen as T0 = 100 K.

Fig. 3(a)–(c) show the displacement, thermodynamic (coarse scale) temperature and instantaneous kinetic
(fine scale) temperature profiles at the 720th coarse scale time step. One can observe that the shock wave
moves from the center to the boundaries. Extreme high temperature peak is observed at the shock front, which
generates coarse scale heat wave propagation. In Fig. 3(d), we give the instantaneous kinetic temperature pro-
file obtained by thermostated equilibrium MD with the same initial temperature, T0 = 100 K. Comparing
Fig. 3(c) with Fig. 3(d), one may find that the thermal fluctuation is highly intense in the case of NEMSD,
which suggests that the system is indeed away from equilibrium.
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