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This work provides a comprehensive exposition and extension of an atomistically enriched contact
mechanics model initially proposed by the present authors.1 The contact model is based on the
coarse-graining of the interaction occurring between the molecules of the contacting bodies. As
these bodies may be highly compliant, a geometrically nonlinear kinematical description is chosen.
Thus a large deformation continuum contact formulation is obtained which reflects the attractive and
repulsive character of intermolecular interactions. Further emphasis is placed on the efficiency of
the proposed atomistic-continuum contact model in numerical simulations. Therefore three contact
formulations are discussed and validated by lattice statics computations. Demonstrated by a simple
benchmark problem the scaling of the proposed contact model is investigated and some of the
important scaling laws are obtained. In particular, the length scaling, or size effect, of the contact
model is studied. Due to its formal generality and its numerical efficiency over a wide range of
length scales, the proposed contact formulation can be applied to a variety of multiscale contact
phenomena. This is illustrated by several numerical examples.

Keywords: Coarse-Graining, Continuum Contact Mechanics, Intermolecular Interaction, Nano-
Mechanics, Scaling.

1. INTRODUCTION

Due to the emergence of nano-science and nano-techno-
logy, contact mechanics and the understanding of contact/
interaction phenomena at small scales are becoming
increasingly important. Some of the examples governed
by nanoscale interactions are atomic force microscopy,2�3

nanoindentation,4 nanotribology,5 carbon nanotubes,6–8

head-disk instabilities,9 the adhesion of living cells10 and
the adhesion used by the Gecko.11–13

At the nanoscale level, the interaction of two or more
bodies is governed by the interaction of individual atoms
or molecules and can therefore be simulated by first-
principle methods such as molecular dynamics. Exam-
ples of such computations include the study of carbon
nanotubes,14 proteins15 and nanoindentation.16 However,
as illustrated by the Gecko example, problems governed
by nanoscale interactions can still be macroscale in pro-
portion. Since molecular dynamics traces the paths of
all participating molecules, the method becomes pro-
hibitively expensive and thus inefficient for such multiscale

∗Author to whom correspondence should be addressed.

problems, both in terms of computational time and post-
procession. A further disadvantage of molecular dynamics
is that it does not blend into a continuum mechani-
cal formulation, which is more suitable for problems at
increasing length scales. To counter these deficiencies
of molecular dynamics, several coarsened or homoge-
nized descriptions have been proposed, like, for example,
the ‘quasi-continuum method,’17�18 or the ‘coarse-grained
molecular dynamics’ model.19�20 The strength of both
these multiscale methods is not only the reduction of com-
putational cost compared to molecular simulations, but
also the ability to couple regions of atomic resolution with
regions of coarsened resolution. Initially, the methods have
been developed to coarsen the internal behavior of a sin-
gle body and have been successfully applied to various
nanoscale problems. Recently, multiscale methods, like the
quasi-continuum method, have also been used to study the
contact interaction of multiple bodies.21–24 In those works
the interface between the contacting bodies is modelled up
to the full atomic resolution, while a much coarser resolu-
tion is employed farther away from the region of contact.
Even though a substantial increase in efficiency, compared
to a full atomic resolution, is achieved, we feel that for
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some problems it becomes essential to also coarsen the
region in contact, that is, to develop a computationally
efficient contact formulation based on the homogeniza-
tion of the interaction between individual molecules. This
becomes particularly important when the length scale of a
problem increases or when phenomena governed by long-
range interaction, such as adhesion, are considered.

Efficient contact models describing the interaction
between macroscale continua have been extensively inves-
tigated by the field of computational contact mechanics,
e.g.,25�26 which has applications in a host of engineering
fields, such as tribology, metal forming, manufacturing and
structural failure analysis. However, current computational
contact models are either formulated for macroscale prob-
lems, and thus are incapable of describing nanoscale inter-
actions, like adhesion, or they only consider simplified
interactions, e.g., by treating one of the bodies as rigid.27�28

Another common simplification is to consider infinitesimal
deformations.29 While such an assumption can be useful
for the description of stiff solids, it becomes inadequate
for strongly deforming materials and structures, such as
are found in many bio-mechanical applications, like the
Gecko adhesion.

In view of these limitations of present nanoscale and
macroscale computational contact models, we seek a
homogenized, large deformation continuum contact model
based on nanoscale physics that can capture the coupling
of two interacting bodies. The model should apply to a
wide range of length scales and resort to a traditional con-
tinuum contact formulation at the macroscale. Therefore
the computational formulation must be such that efficiency
is maintained for increasing length scales without sacrific-
ing accuracy. Such a continuum contact model, termed the
‘Coarse Grained Contact Model’ (CGCM) since it can be
derived from the coarse-graining of molecular interactions,
has been proposed by the present authors.1 In that work
the emphasis is placed on the computational formulation
and its efficient implementation within a nonlinear finite
element setting. In Ref. [30] we have further applied the
model to dry adhesive contact and demonstrated its valid-
ity by a comparison with the analytical JKR,31 DMT32 and
Maugis-Dugdale33 models. In the present work, several
further aspects of the CGC model are illustrated and inves-
tigated: A direct comparison of the CGCM with molec-
ular statics is shown, to demonstrate the accuracy and
efficiency of the proposed contact model. Secondly, by
considering a simple benchmark problem the scaling of
the CGC model is studied over a wide range of model
parameters. Two scaling laws of the CGCM are obtained
which characterize different aspects of the model behav-
ior. This scaling discussion extends the preliminary results
reported in Ref. [1]. Thirdly, we illustrate the application
of the CGC model to the interaction of surface asperi-
ties as occurs during the sliding of two macroscale solids.
Through such examples, macroscopic friction can be mod-
elled based on a frictionless formulation on the microscale.

The following section outlines the proposed contact
model, the Coarse Grained Contact Model. Section 3 is
devoted to the scaling of the CGC Model. The application
of the proposed model is further illustrated with the sliding
example presented in Section 4. Conclusions are drawn in
Section 5.

2. A CONTINUUM THEORY FOR
NANOSCALE CONTACT

This section serves to outline the Coarse-Grained Contact
Model (CGCM). We discuss the general idea and derive
its governing equations. Its efficiency is illustrated and a
simple comparison with a molecular simulation is shown.

2.1. General Idea

The objective of the Coarse-Grained Contact Model is
to describe the interaction, like adhesion and contact,
between deforming, nanoscale bodies. The model can be
related to classical molecular dynamics and continuum
contact mechanics as is illustrated in Figure 1. In the
following, these three models and the two procedures,
which facilitate a transition between the models, are dis-
cussed. The formulas appearing in Figure 1 are subject of
Section 2.2.

Molecular dynamics34 is a discrete model which
describes the interaction of an assembly of point masses,
usually molecules or atoms. The particle interaction is
modelled by intermolecular interaction potentials, e.g., see
Ref. [35]. An example is the Lennard-Jones potential
modelling pairwise interaction. By choice, we group the
interaction potentials into two categories: intrasolid and
intersolid potentials. The first group denotes the interac-
tion of particles within the bodies (potentials �1 and �2

in Figure 1). The second category denotes the interactions
of particles belonging to distinct bodies (potential � in
Figure 1). The motivation behind this distinction is that the
intersolid potential � is often weak but long-range, like
for example van der Waals interaction, while the intrasolid
potential � is often strong but short-range, like covalent,
ionic or metallic bonds. The nomenclature is in analogy to
the description of interlayer and intralayer carbon nanotube
interactions.8 Molecular simulations become less useful for
increasing length and time scales due to the computational
cost associated with many degrees of freedom.

Continuum mechanics36�37 on the other hand offers
a formulation which is well established for macroscale
problems and which can be efficiently implemented in
numerical computations, for example in the finite ele-
ment method.38–40 The drawback of applying classical con-
tinuum approaches to nanoscale problems is that these
approaches are typically based on phenomenological mod-
els and lack the atomistic information.

The basic idea of the CGC Model is to combine the
physics of atomic interaction during contact with the
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Fig. 1. Relation of the Coarse-Grained Contact Model (CGCM) with classical molecular dynamics and continuum contact mechanics.

elegance and numerical applicability of a continuum for-
mulation. This is achieved by the coarse-graining, or
homogenization, of the molecular dynamics model, as
indicated in Figure 1. Thus, the coarse-graining proce-
dure is a transitional scheme which is used to construct an
effective continuum model, the CGC model, from molec-
ular dynamics. The coarse-graining procedure is two-fold:
The intrasolid interaction is homogenized into a continuum
constitutive model, like e.g., the Cauchy-Born rule,41 while
the intersolid interaction is homogenized into a contin-
uum interaction energy, which describes phenomena like
adhesion and contact. As the former contribution has been
studied before, e.g.,18 and references therein, the focus of
this work is placed on the second part, i.e., the study of
the homogenized continuum interaction energy, which is
denoted by �C in Figure 1. By the homogenization of the
intersolid potential �, a continuous field �I , surrounding
each body �I , is obtained. As a second body enters field
�I , it experiences a force field, which captures the interac-
tion of the two bodies. The coarse-graining procedure and
the equations contained in Figure 1 are discussed in detail
in the following section. Within this work we consider
only spatial coarse-graining. To dampen high frequency
oscillation a temporal coarse-graining scheme should be
considered.19�20 Remarks on the extension of the CGCM
to temporal coarse-graining are discussed in Ref. [42].

As is shown by the example following in Section 2.4, a
straightforward numerical formulation of the CGC model
can become inefficient, especially as the length scale of
the problem increases. It therefore becomes vital to intro-
duce appropriate approximations in the formulation of the
CGCM, such that efficiency is restored while maintaining
accuracy. An example of such an efficient approximation
is the ‘point formulation’ discussed in Section 2.3 and
outlined in Figure 2. Formally, this approximation can be
classified as a traditional computational continuum contact
model—one, which is based on the underlying atomistic
physics. The ‘point formulation’ therefore facilitates the
transition between the two models, as is shown in Figure 1.
Due to this transition the CGC model constitutes an effi-
cient model, which is capable of describing contact at a
wide range of length scales, ranging from the atomic scale
of nanometers to the macroscopic scale of millimeters.

The CGC model is motivated as a homogenized, effec-
tive treatment for contact/interaction problems at very
small scales. It is cast into an efficient, computational
continuum contact formulation, which accounts for large
deformations and can thus describe the strong nonlinear
coupling of strongly deforming, soft bodies. It is impor-
tant to note that the CGC model cannot capture the atomic
details, as they are deliberately coarsened in the construc-
tion of the model. Therefore, phenomena like dislocation
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(a) (b)

(c)

Fig. 2. Types of interaction: (a) Volume interaction (VI); (b) Surface
interaction (SI); (c) Point interaction (PI).

motion, fracture, atomic vibrations, surface relaxation or
chemical reactions cannot be described at the atomic level
by the present model. In principle, this can be achieved by
coupling the CGC model with an atomistic model such as
molecular dynamics.

2.2. Governing Equations

With the proposed nanoscale contact model introduced, we
proceed in deriving its governing equations. We start by
considering the interaction of two distinct bodies occupy-
ing the current configurations �1 and �2 and containing
n1 and n2 atoms. The total potential energy of the two
body system can be written as (Ref. [1])

�=
2∑

I=1

[
�int� I −�ext� I

]+�C (1)

where �int� I and �ext� I are the internal and external ener-
gies of body �I (I = 1� 2), and where �C denotes the
contact interaction energy between bodies �1 and �2.
(Throughout this paper we use upper case indices to denote
the bodies and lower case indices to denote the particles
constituting the bodies.) The contributions �int� I , �ext� I

and �C are formulated for a discrete molecular system and
then coarse-grained into an effective continuum descrip-
tion (this transition is also indicated Figure 1). For this,
consider a body � containing n atoms with position zi,
i ∈� , where � is the set of all n indices i. Suppose f �zi�

is a smooth function defined on �. To coarse-grain the
discrete system we consider the following approximation

∑
i∈�

f �zi�≈
∫
�
�x�f �x�dvx (2)

that is, we replace the discrete sum of f �zi� over all atomic
sites zi by the continuous integral over x ∈�. In Eq. (2)
 is the atomic density of the continuum, written as

�x� �=∑
i∈�

�h�x− zi� (3)

and constructed from the Gaussian distribution in �d

�h�y� �=
1

�
√
�h�d

exp
(
−y ·y

h2

)
(4)

The atomic density  is measured in number of particles
per current volume. Operation (2) is exact if h→ 0, i.e.,
�h approaches the Dirac delta function �. Equation (2) is
also exact, for all h, if f �x� is a linear function of x. Very
good accuracy is thus achieved if h is such that f �x� is
approximately linear within the support space of �h. Fur-
thermore, if the particles are arranged in a regular lattice
and if h is larger that the lattice spacing, then  can be
treated as constant across the domain.

To illustrate the accuracy of operation (2) let us examine
the one-dimensional coarse-graining in infinite space. A
given function f �x� is thus approximated by

g�x�=
∫ 


−

�h�x−y�f �y�dy (5)

As an example, consider the family of waves f��x� =
cos�2�x/�� characterized by the wavelength �. For this
function, integral (5) can be evaluated exactly. We find
g��x� = exp�−�2h2/�2� f��x� so that the error of this
approximation, in dependence of coarse-graining parame-
ter h and wavelength �, is

e�h��� �= f��x�−g��x�

f��x�
= 1− exp

(
−�2h2

�2

)
(6)

As the parameter h → 0 or as the wavelength � → 
,
the error vanishes (e → 0); on the other hand as h→

or �→ 0, we approach 100% error (e→ 1), i.e., all infor-
mation of f� is lost in g�. To capture a given oscilla-
tion f�, with given �, up to a maximum error of 5%
the coarse-graining parameter h must satisfy h< 0�0721�.
Conversely, a given coarse-graining scheme, with given h,
can only capture oscillations with wavelengths above
� ≈ 13�87h. Thus h can be viewed as a parameter reg-
ulating what kind of fine scale information is captured
accurately up to a certain tolerance and what kind is lost
entirely.

The coarse-graining of the particle description into an
effective continuum has a similar effect than the coarsen-
ing caused by a numerical discretization, e.g., with finite
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elements. To capture the oscillation f� with equidistant
linear finite elements, up to an error of 5% in the L2

norm, around nine elements, with lengths �e = �/9, are
needed. A finite element approximation thus corresponds
to a coarse-graining where h is of the order of the element
length �e.

The coarse-graining operation, defined by Eqs. (2)–(4),
is a simple transitional procedure illustrating how an effec-
tive continuum formulation can be derived from a parti-
cle description. The procedure is a reminiscence of the
derivation of ‘Smoothed Particle Hydrodynamics’43�44—
a meshfree particle method developed for computational
astrophysics, fluid dynamics and solid mechanics. Other
coarse-graining approaches can be found in the works of
Refs. [45] and [20].

In the following discussion we consider only pairwise
interaction of particles. Such interactions are described by
two-point interaction potentials, denoted by � and �I in
Figure 1 (where either I = 1 or I = 2). As mentioned
before we distinguish between the interaction of particles
within one body �I and the interaction of particles belong-
ing to two distinct bodies �1 and �2. The former is termed
the intrasolid interaction and is denoted by �I ; the latter
is termed the intersolid interaction and is denoted by �.
Considering only pairwise interaction, the internal energy
of the discrete nI particle system is given by the double
summation over all atoms zi within �I

��int� I =
∑
i∈�I

�I �zi�� �I�zi� �=
1
2

k �=i∑
k∈�I

�I �rik�

rik = zi− zk� I = 1�2

(7)

The factor 1/2 is needed since every atomic bond,
described by the interaction potential �I , is counted twice
in the double summation above. According to expression
(2) the internal energy (7) is coarse-grained as

��int� I ≈�int� I =
∫
�I

I �x��I�x�dvI (8)

where

�I�x�=
1
2

∑
k∈�I

�I �rk�� rk = x− zk� zk �= x (9)

To distinguish between the discrete and continuum internal
energies of Eqs. (7) and (8), a hat is used for the former
case. The integrand wI �= I�I of Eq. (8) is the stored
energy density (per current volume) within body �I . The
coarse-grained internal energy �int� I hence takes the same
form usually considered in continuum mechanics, e.g., see
Ref. [36].

2.2.1. Remarks

(1) Equation (9) expresses the total energy ��x� at site x
due to the interaction with all neighboring particles zk.

In practice only a close shell of surrounding particles is
included in the sum, since the potential � decays with
distance rk. An efficient method to evaluate Eq. (9), valid
under certain assumptions on the deformation at x, is the
Cauchy-Born rule, see Refs. [41], [46], and also [17].
(2) The formulation of the internal energy in Eqs. (7)–(9)
can be extended beyond pair potentials, e.g., to three-point
potentials, or to embedded atom (EAM) type potentials.47

(3) The site energy ��x� (9) is fundamentally different
for bulk atoms, which are fully surrounded by neighbor-
ing atoms, than for surface atoms, which are only partly
surrounded by neighboring atoms. This gives rise to a sur-
face energy, which leads to important phenomena such as
the surface tension of fluids or surface relaxation effects
of solids. The coarse-graining formalism presented above
can be extended to include such surface effects, however,
this is not considered here. An approach to formalize the
surface energy within the Cauchy-Born formalism is dis-
cussed in Ref. [48].

Next, we consider the interaction energy between two
bodies �1 and �2. Let zi, i ∈�1, denote the position of the
n1 particles within �1 and zj , j ∈�2, denote the position of
the n2 particles of �2. If pairwise interaction is considered
the interaction energy of the discrete system is given by

��C = ∑
i∈�1

∑
j∈;2

��rij �� rij = zi− zj  (10)

where ��r� is the intersolid interaction potential between
the two particles at zi, i ∈ �1, and zj , j ∈ �2. An example
for the intersolid interaction is the van der Waals attrac-
tion between particles. Compared to covalent, ionic and
metallic bonds, van der Waals interaction is weaker but
acts over larger distances. Van der Waals attraction is often
modelled by the Lennard-Jones potential

��r�= $0

( r0

r

)12 −2$0

( r0

r

)6
(11)

where the 1/r12 term is empirical and models the repul-
sion which occurs when the atoms are in close proximity.
Here, the length r = r0 is the equilibrium spacing between
the particles where the force F �r� �= − &�

&r
vanishes. The

energy $0 corresponds to the energy required to separate
the particles from r = r0 to r = 
. The Lennard-Jones
potential (11) is a particular example for the intersolid
potential �, which we consider in the remainder of this
paper. Applying the coarse-graining operation (2) to the
double summation of expression (10) yields

��C ≈�C =
∫
�1

∫
�2

12��r�dv2dv1� r = x1 −x2 (12)

the homogenized interaction energy of the two continua.
Here 1 and 2 denote the current particle density at points
x1 ∈�1 and x2 ∈�2. For now we suppose that there is no
flux of particles into or out of the bodies. Therefore the

J. Nanosci. Nanotechnol. 8, 1–17, 2007 5



R
E

S
E

A
R

C
H

A
R

T
IC

L
E

An Atomistically Enriched Continuum Model for Nanoscale Contact Mechanics Sauer and Li

number of particles within a given volume is conserved
during deformation, i.e.,

IdvI = const� for I = 1�2 (13)

For the further developments it becomes advantageous to
pull-back the integral over the current, deformed configu-
rations �1 and �2, to the integral over the reference, usu-
ally undeformed, configurations �10 and �20. According
to Eq. (13), the pull-back of expression (12) becomes

�C =
∫
�10

∫
�20

1020��r�dV2dV1 (14)

Here I0, I = 1� 2, is the reference density measured in
number of particles per reference volume, and dVI is a ref-
erential volume element. Consider the two motions (1 and
(2 mapping the reference points X1 ∈ �10 and X2 ∈ �20

onto the current locations x1 ∈�1 and x2 ∈�2. Associated
with the two motions are the two deformation gradients
F1 =Grad(1 and F2 =Grad(2, where the gradient operator
Grad�� � �� is taken with respect to the reference configura-
tions �10 and �20. Given the Jacobian determinant JI =
det FI , I = 1�2, of the deformation, the spatial quantities
I and dvI can be related to the material quantities I0

and dVI by

I = I0/JI � dvI = JIdVI (15)

2.2.2. Remarks

(1) If �1 and �2 are of simple geometry and their defor-
mation is neglected (or simplified), �C may be evaluated
analytically.49 This approach dates back to the 1930’s with
the seminal works of Bradley50 and Hamaker.51 Formula-
tion (12) has also been considered in the computational
study of carbon nanotubes.52�8

(2) The framework of Eq. (12) can be easily extended
to describe surface interaction, e.g., for coated, charged
particles, and to describe multi-body interaction.1

(3) The present formulation of �C admits only pair poten-
tials �, like the Lennard-Jones potential. In principle also
multi-point potentials, like three-point potentials, can be
considered in the interaction energy �C.

With Eqs. (8) and (12) we have obtained a continuum
formulation of the internal energy �int and the contact
interaction energy �C. By further use of coarse-graining
operation (2), one can also derive continuum expressions
of the external energy �ext or the kinetic energy K, as is
shown in Ref. [1]. Thus, a continuum contact model, the
CGCM, is obtained by the coarse-graining of the under-
lying discrete particle description. This transition is also
illustrated in Figure 1.

To implement the CGC model into a numerical
approach, such as the finite element method, we need to
obtain its governing weak form. We therefore need the

variation of the total potential energy � (1), which is
expressed as

��=
2∑

I=1

[
��int�I +��C� I −��ext� I

]
(16)

The variation of the internal energy, also denoted as the
internal virtual work, can be written as

��int�I =
∫
�I

grad��(I� � �I dvI (17)

e.g., see.38 Here �I is the Cauchy stress tensor of body
�I . It follows from the considered constitutive relation. An
example is the Cauchy-Born rule based on expression (9).1

One can also combine the CGC model with phenomeno-
logical constitutive approaches53 as is considered in (Refs.
[42] and [30]). Due to Eq. (13) the variation of the contact
energy �C becomes

��C =
2∑

I=1

��C�I

��C� I =
∫
�1

∫
�2

12

&��r�

&xI
·�(I dv2dv1 (18)

Alternatively, contribution ��C�I can also be written as

��C�I =−
∫
�I

�(I ·IbI dvI (19)

where bI denotes a body force acting at xI ∈ �I and
given by

bI �xI � �=−&�J

&xI
� �J �=

∫
�J

J��r� dvJ (20)

Here J is the subscript of the neighboring body. That is,
we either have I = 1 and J = 2 or I = 2 and J = 1. As
illustrated in Figure 1, �J constitutes a field surrounding
body �J and which invokes the body forces bI inside the
neighboring body �I . According to Eq. (19) the variation
��C�I can be understood as the virtual work of the contact
body forces bI . Defining the unit direction vector

r̄I �=
rI
r
� rI �= xI −xJ � r �= rI  (21)

and using
&��r�

&xI
= &�

&r

&r

&xI
=−F �r�r̄I (22)

where F �r�=−�&�/&r� is the force associated with ��r�,
the body force bI can also be written as

bI �xI �=
∫
�J

J F �r�r̄I dvJ (23)

As is seen, the body force bI depends explicitly on the
density J , the distance vector rI , and the current config-
uration �J of the neighboring body. This leads to a strong
nonlinear coupling between bodies �1 and �2 during

6 J. Nanosci. Nanotechnol. 8, 1–17, 2007
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interaction. In1 it is shown, that for some restrictive, spe-
cial cases, Eq. (23) can be evaluated analytically, simpli-
fying the contact formulation considerably.

Given the variation (16) and contributions (17) and (18),
the weak form, governing the proposed continuum interac-
tion model, follows from the principle of stationary poten-
tial energy as

2∑
I=1

[∫
�I

grad��(I� � �I dvI

−
∫
�I

�(I ·IbI dvI −��ext� I

]
= 0 � ∀ �(I (24)

2.2.3. Remarks

(1) The weak form statement (24) can be extended by
inertial contributions obtained from the kinetic energy of
the two-body system, as is shown in.1 This extension is
not considered within this paper as we restrict ourselves
to quasi-static examples.
(2) In principle, the interaction between the two bodies, as
modelled by Eq. (11), extends to infinity. This implies that
the undeformed configurations �10 and �20 are infinitely
far apart. On the other hand, since � usually decays, it is
useful to neglect the interaction beyond a cutoff distance
rc, as is discussed in the following section.
(3) The reference density 0 can be considered a con-
stant across the domain �0, if the particles are distributed
evenly and if the coarse-graining parameter h exceeds the
particle spacing. For this case, which is considered in the
following examples, the actual value of h does not play a
role anymore.

We emphasize that Eq. (24) is formulated in the
nonlinear framework of continuum mechanics of large
deformations36�37 and that this weak form can be readily
incorporated into a nonlinear finite element setting.1 The
essence of the CGC model is the description of small scale
contact using the atomistically enriched continuum inter-
action energy �C (12) and its efficient numerical imple-
mentation. As illustrated in Figure 1 the coarse-graining
procedure and the ‘point formulation’ establish the con-
nections between a molecular description, the CGCM and
a traditional continuum contact formulation.

2.3. Efficient Evaluation of the Virtual
Contact Work ��C

In Ref. [1] we have derived and implemented three dif-
ferent finite element formulations, to evaluate the contact
integral ��C given in Eq. (18). These formulations are
examples of the three general classes of interaction formu-
lations, shown in Figure 2: The interaction of two bodies
may be described as an interaction of (a) their volumes,
(b) their surfaces or (c) individual points. According to

this classification, the virtual contact work ��C can be
approximated by the following three methods.

Consider the force bI (23) acting at point xI ∈�I and
invoked by the presence of neighboring body �J . (In the
case of two interacting bodies we either have I = 1� J = 2
or I = 2� J = 1.) If we consider a cutoff range, rc, of the
interaction potential �, the influence at xI is restricted to
the subdomain �̄J �xI � ⊂�J , as is shown in Figure 2(a).
The cutoff radius also implies that body forces bI are
only invoked within a certain region �̄I ⊂�I . From geo-
metrical considerations follows that we have the ordering
�̄J �xI � ⊂ �̄J ⊂ �J and &�̄J �xI � ⊂ &�̄J ⊂ &�J for both
bodies (J = 1�2). By introducing a cutoff radius the inte-
gration of Eqs. (19) and (23) can thus be reduced to

��C� I =−
∫
�̄I

�(I ·IbIdvI �

bI �xI �=
∫
�̄J �xI �

J F �r�r̄IdvJ
(25)

If the cutoff radius rc is much smaller than the extent of
the two bodies, formulation (25) furnishes a considerable
reduction in the computational cost compared to the orig-
inal formulation. On the other hand if rc → 
 we have
�̄I =�I and �̄J �xI �=�J so that the original formulation
is recovered. Eq. (25) poses the basis for the first useful
implementation of the CGC model. It is referred to as ‘vol-
ume interaction formulation’ (VI) and shown conceptually
in Figure 2(a). Formulation (25) involves no approxima-
tion in the evaluation of ��C other than the negligence of
interactions beyond rc.

The volume integration of formulation ‘VI’ can still
become very costly, as is demonstrated by the compar-
ison of Section 2.4. This motivates the following two
efficient approximations, denoted as ‘surface interaction’
(SI) and ‘point interaction’ (PI) formulation and shown in
Figures 2(b) and (c). The idea of formulation ‘SI’ is to
map the region �̄J �xI � onto its outer boundary &�̄J �xI �
and thus reduce the volume interaction to a surface inter-
action. Hence, expression (25�2 is further simplified to

bI �xI �=
∫
&�̄J �xI �

J F̄ �r� r̄I daJ (26)

The bar on top of the force F̄ �r� is used to indicate that
the expression for the force changes from Eq. (25�2 to
Eq. (26), due to the mapping �̄J �xI �→ &�̄J �xI �. Formu-
lation ‘PI’ further concentrates the region �̄J �xI � into a
single point, the closest projection point xPI of xI . The body
force at xI is thus obtained by a single function evalua-
tion, i.e.,

bI �xI �= ¯̄F �rPI �r̄PI (27)

where rPI �= rPI � rPI �= xI − xPI , is the distance between
point xI and surface &�J , and where r̄ PI �= rPI /r

P
I is

the unit direction along rPI . The bars on ¯̄F �r� indicate
that the force function F �r� is modified by the mapping
�̄J �xI �→ xPI . Depending on the problem, the reduction of
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the interaction region �̄J �xI � to a surface, or even a point,
can lead to a huge gain in efficiency without losing much
accuracy, as is demonstrated in the numerical example of
Section 2.4. It is emphasized that in the formulations ‘SI’
and ‘PI’ the volume �̄J �xI � is not neglected, but captured
through the mapping procedure. In (Ref. [1]) this mapping
is accomplished by approximate analytical integration.

Figure 2 and the discussion above introduce one level
of approximation, namely the reduction of the influenc-
ing region �̄J �xI �. A second level of approximation is the
reduction of domain �̄I , the region where body forces bI
are invoked. This second level, which we use in our partic-
ular implementations of formulations ‘SI’ and ‘PI’,1 is to
project all the body forces bI invoked within �̄I onto the
outer surface &�̄I . Hence, expression (25)1 is reduced to

��C� I =−
∫
&�̄I

�(I ·I tIdaI (28)

As indicated, the body force bI of Eq. (25)1 is thus reduced
to the surface traction tI . Since the volume integration over
�̄I is reduced to a surface integration over &�̄I a further
increase in efficiency is achieved.

The three methods discussed above, apply to arbitrar-
ily shaped bodies �I and �J . Possible implementations
of formulations ‘VI’, ‘SI’ and ‘PI’ are discussed in.42�1

A similar surface formulation, for the case of infinitesi-
mal deformations, has also been derived in.54�55 We finally
note that computational contact approaches for macroscale
problems are typically cast in a point formulation, e.g.,
see Refs. [25], [26]. In this regard, the implementation of
method ‘PI’, proposed in Ref. [1] can be classified as a so
called ‘Barrier Method.’30

2.4. A Simple Comparison

The proposed contact model is motivated as a coars-
ened description of molecular contact simulations, which,
depending on the problem size, can become prohibitively
expensive. This section serves the purpose to illustrate the
numerical efficiency of the proposed CGC model com-
pared to molecular statics. Therefore a simple contact
example is chosen: We consider the case of a cylinder with
radius R0, located between two half-spaces, as is shown
in Figure 3(a). The two half-spaces are compressed by the
displacement 2u, with required compressive force P . The
motion of the system is considered as quasi-static and in
a state of plane strain.

The interaction between cylinder and half-space is gov-
erned by the intersolid potential � (11), which is character-
ized by the material parameters r0 and $0. A cutoff radius
rc is introduced beyond which the force F = −&�/&r is
neglected. Here we chose to neglect forces smaller than
1/100 of the maximum attraction (which occurs at r =

6
√

13/7r0). This yields rc ≈ 2�39r0.
The interaction of the atoms within each body is char-

acterized by the intrasolid potential �. As an example for

the internal structure of the bodies, we consider a face-
centered-cubic (fcc) crystal aligned as shown in frame (a).
For the present comparison, the intrasolid potential � is
modelled by nearest neighbor, Lennard-Jones-type interac-
tion, described by

��r�= $�

( r�
r

)12 −2$�
( r�
r

)6
(29)

Here r� is the equilibrium spacing of the undeformed crys-
tal lattice, and $� is the energy characterizing the intrasolid
atomic bond. This simple model for the internal struc-
ture is chosen since the emphasis of the present work is
placed on the study of the intersolid interaction modelled
by �C (12), rather than the study of the intrasolid interac-
tion modelled by �int (8).

In the undeformed configuration the atomic density is
obtained as 0 =

√
2/r3

� . In relation to the cylinder radius
R0 we chose r� =

√
2R0/20. Thus, if the equilibrium spac-

ing r� is of the order of 0.3 nm, the cylinder radius R0

measures about 5 nm. The intersolid bond is typically
much weaker but of greater range than the intrasolid bond.
We therefore chose r0 = 2r� and $� = 4000 $0. The system
is normalized by the length parameter R0 and the energy
density W0 �= 0$� .

The atomic lattice and a finite element mesh chosen
for this example are shown in Figure 3(c). They are dis-
played next to each other for comparison (they are separate
models with is no coupling considered in between). The
atomic lattice contains 2022 atoms corresponding to 4044
degrees of freedom (dofs), whereas the FE mesh contains
only 57 elements and 154 dofs. The atoms shaded dark are
located the distance r�/

√
2 below the grey shaded atoms.

The discrete model is simulated using Eqs. (7) and (10).
The continuum CGC model is simulated using a finite ele-
ment formulation of Eqs. (8) and (12). In the latter case the
Cauchy-Born rule is used to evaluate (9). Frame (d) shows
the deformation of lattice and FE mesh (using method
‘SI’) for an imposed displacement u = 0�5 R0. The gen-
eral agreement between the two solutions (relative to the
global parameter R0) is very close. This is further illus-
trated in frame (e), which shows a superimposition of
the two configurations. It can be seen that the detailed
atomic surface displacements (relative the local parame-
ter r�) cannot be captured exactly by the finite element
solution. These detailed surface displacements are strongly
influenced by the atomic placement, as is noted in Ref.
[56]. For the two solutions shown in frame (e), the defor-
mation farther away from the zone of contact matches
nicely. In particular, the deformation in the lower right
corner of frame (e) confirms the affine motion of the lat-
tice according to the Cauchy-Born rule. Frame (e) also
displays the stress I1 = tr3 from the finite element com-
putation. A comparison of the load-displacement curves of
the three CGCM formulations, discussed in Section 2.3,
and the molecular computation is displayed in frame (b).

8 J. Nanosci. Nanotechnol. 8, 1–17, 2007
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Fig. 3. Comparison of molecular statics (MS) and the CGC model: (a) Model problem; (b) Load-displacement curve; (c) Undeformed and (d) deformed
atomic lattice and FE mesh; (e) Superimposed deformation; (f) Regions of intersolid interaction.

Again, the overall agreement (relative to R0) between
the four simulations is very good. Frame (f) shows the
regions of intersolid interaction between the two bod-
ies. As illustrated in Section 2.3, these zones denote the
regions contributing to the contact interaction. All atoms
colored in light and dark blue in Frame (e) mark the
particles which are influenced by the neighboring body,
since there is at least one atom from the neighboring body
within the distance rc = 2�39r0 = 0�338R0. As an exam-
ple the atom marked in red is influenced by the particles
within the shown hemisphere r ≤ rc. Including interaction

with out-of-plane atoms, this hemisphere contains
315 atoms.

The most important aspect of the above comparison
is the efficiency gained by the CGC model. This is dis-
played in Table I. Here, the total number of intrasolid
and intersolid interaction evaluations, needed to solve the
problem numerically, are listed. The number of intrasolid
interaction evaluations depends on the number of degrees
of freedom (dofs). As the number of dofs reduces from
the molecular model to the finite element model, fewer
intrasolid evaluations are counted. The number of required

J. Nanosci. Nanotechnol. 8, 1–17, 2007 9
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Table I. Computational efficiency of the coarse-grained contact model.

MS VI SI PI

Number of atoms / finite elements 2022 57 57 57
Number of intrasolid 24264 1368 1368 1368

interaction evaluations
Number of intersolid 7387 4832 270 46

interaction evaluations
CPU time 203 s 1.39 s 0.34 s 0.31 s

intrasolid evaluations determines the computational time
to set up the virtual work ��int. The number of intersolid
evaluations determines the computational time to set up the
virtual work ��C. Due to the reduced integration discussed
in Eqs. (25)–(28) the formulations ‘VI’, ‘SI’ and ‘PI’ are
increasingly more efficient than the MD model. For the
determination of the values listed in Table I see Ref. [42].
Because of the significant decrease in intersolid and intra-
solid interaction evaluations between the various methods,
we observe a substantial decrease in the CPU time (mea-
sured on an Intel P4 3.0 GHz CPU). In summary it can be
seen that there is an increase in speed when going from
molecular statics to formulations ‘VI’, ‘SI’ and ‘PI’ due
to the decrease in the number of dofs and in the number
of intersolid interactions to evaluate. The computational
cost to obtain ��int and ��C scales linearly with the num-
ber of intrasolid and intersolid interaction evaluations. The
solution time to solve the resulting equilibrium equations
is controlled by the number of dofs. As the problem size
increases the savings can become even more dramatic.

It is emphasized that the comparison of the above
example is by no means exhaustive, as it is restricted
to reversible (i.e., elastic), quasi-static and temperature
independent conditions. Also, more complicated intrasolid
potentials can be used for a more realistic description of
the internal bonding. It is further noted that the savings in
efficiency are inevitably linked to a loss of information.
For instance, the coarse finite element description of the
problem shown in Figure 3 will not be able to accurately
capture details at the atomic scale. More detailed studies
of mechanical contact can be found in the literature, for
example considering dislocations,57�58 grain boundaries,23

surface roughness,22 or phase transformation and electri-
cal resistance.24 We emphasize that the objective of this
research is not such detailed modelling, but rather the
development of a homogenized or coarse-grained contact
formulation and its efficient implementation. We seek a
model that can be employed over a wide range of length
scales as is illustrated in the following section.

3. SCALING OF THE COARSE-GRAINED
CONTACT MODEL

In the preceding section we have outlined and derived a
nanoscale continuum contact model based on the coarse-
graining of molecular dynamics. The model, termed the

Coarse-Grained Contact Model, depends on several para-
meters. In the following we focus on the scaling59 of the
CGC model with respect to these parameters. A scaling
investigation is important for the understanding on how the
output of a given model is affected by the input parameters,
i.e., we wish to know how the model behavior changes
if the model parameters are varied. Conversely, we want
to understand how the model parameters should change in
order to obtain different model behavior. Scaling is further
important to identify similarities in the model behavior for
different input parameters. Such similarities then allow the
experimental investigation of the model behavior for inac-
cessible parameters by using accessible ones.

In the following discussion we consider the case of con-
tact between a sphere, with radius R0, and an half-space,
as shown in Figure 4(a). The considered problem is quasi-
static. The internal response of the contacting bodies is
modelled by an isotropic Neo-Hookean material model
defined by the strain energy density (per reference volume)

W =U�J �+ 5

2
�I1−3�−5 ln J U�J �= 6

2
�ln J �2 (30)

with the parameters 5 = EY /2/�1 + 9� and 6 =
259/�1−29�, where EY and 9 correspond to Young’s
modulus and Poisson’s ratio. All three bodies are supposed

u, P

gap g

P

R0

2u, P

(a)

(b)

EY , v, β0

Fig. 4. Spherical contact: (a) Model problem; (b) Finite element mesh.
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to have the same material constants EY and 9. Such a sim-
plified constitutive model is useful, since we are mainly
interested in the scaling of the contact interaction as mod-
elled by contribution �C (12). For the given problem, the
model parameters are
• the prescribed displacement u,
• the geometry parameter R0,
• the material constants EY , 9 and 0, and
• r0 and $0, the parameters of the intersolid interaction
potential � (11).

In general, the mechanical behavior B of the considered
model problem depends on these seven parameters, i.e.,

B = f �u�R0�EY � r0� $0�0� 9� (31)

We further simplify the model by considering a fixed mate-
rial structure such that the reference density 0 is related
to r0 by 0 = c0/r

3
0 for some constant c0. For now, also

9 is considered fixed (at 9 = 0�2), so that EY is the only
variable in the material response. The behavior B is thus
given by

B = f �u�R0�EY � r0� $0� (32)

Obviously, the functions f in Eqs. (31) and (32) are dif-
ferent. Here, u, R0 and r0 are length scales, whereas $0

has units of energy and EY has units of energy density.
Let us introduce the energy densities W0 �= EY and w0 �=
c00$0 �= r3

0
2
0$0� to write

B = f �u�R0�W0� r0�w0� (33)

i.e., the mechanical behavior is a function of the length
scales u, R0, r0 and the energy densities W0, w0. The
behavior B itself must have combined units. According to
the �-Theorem59 relation (33) can be normalized and thus
reduced by one length parameter and one energy density
parameter. We can thus write

B̄ = f �ū� ;L�;W � (34)

where

;L �=
R0

r0

;W �= W0

w0

(35)

By B̄ and ū we denote the normalization of B and u. In
the following we consider the behavior of the gap g, see
Figure 4(a), the behavior of the load P and the behavior of
the Cauchy stress � , that is, we consider the three cases
B = g, B = P and B = � . Together with u they can either
be normalized as

ḡ = g

R0

� �P = P

W0R
2
0

� �� = �

W0

� �u= u

R0

(36)

or, alternatively, as

ḡ = g

r0

� �P = P

w0r
2
0

� �� = �

w0

� �u= u

r0

(37)

i.e. either by the global parameters R0 and W0, or by the
local parameters r0 and w0. In the remainder of this section
we consider normalization (37). The examples of Section
2.4 and 4 are normalized by scheme (36). By establishing
expression (34), we have formally shown that the behavior
of the considered model problem, e.g. the gap g, the load
P and the stress field � , depends only on the prescribed
displacement ū and the two model parameters ;L and
;W . Parameter ;L (35)1, the ratio between cylinder radius
R0 and intersolid equilibrium spacing r0, is a geometrical
quantity characterizing the size of the considered problem.
Parameter ;W (35�2, the ratio between the energy densities
W0 = EY and w0 = c00$0, characterizes the strength of
the intrasolid bond � versus the strength of the intersolid
bond �. If ;W increases the intrasolid bond increases in
strength compared to the intersolid bond.

Some aspects of the dependence of the load P and the
gap g on ū, ;L and ;W , according to relation (34), have
been examined in.30 In this paper we further show that, by
introducing the combined parameter

;c �= ;2
W/;L (38)

certain aspects of the behavior B are described by the sig-
nificantly simpler relation

¯̄B = f �ū� ;c� (39)

i.e., B is characterized by only two variables. Here ¯̄B
denotes a different normalization from B̄. Relation (39)
applies to a certain extend to the load P , the gap g and the
stress field � . As is shown below, some aspects of P and
� do not follow (39) and are thus no further simplified
than by relation (34). A formal derivation of (39), based
on dimensional analysis, like the derivation of (34), is not
possible. Such problems are characterized by ‘incomplete
similarity’.59

To demonstrate the validity of Eq. (39) we consider
the 14 cases for ;L ∈ <5�10�20�50�100�200�500= com-
bined with ;c = 70 and ;c = 7000. Since r0 is typically
on the order of nanometers, the given list of values for
;L corresponds to problem sizes ranging from nanometers
to micrometers. The load displacement curve P�u� and
the gap g�u� for the 14 considered cases are displayed in
Figure 5. These and the following results of this section
are obtained by a finite element analysis using the mesh
shown in Figure 4(b) and considering the point formula-
tion derived in.1 To satisfy relation (39), the load must be
normalized as ¯̄P = P/�w0r

2
0;L�. The gap satisfies (39) for

¯̄g = g/r0, i.e. by the normalization according to Eq. (37).
Before analyzing the influence of parameter ;c, let us

discuss the behavior of P and g in dependence of the
prescribed displacement u. The contact behavior, which
reflects the behavior of the Lennard-Jones potential (11),
can be characterized by three phases, denoted as Phase I, II
and III in Figure 5. At first, two bodies, initially far apart,
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Fig. 5. Load-displacement curve P�u� for (a) ;c = 70 and (b) ;c = 7000; Gap g�u� for (c) ;c = 70 and (d) ;c = 7000.

approach each other without yet interacting, i.e. P ≈ 0.
Their motion is rigid and we therefore term this phase as
the rigid phase (Phase I). As the bodies come closer, an
attractive or adhesive force, P < 0, appears and we there-
fore denote this phase as the adhesion phase (Phase II).
The adhesion takes a maximum at Pmin. It can be seen
from the results of Frames (a) and (b), that Pmin/W0R

2
0

decreases linearly with ;L and ;W (since Pmin/�w0r
2
0;L�=

Pmin;L;W/�W0R
2
0� is approximately constant). As the two

bodies are further pushed together, the force changes sign
and becomes compressive (P > 0). We denote the phase
where P > 0 the contact phase (Phase III). It can be seen
that for large compressive forces P � 0 the seven curves
displayed in Frame (a) and (b) diverge, which implies that
relation (39) looses its applicability. The reason for this
behavior probably lies in the nonlinear deformation of the
solids. In case of g�u�, displayed in Frames (c) and (d), the
scaling relation (39) remains valid throughout all phases.
The displacement u= 0 is calibrated from the intersection
of the dashed line, displayed in Frames (c) and (d), with
g= 0. This dashed line indicates the behavior of g�u� if the
sphere and half-space were to approach each other without

interacting. The intersection of the dashed line with g = 0
then corresponds to the hypothetical case where the two
bodies are touching each other. During phase I, the gap g

decreases linearly with u, whereas, during phase III, the
gap hardly changes with u. In Phase III the displacement
u is accommodated by the deformation of the solids. Let
us define the contact gap gc as the gap for a fixed u in
Region III. From Frames (c) and (d) it can be observed
that gc/r0 is constant with ;L; therefore gc/R0 decreases
linearly with ;L. It is noted that the boundary between
Phases I and II is not a rigorous boundary. It marks the
point beyond which P may be neglected. In the figure we
chose P = Pmin/10 as the threshold value.

Now, let us discuss the dependence of P and g on
parameter ;c. Comparing Frames (a) and (b) we observe
that the slope P ′ during the contact Phase (III) decreases
along with ;c. It can be further seen that the adhe-
sion Phase (II) shrinks with increasing ;c, and that dur-
ing Phase II the downward slope of P and g at point
A steepens as ;c decreases. In fact, below a thresh-
old value of ;c, the behavior of P�u� turns unstable at
point A. This unstable behavior leads to the effects known
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Fig. 6. Pull-off force Pmin and contact gap gc in dependence of parameter ;c = ;2
W /;L for ;L = 50 6

√
4/3 and ;W = 200/

√
3.

as ‘jump-to-contact’ and ‘jump-off-contact’.3 Figure 6
shows the behavior of the minimum force Pmin and the
contact gap gc (measured at u = r0) in dependence of
parameter ;c. It is seen that the absolute value of Pmin

increases with ;c, while gc decreases with ;c. The force
Pmin is also known as the maximum pull-off load, since it
corresponds to the force required to separate the adhering
bodies. The results displayed in Figure 6 are taken from
two computational series, one with fixed ;L and one with
fixed ;W , which have also been considered in Ref. [30]. As
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Fig. 7. Deformation and stress �y at u=−0�5 r0 for ;c = 70 and ;L ∈ <5�10�20�50�100�200=.

;W →
 for fixed ;L (i.e., ;c →
), the interaction forces
between the two bodies vanish and therefore gc → 0.

Next, we study the size effect on the deformation and
stress field � within the two contacting bodies. We con-
sider the cases ;L ∈ <5�10�20�50�100�200= for the fixed
displacement u = −0�5r0 and for fixed ;c = 70. Figure 7
shows the deformed configurations and vertical stress com-
ponent �y for these six cases. It is seen that the magnitude
and the general distribution of �y obey scaling law (39).
The deformation of the two bodies, on the other hand,

J. Nanosci. Nanotechnol. 8, 1–17, 2007 13



R
E

S
E

A
R

C
H

A
R

T
IC

L
E

An Atomistically Enriched Continuum Model for Nanoscale Contact Mechanics Sauer and Li

depends explicitly on ;L, i.e., the deformation obeys rela-
tion (34) and not (39). As is shown in Figure 7, com-
pressive stresses (colored blue) develop along the center
axis, due to the repulsion of the two bodies during contact.
At the fringe of the contact zone, where the gap between
the two bodies increases, tensile stresses (shown in red)
appear, due to the strong adhesion between the interact-
ing bodies. It is seen that for changing ;L, the repulsive
and attractive stress zones shift towards the center axis
and thus different regions of the sphere and half-space are
affected. It is recalled that for the six cases in Figure 7,
the load P/�w0r

2
0;L� is constant, as noted in Figure 5(a).

The development displayed in Figure 7 shows that as ;L

increases, it becomes more and more difficult to resolve
the stresses and deformation with the finite element mesh
given in Figure 4(b). A related problem is that the con-
tact interaction force F = −�&�/&r�, given through the
intersolid potential (11), becomes increasingly difficult to
resolve with the given mesh for increasing ;L. We must
therefore either refine the finite element mesh, hence los-
ing efficiency, or risk numerical ill-conditioning. In (Ref.
[42]) a modification to the CGCM is proposed, based on a
second level of coarse-graining, that maintains efficiency
without becoming ill-conditioned. The model can then be
applied to even larger scales.

Concluding Section 4 we note that scaling law (34) not
only applies to the discussed benchmark problem, but also
applies to all other problems that can be formalized by the
discussion leading to Eq. (34). In this regard the discus-
sion of this section is twofold, as it illustrates the scaling
of a model—the CGC model—by using a simple contact
example, while also illustrating the scaling of a problem—
spherical contact—by using a novel model.

4. SLIDING EXAMPLE

As an application of the CGC model we consider the slid-
ing contact of two parabola-shaped bodies as is shown
in Figure 8(b). Such an idealized contact mechanism can
occur between the surface asperities of two sliding, rough
bodies, as is indicated by frame (a). The two surface

2R0

2/3 R0

1/3R0

2/3 R0

(a) (b)

Fig. 8. Sliding contact: (a) Macroscopic sliding; (b) Microscopic view of interface asperities and chosen finite element mesh.

asperities are modelled by the elastic, Neo-Hookean con-
stitutive model (30). The stiffness of the lower asperity is
given by EY . The upper asperity is modelled twice as stiff,
by 2EY . Both asperities have Poisson’s ratio 9 = 0�3. The
problem is considered as a plane strain problem with the
chosen parameters ;L = 20 and ;W = 50 (with W0 = EY )
according to Eq. (35). The asperities are analyzed with the
finite element method using the mesh shown in frame (b).
The point-formulation (‘PI’), as developed in,1 is used to
integrate ��C�I according to Eq. (28).

Figures 9(b)–(f) show the deformation and the von
Mises stress 3v (displayed as log10�3v/W0�) within the two
asperities. As can be expected the largest stress and defor-
mation develops in the softer, lower asperity. The lower
body is pushed at its base by an imposed displacement u.
The resultant horizontal reaction at this boundary, P , as a
function of u is shown in frame (a). The open circles cor-
respond to the five configurations shown in frames (b)–(f).
The initial hump at point A indicates that strong adhesion
occurs prior to contact. As has been discussed along with
Figure 5, adhesion is a long-range effect, which character-
izes the attractive behavior for larger separations. During
contact, attractive forces are present at the fringe of the
contact zone, but they are overpowered by the repulsive
forces at the center. The two asperities are undeformed
and stress free at the beginning and the end of the sliding
process. The work required to move the asperities is given
by the area under P�u�. It can be confirmed numerically
that the total work for this process is identical to zero, i.e.
the considered process, and thus the contact formulation
‘PI’, is energy conserving and frictionless. This property
of formulation ‘PI’ follows from its construction discussed
in Section 2.3. According to Figure 2(c), the interaction
forces bI for formulation ‘PI’ are normal to &�J and
are hence frictionless. If dissipative processes are consid-
ered, e.g., through an inelastic material response, the total
energy of this sliding example is not conserved. Such dis-
sipative processes at the microscale would be perceived as
friction on the macroscale. Through dissipative interaction
of surface asperities, one may thus model global sliding
friction, even when no sliding friction occurs locally.

14 J. Nanosci. Nanotechnol. 8, 1–17, 2007
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Fig. 9. (a) Load-displacement curve; (b)–(f) Deformation and von Mises stress 3v of the two contacting asperities at the states shown as open circles
in frame (a).

Since the CGC model is a homogenized description
of interatomic contact, it cannot capture all the detailed
effects occurring at the atomic level. One such phe-
nomenon, discussed in,60 is that even atomically flat sur-
faces can offer weak resistance against sliding motion.
Another effect, that can occur during sliding, is the abra-
sion of surface particles. This abrasion changes the sur-
face topology and thus affects the sliding motion and
sliding force P�u�. As a refinement of the proposed con-
tact description, both these effects may be homogenized
and included into the framework of the CGCM.

5. CONCLUSION

In this work we have presented the theory, scaling and
applicability of a nanoscale contact model, termed the
Coarse Grained Contact Model. As is shown in Section
2.1, the model is a combination of particle oriented and
continuum oriented contact modelling. In this sense the
model can be viewed both as the refinement of contin-
uum contact mechanics or as the coarsening of a molec-
ular dynamics contact model. In Sections 2.2 and 2.3,
the governing weak form of the CGC model (24) is
derived and efficient formulations for the evaluation of
the virtual contact work ��C are discussed. A comparison
between molecular statics and the CGC model is given in
Section 2.4, which validates and illustrates the accuracy
and efficiency of the proposed contact-interaction model.

In Section 3 the scaling of the CGC model is investigated
in detail. Using a benchmark model problem, it is shown
that the behavior of the CGC model follows the scaling
law (34) and that several model aspects even follow rela-
tion (39). To illustrate an application of the proposed con-
tact model, Section 4 shows the contact interaction of two
surface asperities.

The formulation of the proposed model allows the inves-
tigation of interaction, like adhesion and contact, between
arbitrarily shaped nanoscale continua under large defor-
mations. The model can be used to describe the interac-
tion between carbon nanotubes,1 model adhesive contact
of spheres and study interfacial sliding mechanisms, as
is shown in Sections 3 and 4. For the case of spherical
contact, we have shown in30 that in the small deforma-
tion regime the results of the CGC model are in excellent
agreement with the analytical Maugis-Dugdale33 model,
which contains the JKR31 and DMT32 models as spe-
cial cases. The formulation of the CGC model admits the
use of any two-point potential � to describe the inter-
solid interaction. Examples other than van der Waals inter-
action include electrostatic Coulomb interaction between
charged particles. As is shown in,1 the CGC model can be
applied to the interaction of multiple bodies. As has been
mentioned in Section 3, the present formulation becomes
either inefficient or ill-conditioned as the problem size
increases in scale, i.e., as parameter ;L becomes too big.
This problem can be avoided by introducing a second level
of coarse-graining as is proposed in Ref. [42].
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By the scaling study of Section 3 we have shown how
the model parameters affect the behavior of the CGC
model. Using a simple model problem and dimensional
analysis, the initial set of model parameters is substantially
reduced. The remaining important parameters are ;L and
;W , which describe the problem size and the strength of
adhesion.

Due to its flexibility, the CGC model provides a suit-
able computational tool for the study of a variety of engi-
neering applications, especially those where the intersolid
interaction leads to large deformations. This is the case for
soft materials or structures such as are found in many bio-
mechanical applications, like the adhesion of individual
cells10 and the adhesion used by the Gecko.12 This latter
example is particularly interesting due to the hierarchi-
cal mechanical structure found on the gecko’s toes13 and
its inspiration for synthetic adhesives.61 Other interesting
examples are the modelling of sintering, i.e., the bonding
of contacting solids, the further investigation of friction,
e.g., due to the interaction of asperities as is shown above,
and the study of tribology at small scales.5 Also interesting
is the extension of the scaling study to other benchmark
problems containing further parameters, e.g., by consider-
ing other contact geometries, other constitutive relations
and other interaction types.
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