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Abstract In this paper, a cohesive finite element method
(FEM) is proposed for a quasi-continuum (QC), i.e. a contin-
uum model that utilizes the information of underlying atomis-
tic microstructures. Most cohesive laws used in conventional
cohesive FEMs are based on either empirical or idealized
constitutive models that do not accurately reflect the actual
lattice structures. The cohesive quasi-continuum finite
element method, or cohesive QC-FEM in short, is a step
forward in the sense that: (1) the cohesive relation between
interface traction and displacement opening is now obtained
based on atomistic potentials along the interface, rather than
empirical assumptions; (2) it allows the local QC method
to simulate certain inhomogeneous deformation patterns. To
this end, we introduce an interface or discontinuous Cauchy–
Born rule so the interfacial cohesive laws are consistent with
the surface separation kinematics as well as the atomistically
enriched hyperelasticity of the solid. Therefore, one can sim-
ulate inhomogeneous or discontinuous displacement fields
by using a simple local QC model. A numerical example of
a screw dislocation propagation has been carried out to dem-
onstrate the validity, efficiency, and versatility of the method.

Keywords Cohesive laws · Dislocation · Finite
element method · Nano-mechanics · Quasi-continuum

1 Introduction

The numerical simulation of strong and weak discontinuities
has been one of the major focuses of computational fail-
ure mechanics and engineering reliability analysis in recent
years. Several finite element methods (FEMs) have been
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proposed. Two of the most successful methods are the
cohesive FEM proposed by [17], and the so-called extended
finite element method (X-FEM) proposed by Belytschko et al.
[1]. However, most of these methods adopt phenomenolog-
ical constitutive relations, which may not be suitable for
computational nanomechanics. For example, when it comes
to simulations of individual dislocation motions, we are not
only interested in how a dislocation moves but also how it
affects the motion of neighboring atoms. The traditional FE
based methods usually have difficulties in capturing those
details. An alternative method is molecular dynamics (MD),
which has been successfully applied to simulations of the
crack growth. However MD simulates the motion of every
single atom in the domain, the computational cost can be
enormous if the size of the spatial domain of the simulation
is up or beyond nanoscale. Today most MD simulations of
fracture are only limited in nano- or sub-nanoscales.

To build a cost-effective simulation tool, a class of
so-called coarse-grained methods has been proposed. These
methods exploit the information at the atomic level but retain
some basic features of continuum mechanics. One of the pop-
ular coarse-grained methods is the Quasi-continuum (QC)
method, e.g. [16]. A comprehensive review can be found in
[12]. There are two versions of the QC method: the local
QC and the non-local QC. The local version of QC method
adopts the Cauchy–Born rule, and hence it can only apply
to where the local deformation is uniform; while the non-
local version was designed to simulate inhomogeneous local
deformations. To achieve that, it needs atomic resolution,
and hence it is not really a coarse grain model. Therefore,
its computational cost is more expensive and comparable to
that of MD simulations.1

1 In the rest of the paper, when we use the term “QC method,” we refer
to the local version of QC method, unless indicated otherwise.
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Fig. 1 Illustration of a cohesive surface under finite deformation

A natural question to ask is: Can we simulate non-uniform
local deformation by using the local version of the QC
method? The objective of this work is to use the local QC
method to simulate one particular local inhomogeneous
deformation: strong discontinuity or surface separation. The
main idea of the present approach is to incorporate the
cohesive FEM into the local QC framework to form a hybrid
cohesive QC-FEM method, which can effectively deal with
inhomogeneous local deformations, particularly arbitrary
strong discontinuities. In this work, we propose a coarse-
grain approach to formulate interfacial cohesive relations
solely based on the information along interfaces at the atomic
level.

This paper is arranged in the following way. In Sect. 2 we
shall present in detail the cohesive QC method, in which a
new surface potential based on atomic information is pro-
posed. In Sect. 3 we shall discuss the lattice eigenstrain
method and how to apply the eigenstrain method to cohesive
QC-FEM. To validate the method, we present a simulation of
a screw dislocation propagation in Sect. 4. We then conclude
the presentation by making a few remarks in Sect. 5.

2 The cohesive law in a QC

In this section, we consider a solid subjected to an inhomoge-
neous deformation that is caused by a displacement discon-
tinuity as shown in Fig. 1. In engineering applications, this
type of strong discontinuities is the characterization of frac-
ture or dislocations. Initially as a single connected domain,
Ω0, the body is broken into two disjointed pieces. In the ref-
erential configuration, the fracture surface, or the plane of
division, is denoted as S0, and it divides the body into two

halves: Ω0 = B+
0

⋃
B−

0 . After the deformation ϕ,

ϕ : Ω0 → Ω; (1)

the body arrives at its deformed or current configuration, Ω

(see Fig. 1). We use x denoting the spatial position of a mate-
rial point X at the time t , i.e.

x = ϕ(X) = u + X.

Two crack surfaces now move to S+ and S−, respectively.
And the two deformed halves are denoted by B+ and B−. Due
to atomic interactions, there will be surface traction between
S+ and S−. In the rest of the paper, we shall call the fracture
surfaces the cohesive surfaces and the surface traction as the
cohesive traction.

The strong form of the governing equations of the prob-
lem, i.e. the equations of motion, can be written as:

DIV[P(ϕ)] + ρ0B = ρ0ϕ̈ in B±
0 (2)

ϕ = ϕ̄ on ∂ϕ B0 (3)

P(ϕ) · N = t̄ on ∂t B0 (4)

P+ · N + = P− · N − on S±
0 (5)

where B is the body force, ρ0 is the mass density in refer-
ential configuration. In above equations, the symbol DIV is
the material divergence operator, i.e. ∇X·, N is the normal
vector of surfaces including the cohesive surface, t̄ is the
prescribed traction on ∂t B0. It is assumed that the traction is
continuous along the cohesive surface, S0, (5). For domain
boundaries, note that

∂φ B0 = ∂φ B+
0

⋃
∂φ B−

0 and ∂t B0 = ∂t B+
0

⋃
∂t B−

0 (6)

where ∂ϕ B is the portion of the boundaries where the dis-
placements are prescribed, and ∂t B is the portion of the
boundaries where the traction is prescribed.

In (2)–(5), P(ϕ) is the first Piola–Kirchhoff stress ten-
sor. If we consider the constitutive relation of a hyperelastic
material with an elastic energy density W , we may write

P = ∂W

∂F
which clearly indicates that P is the function of the deforma-
tion map, i.e. P = P(ϕ).

Via standard procedures, we can then derive the Galerkin
weak formulation for Eqs. 2–5:
∫

B±
0

ρ0ϕ̈ · δϕdV +
∫

B±
0

P(ϕ) · δFdV

=
∫

∂t B±
0

t̄ · δϕd S +
∫

S0

(P(ϕ) · N) · δ(ϕ+ − ϕ−)d S (7)

The last term in the above equation is the virtual work done by
the cohesive traction force across the plane of discontinuity.
If we define the jump there as:
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∆ = ϕ+ − ϕ− (8)

then we can re-write the last term as:
∫

S0

(P(ϕ) · N ) · δ(ϕ+ − ϕ−)d S =
∫

S0

tcohe · δ∆d S (9)

where tcohe denotes the cohesive traction. In the continuum
cohesive theory e.g. [14], tcohe is defined through the cohe-
sive law:

tcohe = ∂W s

∂∆
(10)

where W s is the surface energy density.
In the continuum cohesive theory, W s is empirical. One

has to take extra effort to choose the surface potential, and
then justify one’s choice. Sometimes we just cannot justify
them to accommodate complex size effects. To be true to
the spirit of coarse graining, one should be able to derive
surface cohesive relations based on the atomic microstruc-
ture. However, the difficulty appears to be the discontinuity
as a form of local inhomogeneous deformation, which makes
the Cauchy–Born rule break down and hence the coarse
graining scheme. To resolve this issue, we need to modify
the bulk Cauchy–Born rule to incorporate or accommodate
kinematics of surface separation. In other words, we need a
discontinuous Cauchy–Born rule, so we can extend the QC
formulation to situations where the strong discontinuity or
surface separation is present. Before doing so, we first briefly
review the procedures of the QC method by deriving the first
Piola–Kirchhoff stress P from atomistic level information.

The basic assumption of the (local) QC method is that
within a local region Ωe the deformation gradient F = Fe is
constant. In the setting of FE methods, we can view Ωe as
an FE element, most appropriately a triangular element. The
energy density W e is then defined as:

W e = Ee

Ve
(11)

where Ee is the total energy within Ωe and Ve is the volume.
Ee can be computed by summing the energies for all atoms
in Ωe:

Ee =
Ne∑

i=1

Ei (r
i1, r i2, . . . , r i Ne ), (12)

and Ne is the total number of atoms in Ωe, Ei is the energy
of atom i and

r i j := |xi − x j |, j = 1, 2, . . . , Ne

are the atomic distances between atoms i and j in the current
configuration.

For the local QC method to be a coarse-grained approach,
a key assumption on local deformation has to be mandated:
that is the so-called Cauchy–Born rule (see [2,3]) It states

that, with a constant Fe, all atoms in the underlying lattice
within the same element deform the same way, i.e.

ri j = FeRi j (13)

Here ri j := xi −x j denotes the position vector between atom
i and j in the deformed lattice and Ri j := Xi − X j is the
difference of the lattice vectors in the original lattice.

With the Cauchy–Born rule, Ee can be simplified as:

Ee = Ne Ei (r
i1, r i2, . . . , r i Ne ) = Ne Ei (Fe) (14)

where i is the index for the i th atom in Ωe, which may rep-
resent any atom in Ωe. The energy of the whole domain Ω

is then obtained by summing Ee over all elements:

E =
nelem∑

e=1

Ee (15)

where nelem is the total number of elements.
We now derive the expression for Pe, the first Piola–

Kirchhoff stress within an element. For simplicity, we only
consider the case of two-body interaction. However, the der-
ivations can be extended to multi-body interactions without
difficulty. From now on, we shall also drop the suffix e in
expressions. One should keep in mind all the quantities are
within Ωe. We first re-write Ee as:

Ee = Ne Ei (r
i1, r i2, . . . , r i Ne ) = Ne

2

Mb∑

j=1

Ei j (r
i j (F)) (16)

where Ei j is the potential energy between a pair of atoms,
i and j , and 1/2 factor is due to the double counting a pair
potential. Mb is the number of atoms interacting with atom
i in the bulk material. In general, Mb � Ne if we ignore the
far-field interactions. P can be written as:

P = ∂W e

∂F
= Ne

2Ve

Mb∑

j=1

∂ Ei j (r i j )(F)

∂F

= Ne

2Ve

Mb∑

j=1

E ′
i j (r

i j )
∂r i j (F)

∂F
(17)

In the above equation, E ′
i j (r

i j ) = d Ei j

dr i j
as Ei j is a function

of a single variable r i j . The quantity
∂ri j

∂F
can be computed

as:

∂r i j (F)

∂F
= ∂r i j

∂ri j

∂ri j

∂F
= ri j ⊗ Ri j

r i j

(18)

In deriving the above expression, (13) is used. The final
expression of P reads:

P = Ne

2Ve

Mb∑

j=1

E ′
i j (r

i j )
ri j ⊗ Ri j

r i j
(19)
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The above derivations are not new, and the objective of this
work is to use the same philosophy to derive the cohesive
traction law for tcohe based on the information of lattice struc-
tures of the solid. To do so, we have to first express the surface
energy density in a surface element W es in terms of atomic
potentials. We assume in this paper that W es can be deter-
mined solely from the atoms distributed along the pair of
cohesive surfaces. This assumption is similar to the nearest-
neighbor-interaction assumption, and it can be lifted at the
cost of more involved calculations.

We now consider a pair of opposite crack surface element
Sse+ and Sse−. They are the edges of two FE elements. Since
we only need to formulate W s

e for one of the edges, without
losing generality, we shall only consider Sse+. The surface
energy density is defined as:

W es = Ees

Aes
(20)

where Ees is the total surface energy within the surface ele-
ment Sse+, and Aes is the surface area. For Ees , we have:

Ees =
Nes∑

i=1

Es
i (21)

where Nes is the number of atoms within the surface element
Sse+ and

Es
i = 1

2

Ms∑

j=1

Ei j (r
i j
s ) (22)

where Ei j (r
i j
s ) are atomistic potentials for surface atoms, r i j

s

are interatomic distances across the interface, i and j are indi-
ces for surface atoms only, and Ms is the number of atoms
on the opposite surface element Sse− that interact with atom
i on the surface element Sse+.

Remark 1 1. It assumes that the interface atomic distance,
r i j

s = r i j
s (∆d), is not a function of the local deformation

gradient F, but the nodal displacement separation (the
jump) of associated surface elements. For simplicity, in
the rest of paper, we drop the subscript, s , unless it is
important to indicate it. The nodal displacement sepa-
ration is constant within each element. Therefore, this
is essentially an interface Cauchy–Born rule, and we
should further elaborate this point later.

2. In calculating atomistic surface energy potential, as a
preliminary study, we only consider the nearest neighbor
interaction, and hence the effect of long-range interac-
tions such as surface relaxation is neglected. Moreover,
this lack of physical realism can be fixed, for instance, by
using a so-called surface Cauchy–Born approach ([15]).
In fact, the procedure proposed by [15] is one way to
calculate atomic surface potentials. It may be possible
that we can still use the proposed approach, but choose

an appropriate surface potential, ES
i j (r

i j ) �= Ei j (r i j ),
to capture some of surface effects. In fact, there have
been some specific surface potentials proposed in the
literature, e.g. [7].

Similar to what we did for element interior, we adopt the
following QC approximation:

Ees ≈ Nes Es
i (23)

where Nes is the number of atoms on the surface element
Sse+. This approximation means that we assume that all
atoms in Sse+ to have the same surface energy.

To derive the expression for the cohesive traction, we con-
sider a FE discretization of the domain. The FE approxima-
tion of the displacement field is given by:

u(X) = N(X)d (24)

where

N(X) = [Ni j (X)]ndim×ndof

is the shape function matrix, ndim is the number of dimen-
sion of space, ndof is the number of degrees of freedom, and
d is the nodal displacement vector. In the following, we shall
mix the tensor notation with matrix notation in the deriva-
tion, because some of the matrices here may be viewed as
second-order tensors.

Consider a separation, or a jump, between a pair of cohe-
sive surfaces as shown in Fig. 2. The jump can also be
described by FEM interpolation:

∆ = Ns(X)∆d (25)

where Ns(X) is the matrix of edge shape functions. The nodal
jump vector ∆d is defined by:

∆d = d+ − d− (26)

where d+ and d− are nodal displacement vectors on S+ and
S−, respectively. Moreover, the following relationship holds:

d+ = 〈d〉 + 1

2
∆d (27)

d− = 〈d〉 − 1

2
∆d (28)

where 〈d〉 = 1
2 (d+ + d−). So,

∂d+

∂∆d
= 1

2
(29)

∂d−

∂∆d
= −1

2
(30)
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Fig. 2 Interface kinematics: the
bond separation between
between two cohesive surfaces

In the discrete case, the virtual work done by the cohesive
force can be re-written as:
∫

S0

tcohe · δ∆d S =
∫

S0

∂W s

∂∆d
· δ∆dd S

=
∫

S0

∂W s

∂∆d
· δd+d S −

∫

S0

∂W s

∂∆d
· δd−d S

(31)

We can define the global nodal cohesive traction vector array
from the above equation:

fcohe =
∫

S0

∂W s

∂∆d
[NS]T d S (32)

where [NS] is the global surface edge shape function matrix.

In computations, the quantity
∂W s

∂∆d
is calculated first at

the element level. We first assume that in each element e
there are es = 1, . . . , nselem cohesive interfaces. Then in an
element,

W s =
nselem∑

es=1

W es H(Ses
0 )

where H(Ses
0 ) is the characteristic function or support func-

tion of the surface element Ses
0 , i.e.

H(Ses
0 ) =

{
1 X ∈ Ses

0
0 X �∈ Ses

0

Then for a given cohesive interface, es,

∂W es

∂∆d
= Nes

2Aes

Ms∑

j=1

E ′
i j (r

i j )
∂r i j

∂∆d

= Nse

2Aes

Ms∑

j=1

E ′
i j (r

i j )
ri j

r i j

∂ri j

∂∆d
(33)

In order to calculate
∂ri j

∂∆d
, we need to establish an interfa-

cial kinematics to represent local inhomogeneous deforma-
tion due to surface separation.

Refer to Fig. 2 for the following discussion. For a an arbi-
trary point X on the cohesive surface the jump is defined as
∆(X). Since the jump is actually the stretch or separation of
two adjacent atomic planes, the representative point X are
in fact two points X± in the reference configuration. Their
images in deformed configuration are the points x+ and x−.
However, in the QC description, we view them as the same
reference point in the QC description.

A spatial point at atomic scale is not physically mean-
ingful, if there is no atom residing at the point. So to define
the jump at an arbitrary location needs a material point for
reference. We use a pair of adjacent atoms xi ∈ Sse+ and
x j ∈ Sse− and the related the local position vectors h+ and
h− to locate x±, i.e.

x+ = xi − h+, and x− = x j − h−.

which are the spatial difference between the atoms on Sse±
and the spatial representative points x±. Note that physically
points x+ and x− come from reference points X+ and X−,
which are apart at an equilibrium atomic distance, R.

With this local kinematic setup, we can express the bond
separation in terms of FEM nodal displacement separation.
We start from the following geometric condition (see Fig. 2),

ri j = ∆ + h+ − h− (34)

Here ∆ is the jump at the point X, where we want to eval-

uate
∂ri j

∂∆d
. We can view X as positions of Gauss quadra-

ture points that are needed to evaluate integrations in (31).
Since elements in each half of the deformed body obey the
Cauchy–Born rule, h+ and h− can be written as:

h+ = F+H+ (35)

h− = F−H− (36)

where F+ and F− are local deformation gradients at differ-
ent halves of the body and H+ and H− are local interatomic
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position vectors in the undeformed configuration correspond-
ing to the spatial position vectors, h±. The above equations
can then be re-written as:

h± = F±H± =
(

1 + u±
,X

)
· H± = 1 · H± + B±

· (d± ⊗ H±)
(37)

where B± are two third-order tensors whose components are
defined as

B±
i j A = N±

i j,A := ∂

∂ X A
N±

i j (38)

Here the capital letter A denotes the index of the reference
coordinates.

Considering the interfacial kinematic relation shown in
Fig. 2, we have the following geometric relations at an arbi-
trary point (a pair of points) of the interface,

∆ = ri j + (h− − h+) = (xi − x j ) + (h− − h+)

= F+ · Xi − F− · X j + F− · H− − F+ · H+

= F+ · X+ − F− · X− (39)

Define

X̄ := 1

2

(
X+ + X−)

, and ∆0 := 1

2

(
X+ − X−)

. (40)

We have the interface Cauchy–Born rule as follows:

∆ = (
F+ + F−) · ∆0 + (

F+ − F−) · X̄ (41)

Now, we can calculate the derivative of ri j with respect
to element nodal jump vector, ∆d ,

∂ri j

∂∆d
= ∂∆

∂∆d
+ ∂h+

∂∆d
− ∂h−

∂∆d

= Ns + ∂h+

∂d+
∂d+

∂∆d
− ∂h−

∂d−
∂d−

∂∆d

= Ns + 1

2
B+H+ − 1

2
B−H− (42)

The final expression of
∂W es

∂∆d
reads:

∂W es

∂∆d
= Nes

2Aes

Ms∑

j=1

E
′
i j (r

i j )
∂r i j

∂∆d

= Nes

2Aes

Ms∑

j=1

E
′
i j (r

i j )
1

r i j

(

ri j · Ns

+ 1

2
ri j · B+H+ − 1

2
ri j · B−H−

)

(43)

The matrix form of the above equation is:

∂W es

∂∆d
= Nes

2Aes

Ms∑

j=1

E ′
i j (r

i j )

r i j

(

[NsT ]ri j + 1

2
[B+H+]T ri j

−1

2
[B−H−]T ri j

)

(44)

The components of matrices B±H± are:

[B±H±]i j = N±
i j,A H±

A (45)

where N±
i j are components of N. The force vector fcohe can

be obtained by integrating
∂W s

∂∆d
.

Remark 2 From (43), we observe that when B+H+ =
B−H−, the expression of nodal traction vector will reduce
to:

fcohe = nelem
A

e=1

nselem
A

es=1

∫

Ses
0

Nes

2Aes

Ms∑

j=1

E ′
i j (r

i j )

r i j
NsT ri j d S (46)

This corresponds to the case when the deformed atomic posi-
tion vectors are the same on S+ and S−. In the above equation
A is the element assembly operator for both bulk elements
and surface elements [6]. Since in each element there may
be several cohesive interfaces, i.e. es = 1, . . . , nselem, so we
have used double assembly operators as a two-loop assembly
for each bulk element and for each surface element within a
bulk element.

In Fig. 3, we plot fcohe against ∆d . Of the two nodes, we
shall plot fcohe

1 . The two edges are chosen to be parallel to
each other, so ∆d

1 = ∆d
2 = ∆. The interatomic distance is 1

and the edge length is 10. The Lennard–Jones (LJ) potential
is used. The expression for Ei j is:

Ei j (r
i j ) = 4ε

[( σ

r i j

)12 −
( σ

r i j

)6
]

(47)

with σ = ε = 1. When plotting Fig. 3a, we fix ∆t , i.e. the
tangential component of ∆ is set to zero, and vary ∆n , the
normal component of ∆, which means that in this case the
node on S+ is aligned longitudinally with a node on S−.
When plotting Fig. 3b, we fix ∆n = −1 and vary ∆t . It is
observed that as expected the normal traction shows a simi-
lar pattern as the interatomic force and the tangential traction
has a period of the lattice constant. In both figures we show
different cases when we include nearest neighbor only, up
to the 2nd nearest neighbor, and up to the 3rd nearest neigh-
bor. One can find that while the nearest neighbor interaction
is good enough for the normal traction, it yields a jump for
the tangential traction when the node is in the middle of
two atoms. The jump happens because with nearest neigh-
bor interaction, the moving node “switches” its interacting
partner in the middle and the force changes its sign. This
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Fig. 3 Cohesive traction as a function of distances. a Normal traction, and b Tangential traction

artificial effect is eliminated when the 2nd nearest neighbor
interaction is considered. [17] provided a similarly shaped
cohesive relation by using an empirical surface potential.

The other terms in the weak form can be treated by stan-
dard FE procedures, and we choose not to show the deriva-
tion. The final expression is:

Md̈ + f int (d) − fcohe(d) = fext (48)

where:

M = nelem
A

e=1

∫

Be
0

ρ0NeT NedV (49)

f int = nelem
A

e=1

∫

Be
0

BeT Pe(d)dV (50)

fext = nelem
A

e=1

∫

∂t B±e
0

NeT t̄ed S (51)

and Be is the matrix for element shape function gradient.

3 Application in simulation of dislocation propagations

In general, a line defect like the dislocation will naturally
occur when a crystal is under external stress. When the con-
figurational force i.e. the Peach-Koehler force is greater than
the lattice friction force i.e. the Peierls force under specific
temperature, the dislocation will then move.

There are many techniques in Molecular Dynamics to
simulate dislocation motions. To study the motion of a sin-
gle dislocation, there are even analytical solutions as well as
semi-analytical solutions available for Molecular Dynamics
or Lattice Dynamics. The analytical approach was first devel-
oped for Lattice Statics by [11], and it was then extended
by [13] to Lattice Dynamics. In analytical solution proce-
dure, the dislocation is preconfigured, and the Lattice Green’s
Function technique is often used to solve dislocation motions.
This technique can only be employed in an infinite lattice

space. For finite lattice spaces, the semi-analytical solution
is useful. In the semi-analytical solution, the dislocation is
preconfigured, i.e. the defect field is initially prescribed by
imposing a so-called eigenstrain field, the MD simulation
then takes care of the rest based on the equation of motion or
the interatomic force relation. This type of solutions is very
suitable to serve as the benchmark solution for numerical
simulations because of their analytical nature.

Here, we briefly outline this method first, and then com-
pare its results to that of the proposed cohesive QC-FEM
computation. We consider a general 3D lattice, and we limit
ourselves to the case of harmonic approximation. For an atom

, the equation of motion reads:

ma ü(
) = −
∑


′
φ(
, 
′)u(
′) (52)

where ma is the mass, φ(
, 
′) is the coefficient of a constant
matrix that is related to the force between atoms 
 and 
′.
Furthermore, we have the following expression:

u(
′) − u(
) = [
β(
, 
′) + β∗(
, 
′)

]
x(
′
) (53)

where x(
′
) = x(
′) − x(
). β(
, 
′) and β∗(
, 
′) are
the elastic distortion and the eigen-distortion between 
 and

′, respectively. We have a non-zero eigen-distortion if the
domain is subject to inelastic deformations like dislocations.

Remark 3 The symmetric part of (53) is analogous to the
following equation in the theory for continuum:

1

2

(
∇u + (∇u)T

)
= εe + ε∗ (54)

where εe is the elastic strain and ε∗ is the eigenstrain.

Mura [13] showed that with (53), the MD equation of
motion takes a new form:

ma ü(
) = −
∑


′
φ(
, 
′)u(
′)+

∑


′
φ(
, 
′)β∗(
, 
′)x(

′)

(55)
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Fig. 4 A plane view of the cubic lattice

The extra term on the right hand side (55) is a fictitious body
force due to eigen-distortions which are caused by defects.

Now let us consider the a specific type of defects: a screw
dislocation. We shall use it as an example to illustrate how
the value of the dislocation force is calculated by eigen-
strains. The problem setting is shown in Fig. 4. We consider a
cubic lattice with nearest neighbor interactions. An index pair
(m, n) is used to denote a particular atom. The interatomic
distance is h. The screw dislocation is in the x3-direction and
is moving in the x1-direction with a constant speed v. As a
result, we only need to consider x3-direction displacements.

Let us assume the dislocation has propagated to the col-
umn of atoms with m = m0. Then for all pair of atoms
(k+0.5,−0.5) and (k+0.5, 0.5), k ∈ (−∞, m0], the inelas-
tic displacement is h, i.e. the amount of dislocation. So we
have:

β∗(
, 
′)x2(

′
) = h (56)

Since x2(

′
) = h, we have β∗ = 1 in this case. Thus it is

easy to obtain the following equation of motion [8]:

maü3(m, n) = A [u3(m + 1, n) + u3(m − 1, n)]

+B [u3(m, n + 1) + u3(m, n − 1)]

−2(A + B)u3(m, n)

+Bh
m0∑

k=−∞

(
δm,k+0.5δn,0.5−δm,k−0.5δn,−0.5

)

(57)

where A and B are force constants in x1x3- and x2x3-
directions, respectively. By applying the above procedure to

Molecular Dynamics, we can simulate dislocation motions
in a lattice.

In our cohesive QC-FEM approach, the dislocation forces
±Bh are treated as prescribed forces. For FE nodes that
are at and behind the dislocation front, we apply the dis-
location forces. They appear in the external force vector
fext. To propagate the dislocation, we adopt the so-called
quarter-jump rule [11]. Let x+ and x− be two atoms locating
at the opposite sides of the dislocation plane. If the following
condition is satisfied:

∆ = u3(x+) − u3(x−) > 0.25h (58)

we consider the dislocation having passed through this point,
and we start to apply dislocation forces to the adjacent pair
of nodes.

4 A numerical example

In this section, we present the numerical simulation of a
propagating screw dislocation using the cohesive QC-FEM
approach. We simulate a domain with a dimension of
[−50, 50] × [−50, 50]. The interatomic spacing is chosen
to be 1. The force constants are A = B = 1. The dislocation
initiates at the left side of the domain. We performed two sim-
ulations. One has 200 linear triangle elements and the other
one has 800 elements. The cohesive surface is chosen to be
the x = 0 plane. For comparison purpose, we also simulate
the problem with Molecular Dynamics(MD). The equation
of motion is (57). There are total of 10201 atoms.

For time integration, Verlet algorithm is used in both cases.
The time steps are 0.3162 and 0.1581 for the cohesive
QC-FEM simulations and 0.0316 for the MD simulation.

The simulations were carried out in a PC with an 1.8 GHz
AMD64 processor. The different CPU times used in com-
putations of the same problem but with different modelings
and different discretizations are tabulated in Table 1. From
Table 1, one may find that the cohesive QC-FEM simulation
has far less computational cost than that of the MD simula-
tion: the 200-element simulation and the 800-element sim-
ulation take 0.7 and 5.5% of the time of MD simulation,
respectively. At the same time, the cohesive QC-FEM sim-
ulation still has a very good accuracy. Shown in Figs. 5 and
6 are the displacement profiles at time t = 6.3240 and t =
12.6480. We can see the cohesive QC-FEM simulation cap-
tures the main feature of the problem. Table 2 shows the
dislocation speed (computed by the distance that the disloca-
tion front has traveled by time). We observe that dislocation
speed is close between the results obtained by the cohesive
QC-FEM and by MD. It should be noted that since the com-
putation is done for fictitious materials the unit for the dis-
location speed here is used a computational unit that has not
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Table 1 Comparison of the
running time between cohesive
QC-FEM and MD simulations

QC (200 elements) QC (800 elements) MD

Running time (s) (t = 6.3240) 0.7340 5.4680 98.7500

Running time (s) (t = 12.6480) 1.3440 10.6410 195.9220

Fig. 5 Displacement profiles at
t = 6.3240. a, b MD results. c,
d Cohesive QC-FEM results
with 800 elements. e, f are
cohesive QC-FEM results with
200 elements

been converted to SI system. Nevertheless, the comparison
itself is meaningful.

One of the main concerns of cohesive finite element
method is its mesh-dependence. To test mesh dependence for
the proposed cohesive QC-FEM, we have carried out calcu-
lations in three different meshes, i.e. nelem = 200, 800, and
3,200. We choose the dislocation speed as the physical index
to measure mesh dependency, and the results are tabulated
in Table 2 in comparison with that of molecular dynamics
simulation. From Table 2, one may find that as the mesh is
refined, the dislocation speed obtained in cohesive QC-FEM
approaches to that of MD simulation. Indeed, the numeri-
cal simulation results are dependent on mesh size, and it is

possible that it depends on mesh orientation as well,2 but
as QC-FEM mesh is refined towards to the resolution of
the underlying lattice structure, we expect the results of the
cohesive QC-FEM simulation will converge to the results of
MD simulation.

This example demonstrates that if other details of a mov-
ing dislocation are not the primary concern than the moving
dislocation itself, the cohesive QC-FEM method may be a
very good choice in the simulation of dislocation motions
because of its efficiency and cost-effectiveness.

2 We shall test that case in a separated study.
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Fig. 6 Displacement profiles at t = 12.6480. a, b MD results. c, d The cohesive QC-FEM results with 800 elements. e, f The cohesive QC-FEM
results with 200 elements

Table 2 Comparison of the
dislocation speed between
cohesive QC-FEM and MD
simulations

QC (200 elements) QC (800 elements) QC (3,200 elements) MD

Dislocation speed

Measured at t = 6.3240 s 6.325 5.534 5.139 5.218

Dislocation speed

Measured at t = 12.6480 s 5.534 5.139 5.337 5.297

5 Conclusions

A cohesive QC FEM is formulated. It is capable of dealing
with strong continuities across a solid at nano-scale, such
as micro-cracks and dislocations. Compared to the conven-
tional cohesive FEM, the proposed method takes a new path
by exploiting atomistic information to construct the cohesive

law. By doing so, the QC formulations extend from the inte-
rior of the solid to the interfaces, and it is more accurate then
macroscale empirical approaches. Utilizing the technique of
the eigenstrain technique, we use the proposed method to
simulate a moving screw dislocation. The numerical results
show that the proposed method has good accuracy and com-
putational efficiency.

123



Comput Mech

We are currently working on extending the method to
3D problems and problems involving with multiple disloca-
tions. By using the atomic information, the proposed method
can also be incorporated into a multiscale scheme with the
molecular dynamics method. This has recently been done
by the present authors [10]. A multiscale simulation of a
moving screw dislocation has been carried out there, which
allows a dislocation passing through different scales. In short,
we believed that the proposed method provides an effective
coarse grained approach to simulate fracture and dislocation
motions.
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