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A computational multiscale contact mechanics model is presented which describes the interaction between deformable solids
based on the interaction of individual atoms or molecules. The contact model is formulated in the framework of large defor-
mation continuum mechanics and combines the approaches of molecular modelling [1] and continuum contact mechanics [2].
In the following a brief overview of the contact model is given. Further details can be found in [3], [4] and [5].

1 Model Formulation

Consider two deformable bodies in their current configuration, denoted by B1 and B2. The interaction between two atoms
located at the points x1 ∈ B1 and x2 ∈ B2 is modelled by the Lennard-Jones potential
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, (1)

where r = |x1 − x2| denotes the distance of the atoms and where r0 and ε are material parameters characterizing the atomic
interaction. The corresponding force between the atoms results from changes of the distance r, i.e. F (r) = −∂φ

∂r
. A positive

force F indicates repulsion, e.g. during contact, while negative F indicate attraction, e.g. during adhesion of the bodies.
The interaction between the atoms thus invokes the force pair F r̄1 and F r̄2, where the unit vectors r̄1 = (x1 − x2)/r and
r̄2 = (x2 − x1)/r mark the direction of the forces as is shown in figure 1. In general body B1 is influenced by all atoms of

integration

(homogenization)

Fig. 1 Homogenization of the interaction of two nanoscale bodies B1 and B2

body B2 while body B2 is influenced by all atoms of body B1. Thus a body force is generated in each body which is given by
the integration

b1(x1) =

∫
B2

β2 F (r) r̄1 dv2 , b2(x2) =

∫
B1

β1 F (r) r̄2 dv1 , (2)

(see figure 1). Here βI denotes the atomic density of body BI . The equilibrium equation of both bodies (I = 1, 2) reads

div σI + βI bI = 0 , (3)

where σI is the Cauchy stress inside bodyBI . Multiplying these equations with the test functions δϕ1 and δϕ2 and integrating
over the bodies yields

∫
B1

δϕ1 ·
(
div σ1 + β1 b1

)
dv1 +

∫
B2

δϕ2 ·
(
div σ2 + β2 b2

)
dv2 = 0 , ∀ δϕI . (4)
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Using the divergence theorem eq. (4) can be rewritten as

2∑
I=1

[ ∫
BI

grad(δϕI) : σI dvI −

∫
BI

δϕI · βI bI dvI

]
= 0 , ∀ δϕI , (5)

which is the weak form of the proposed contact-interaction model. The first term describes the internal virtual work, due to
the deformation of the solids, while the second term denotes the virtual work due to contact. If externally applied body forces
b̄I in BI and surface tractions t̄I on ∂tBI are considered, the weak form (5) must be extended by the external virtual work
contribution δΠext [3]. It is noted that the weak form (5) can also be derived from a variational principle considering the
potential energy Π = Πint + ΠC − Πext where

ΠC :=

∫
B1

∫
B2

β1 β2 φ(r) dv2 dv1 , (6)

describes the interaction energy between the two bodies. We remark that the integration can be significantly simplified, if a
cutoff radius of the atomic interaction potential φ is considered. This leads to numerically highly efficient implementation
methods. Details are discussed [3] and [5].

2 Numerical Example

As a numerical example we consider the nanoindentation of a stiff Vickers indenter (B1) into a soft substrate (B2). The weak
form (5) is discretized by a nonlinear finite element approach. The problem setup is displayed in figure 2a. The bodies are

a. b.

Fig. 2 a. Nanoindentation model; b. Deformation and stress σ33 during indentation

modelled by a Neo-Hookean material law with the Poisson’s ratio ν1 = ν2 = 0.2 and Young’s modulus E1 = 3E2. Figure 2b
show the vertical normal stress component σ33 scaled by

arsinh
( α σ33

max (σ33)

)
, (7)

where α is a scaling factor chosen as α = 5 and where max (σ33) denotes the maximum of σ33. As is indicated by figure 2b
large, compressive (i.e. negative) stresses appear at the center of contact due to the atomic repulsion modelled by φ (1). At the
fringe of the contact zone, on the other hand, tensile (i.e. positive) stresses appear due to the attractive part in φ.

The generality of the proposed contact model allows the study of a large class of contact-interaction problems. In [3]
the interaction between carbon nanotubes is investigated, while in [4] a comparison with the JKR model [6] is shown. The
presented contact model allows the study of contact over a wide range of length scales as is shown in [5]. Currently under
investigation are the adhesion mechanisms occurring in some biomechanical systems.
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