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In this letter, a compatibility-momentum tensor is proposed based on the strain
compatibility condition of continuum mechanics. By rescaling the compatibility-
momentum tensor, we construct a so-called multiscale energy-momentum tensor
and the corresponding L-integral, which is path-independent if the interior region
of the integration contour is dislocation-free. By applying the invariant L-integral
to the field of a mode III elastoplastic crack under small-scale yielding condition,
we derive a multiscale criterion for macroscopically brittle fractures.

1. Introduction

Fracture is a multiscale phenomenon in condensed matter physics, e.g. [1]. The first

milestone of fracture mechanics is Griffith’s energy criterion for brittle crack

growth [2], which has been extensively used in solving linear elastic fracture

mechanics (LEFM) problems. Due to the emergence of nanotechnology, the size and

scaling effects of fracture on material strength have become central issues for

nanomaterials and their modelling. Significant discrepancies in the critical stress

predictions have been reported in the literature between the classical Griffith

criterion and the results obtained from atomistic simulations, e.g. [3, 4]. These

discrepancies have been attributed to several factors: lattice trapping, twinning,

recrystallization, grain boundary migrations, and in general dislocation motions.
In this letter, a multiscale energy criterion is proposed to characterize

macroscopically brittle fracture, which takes into account contributions due to

both surface separation and geometrically necessary dislocation (GND) release

during crack growth at small scale. In passing, we note that the letter refrains from

discussions of ductile fracture, which may need different approaches, e.g. [5].
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8 2. Multiscale energy-momentum tensor

The idea and procedure of forming a multiscale energy–momentum tensor are
as follows. Assume that the total infinitesimal displacement field of a deformed solid
can be decomposed into multiscale components,

uðXÞ ¼ �uðXÞ þ u 0ðXÞ ð1Þ

where �u is the coarse (macro-) scale displacement field, which may be viewed as
a mean field; while u0 is the fine (micro-) scale displacement field, which can be
affected by the presence or fluctuation of defect distributions. Moreover, we assume
that the fine-scale defect distribution is localized so after homogenization the
coarse-scale deformation field is simply a linear elastic solid. The total strain field can
thus decompose to

� ¼ ��þ �0 ¼ ��þ �e 0 þ �p0 ¼ � e þ � p ð2Þ

Where �� ¼ ��e ¼ Symðr � �uÞ, and both �0e and �0p are incompatible elastic and plastic
strains. Note that �e ¼ ��e þ �e

0

and "0 ¼ "p0. We now propose the following multiscale
free-energy density,

Wmð �u,�e
0

Þ ¼ Wcð �uÞ þWfð�e
0

Þ ð3Þ

where the coarse-scale strain energy density is

Wc ¼
1

2
��e : �C : ��e ð4Þ

and �C is the coarse-scale elastic stiffness tensor. The fine-scale free-energy
density is

Wfð�e
0

Þ :¼
�‘2

2
f : fT ¼

�‘2

2
�ij�ji, ð5Þ

where �ij :¼ eik‘�
e
‘j,k ¼ eik‘�

e0

‘j,k is the curl of the elastic strain, eik‘ is the permutation
symbol, � is the fine-scale elastic shear modulus, and ‘ is a length-scale or the gauge
length-scale [6], below which the coarse-scale observer cannot see. The factor �‘2 in
Equation 5 will make the physical unit of the term Wf(�e0) as the unit of energy,
density, i.e. energy per unit volume.

We note that similar types of free-energy densities have been proposed by others,
e.g. [6–8]. In particular, Kleinert specifically collect a similar form of (5) ‘the defect
gauge field’, and he labelled the penalty term as the contribution of ‘the rotational
stiffness’. However, the main difference between the current approach and Kleinert’s
approach is that we regard (3) as a multiscale free-energy density, in which �u and �e0

are independent, whereas in the formulations of Kleinert and others, it is an elastic
free-energy of a second-order strain gradient theory where the displacement field
and the plastic strain field are coupled. This leads to the divergence of two different
approaches:

(1) We view equation (3) as a general decomposition that does not depend on
specific inelastic microscale constitutive relations. One can find the fine-scale
free-energy density, Wf(�e), as long as the continuum measure of the GND

946 S. Li
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8 distribution is given in terms of �e or �p regardless of which constitutive

relations it comes from; whereas
(2) Kleinert and others used the coupled higher order strain energy density

to derive or to constrain microscale plasticity constitutive relations. That is,

their free-energy density, which is not a multiscale formulation, affects the

plasticity constitutive relations at microscales.

The essence of the proposed multiscale theory is that by assuming the fine-scale

dislocation distribution is small and in steady state, the defect distribution can

be given a priori without affecting the coarse-scale (macro-) constitutive relation.

Hence we can then extrapolate a universal form of multiscale elastic free-energy from

the global (coarse-scale) deformation as well as the (fine-scale) defect distribution,

whereas in the strain gradient theory or the dislocation gauge theory one has a higher

order elastic free-energy density first, and then tries to derive a microscale

constitutive relation, hoping eventually to solve for dislocation or defect distribu-

tions under the particular constitutive relation. A detailed discussion on ramifica-

tions of these two different approaches and their thermodynamic consequences will

be presented in a full-length paper [9].
Through a rigorous variational approach [9], we have found that the defect

potential (5) is variationally meaningful. That is, the first variation of the

potential yields a stationary condition that is the Saint-Venant compatibility

condition [10],

�

Z
V

Wfð�eÞdV ¼ 0 ) eirkejs‘�
e
rs,‘k ¼ 0, ð6Þ

if the domain of interest is compatible or defect-free. Therefore the physical meaning

of the potential (5) is a quantity that is proportional to the free energy of the defect,

specifically the dislocation distribution.
By applying Noether’s theorem, one can find a compatibility-momentum tensor

due to translation symmetry of the potential (5),

Sf
k� ¼ Wf�k� � �‘2emki�jm�

e
ij,�: ð7Þ

We then construct a multiscale energy–momentum tensor by combining the

coarse-scale energy–momentum tensor and the fine-scale energy momentum tensor,

i.e. the compatibility-momentum tensor,

Sm
k� ¼ Sc

k� þ Sf
k� ð8Þ

in which

Sc
k� ¼ Wc�k� � �u‘,� ��k‘ ð9Þ

is Eshelby’s energy–momentum tensor [11, 12], ��ij is the coarse-scale Cauchy stress,
�u‘ is the coarse-scale displacement field, and �k� is the Kronecker delta. Note that the

subscript, ‘�’ denotes the spatial derivative.
We argue that the stress measure is a macro quantity, and the strain measure can

be a micro quantity. Accordingly, the multiscale energy–momentum tensor, Sm
k�, has

A multiscale Griffith criterion 947
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8 two scale components: a coarse part to describe macroscale brittle cleavage surface

separation and a fine-scale part to describe dislocation motions.
By virtue of the equilibrium equation �ij,i¼ 0, one can show that Eshelby’s energy–

momentum tensor obeys Sc
k�,k ¼ 0. Similarly via the compatibility condition (6), it is

easy to show that Sf
k�,k ¼ 0, if there is no inelastic deformation in the solid. We may

call Sf
k� the compatibility-momentum tensor, because it is derived based on the

symmetry condition of compatibility conditions [13]. Conceptually, configurational

compatibility forms a duality pair with configurational force [14].
We can then calculate the multiscale configurational force,

L� ¼ �J� þ L� ð10Þ

where the coarse-scale configurational force is the J-integral [15],

�J� :¼

I
�c

Sc
k�nkdS ð11Þ

where nk is the surface normal of �c, and the fine-scale configurational force is the

L-integral,

L� :¼

I
�f

Sf
k�nkdS ð12Þ

which is a measure of configurational compatibility. Since both integrals are path

independent, their linear combination is also path independent. In the rest of this

letter, we denote the first component of L� as the multiscale L-integral, i.e. Lm ¼ L1,

which may represent the driving force for a macroscopically brittle crack moving

in the x1 direction.
As an example, we now calculate the Lm-integral for a mode-III steady-state

elastoplastic crack growth problem whose solution is given by Hult and McClintock

(HM) [16] which is under the assumption of small-scale yielding. The integration

contour, �c, can be taken arbitrarily over the coarse-scale field as long as it contains

the crack tip, whereas the fine-scale integration contour, �f, is taken as the boundary

of the plastic region, or process zone, i.e. S (see figure 1). In the calculation, we

choose the contour for the coarse-scale J-integral to be slightly (infinitesimally)

Figure 1. Schematic illustration of a macroscopically brittle crack.

948 S. Li
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8 larger than S, i.e. �c¼ Sþ (since it cannot see the fine scale), whereas the contour for

the fine-scale L-integral is slightly (infinitesimally) smaller than S, i.e. �f¼S.

Suppose the crack length is denoted as a, and the remote stress is �1. The multiscale

driving force is

Lm ¼
��21
2�

� �
aþ

3l2��40
8��21

� �
1

a
: ð13Þ

where we neglect the difference between the macro shear modulus and the micro

shear modulus, i.e. �� ¼ �.
To investigate the behaviour of the multiscale driving force, we perform a

stability analysis of the equilibrium. For a macroscopically brittle fracture, we may

assume a constant fracture resistance, i.e. R¼ const. and @R/@a¼ 0. Thus @Lm/@a<0

implies stable crack growth, or simply stability. The minimum may be found via the

stationary condition,

@Lm

@a

����
�1

¼
��21
2�

� �
�

3l2��40
8��21

� �
1

a2
¼ 0: ð14Þ

Under load control, the minimum driving force to advance a crack and the

stability point are given as

Lm
min ¼

��21amin

�
, and amin ¼

ffiffiffi
3

p

2

�0
�1

� �2

‘: ð15Þ

The physical meaning of amin is the crack length at instability.
We note that these findings indicate that an incompatible field will yield

a minimum driving force. In addition, incompatibility enables stable crack growth

during load control. To frame the discussion with respect to the applied loading, we

find that the far-field stress at instability is

�1, min ¼
3

4

� �1=4 ffiffiffiffiffiffiffiffiffi
‘

amin

r
�0: ð16Þ

By assuming that amin � Oð‘Þ, the critical stress for brittle fracture at small scale

may be estimated as �cr1 � 0:75�0 where �0 may be viewed as the theoretical strength

or the cohesive strength of the material. The driving force can be normalized by Lm
min,

Lm

Lm
min

¼
1

2

a

amin
þ

1

a=amin

� �
: ð17Þ

In figure 2, we plot the multiscale driving force with different normalization

against the normalized crack length. It can be seen from figure 2 that there is a well

located minimum at amin. This suggests that the driving force for crack growth

at small scale cannot be zero, even if the crack length, a, approaches zero. This is

because the total energy release has two sources: (1) the strain energy release due to

the surface separation at macroscale, and (2) the misfit energy release, as a form of

strain-gradient energy release, due to the change of the defect potential. The change

of the defect potential can be interpreted as due to the GND absorption or release,

deformation twinning, or other incompatible strain field releases. At the small scale,

A multiscale Griffith criterion 949
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even when there is not too much bond breaking, i.e. (a! 0), dislocations may still be
present. The competition of these two factors dictates the overall behaviour of the
driving force.

3. Multiscale Griffith criterion

A fundamental task of fracture mechanics is to determine the critical stress, �cr,
under which the crack advances. Based on the Griffith criterion [2], the critical stress
can be obtained by an equilibrium condition – the balance of configurational force
and resistance force.

Following Griffith’s energetic argument, we equate the multiscale driving force
to the resistance,

Lm ¼
�a

2�

� �
ð�crÞ

2
þ

3‘2��40
8�a

� �
1

ð�crÞ
2
¼ 2	t: ð18Þ

We observe that the multiscale driving force has two parts: (1) the coarse-scale
part, i.e. the release of elastic strain energy, or the value of the J-integral in the
homogenized elastic medium, �J ¼ �að�crÞ

2=2� and (2) the fine-scale part due to
the release of the elastic free-energy stored inside the dislocation distribution zone,
or the plastic zone, L ¼ ð3‘2��40=8�a�

2
crÞ. Note that in the multiscale Griffith

equation the first part of the driving force may no longer be equal to the
resistance due to surface separation, i.e. 2	s. In other words, the strain energy
release due to the reduction of the elastic potential in the elastic region will not
be solely consumed in surface separation. To expedite the analysis, we introduce a

Figure 2. The normalized driving force Lm=Lm
min vs. a/amin.

950 S. Li
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critical length-scale, ‘cr :¼ 4=
ffiffiffi
3

p
ð	t�=��

2
0Þ, which is a function of the total

resistance, elastic constant, and magnitude of the yield stress. Hence its value

depends on the resistance curve commonly referred to as the R-curve, e.g. [17]. If

we scale the energy release with a reference resistance energy, 2	0 :¼ �‘�20=2�,
which may be viewed as the fracture resistance that the theoretical strength of the

material can offer for ideally brittle fracture, the ratio

Ið‘Þ :¼
�J

2	0
¼

a

‘

� � �crðaÞ

�0

� �2

ð19Þ

is a function of the length-scale ‘. The symbol I is in honour of G.R. Irwin.

Subsequently, the multiscale Griffith equation (18) is normalized as

Ið‘Þ þ
3

4

1

Ið‘Þ
¼

4	t�

�‘�20
¼

ffiffiffi
3

p ‘cr
‘

� �
: ð20Þ

Unlike the classical Griffith equation, the multiscale Griffith equation is a

quadratic equation in terms of energy release I(‘). Consequently, the multiscale

Griffith equation (20) yields two solutions:

Ið‘Þ1,2 ¼
Itð‘Þ

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

� �2
s2

4
3
5 ¼

	t
2	0

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

� �2
s2

4
3
5 ð21Þ

where It(‘) is the normalized total resistance at the equilibrium,

Itð‘Þ ¼ 	t=	0 ¼
ffiffiffi
3

p ‘cr
‘

� �
: ð22Þ

Figure 3. Bifurcated solutions for energy releases Ii(‘), i¼ 1, 2 and It(‘) vs. ‘/‘cr.

A multiscale Griffith criterion 951
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To compare the different energy releases, we plot the three normalized energy

releases, Ii(‘), i¼ 1,2 and It¼ I1þ I2 in figure 3. One sees that the first two solutions

of Ii bifurcate at ‘¼ ‘cr. Using the definition (19), we find the corresponding critical

stresses as follows,

�cr1,2 ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘I1,2ð‘Þ

a

r
¼

ffiffiffiffiffiffiffiffiffiffi
4�	t
a�

r
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

r� �� �1=2
¼ �crI fð‘Þ1,2 ð23Þ

where �crI :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�	t=a�

p
denotes the critical Irwin stress, and the scaling factors

are defined as

f1,2ð‘Þ :¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

‘

‘cr

r� �� �1=2
� 1:0 ð24Þ

which are functions of the length-scale parameter ‘/‘cr. In figure 4, the critical

stresses corresponding to the multiscale Griffith criterion are compared with

the Griffith–Irwin stress.
At equilibrium, the energy release solutions can be interpreted as either the

driving forces or the resistances. To explore the physical meanings of

the two solutions, we examine the asymptotic expressions of the critical stresses

related to I1,2(‘):

�cr1 ¼ �crI f1ð‘Þ �

ffiffiffiffiffiffiffiffiffiffi
4	t�

�a

r
þOð‘Þ, and �cr2 ¼ �crI f2ð‘Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�‘2�20
16a	t�

s
þOð‘2Þ: ð25Þ

One can find that the stress corresponding to I1(‘) is independent of the yield

stress, �0. This indicates that the first solution, I1(‘), may be related to the resistance

due to surface separation, i.e. I1(‘) � 	s/	0, where 	s is the resistance due to surface

Figure 4. The critical stresses vs. a/‘ at ‘/‘cr¼ 0.9: (a) the Griffith–Irwin �crI =�0; (b) the first
multiscale (Griffith) solution �cr1 =�0; and (c) the second multiscale solution �2/�0.

952 S. Li
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8 separation, whereas one may find in (25) that �2 depends on the yield stress �0,
and hence we identify that I2(‘) corresponds to the resistance due to incompatible
defect fields, or the dislocation field. That is I2(‘)� 	p/	0, where 	p denotes the
energy dissipation due to the presence of dislocations. Fortuitously, the two roots of
the multiscale Griffith equation (21) have an interesting property:

I1ð‘Þ þ I2ð‘Þ ¼ Itð‘Þ ¼
	t
	0

: ð26Þ

Since at equilibrium (in general, it is not true) both I1 and I2 can be viewed as
resistance forces, therefore, Equation (26) suggests that the fracture resistance can
also be expressed in a form of an additive decomposition (the sum of two
resistances),

	t ¼ 	s þ 	p ) �crI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð	s þ 	pÞ

a�

r
ð27Þ

which is the essential result of Irwin’s multiscale theory of elastoplastic fracture
under small-scale yielding. To the best knowledge of the author, this is the first
rigorous proof or justification of Irwin’s theory [18] by using multiscale analysis and
continuum theory of dislocations.

Since �crI � �cr1 , �
cr
2 , it is natural to choose the Griffith–Irwin stress as the critical

stress for its capture combined effects of �cr1 and �cr2 as exactly what G.R. Irwin did
half a century ago. One may view �cr1 as an approximation of the original Griffith
stress for purely brittle fracture, and figure 4 shows how it compares with the
Griffith–Irwin stress �crI .
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