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By discarding the quasi-static approximation, this paper gives the exact solutions of a shear
horizontal electromagneto-acoustic surface wave mode in a class of piezoelectric media. As the
wave speed is much less than the speed of light, the solution degenerates to the well-known
Bleustein—Gulyaev wave, or Maerfeld—Tournois wave. Taking into account both optical effect as
well as the contribution from the rotational part of electric field, the solutions obtained here are not
only valid for any wave speed range, but also provide accurate formulas to evaluate the
acousto-optic interaction due to the piezoelectricity. 1@96 American Institute of Physics.
[S0021-897€06)06121-X]

I. INTRODUCTION (i) Maxwell's equations
About thirty years ago, Bleustéirand Gulyae% simul- JB
taneously discovered that there exists a shear horiz(ithl —VXE= e (1)
electro-acoustic surface mode in a class of transversely iso-
tropic piezoelectric media, which is known today as the JD
Bleustein—Gulyaev wave. The Bleustein—Guly&B®) sur- VXH=—, 2

face wave is an unique result in the repertoire of surface ot

acoustic waveSAW) theory, because it has no counterpart,;nereE B, andH are the electric field, magnetic induction,
in purely elastic solids. As a matter of fact, since then, the, 4 magnetic field respectively:
BG wave theory has become one of the cornerstones for the (i) Equations of motion
modern electro-acoustic technology.

The BG wave is essentially a coupled surface wave be- J2u
tween the acoustic mode and the soft ferroelectric mode; in V- o=p—z —F, ()
other words, the quasi-static approximation is adopted for the
electromagnetic field. Under this assumption, both the optiwhere o is the stress tensor is the displacement vector,
cal effect as well as the contribution from the rotational partandF is the body force;
of electric field are neglected. Although it is generally be- (iii) The constitutive equations
lieved that the optical effect is minor, it is certainly of prac-
tical interest to accurately predict the piezoelectricity- B=puoH, 4
induced electromagnetic radiation, which might be helpful in
some engineering applications, such as optical detection, as D=¢-Etee, ®)
well as nondestructive evaluation in general. In this paper, a
detailed account is given of the coupled SH electromagneto-

acoustic surface wave in a transversely isotropic piezoeleGyhere € ¢, and cE are the specific dielectric tensor, piezo-

tric medium. electric constant tensor, and elastic stiffness constant tensor
In early studies, besides technical considerations, theaspectively, angs, is the magnetic permeability constant in

main reason for adopting the quasi-static approximationhe vacuum.

might have been, perhaps, a psychological one. The percep- |n the constitutive equatior(§) and(6), the strain tensor

tion was that solving a fully-coupled Maxwell-Christoffel ¢ is defined as

equation might be too involved, or too complicated to obtain

any meaningful results in physics. In this paper, it has been &:=3[Vu+(Vu)"]=:V.u. (7

shown, on the contrary, that there exist some remarkable

simple velocity equations for the fully-coupled SH

electromagneto-acoustic surface wave.

o=—eE+ctig, (6)

Letting F=0, one may derive the following fully-
coupled Maxwell—Christoffel equatiorf#wuld* (8.105 and
(8.106] by proper manipulations,

Il. FORMULATION g2

u
. . . . E. -

By adopting the notations in Auf? the governing V-c -VSU_PEZ +V-(eB), ®)

equations of the problem are listed as follows.
VXVXE e &2E+ \Y u 9

- = = eVe—>.
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Consider the coupling between the anti-plane acoustic

mode and the in-plane electromagnetic mode, i.e., / X
u=[0,0W(x1,X3,t)] (10 %
E:[El(xllx21t)!E2(Xl 1X2!t)10]' (11) X1

The coupled wave equationi8) and (9) can be simplified
drastically. For the hexagon& mm) piezoelectric material,
equationg8) and(9) reduce to

2

Ewo W
C44V WZPW+615V'E, (12)
s (92 (92W X2
—VXVXE=po€11—7 + mo€1sV —7, (13
ot ot FIG. 1. The piezoelectric half space covered with a layer of conducting
where the differential operatdf and the electric fieldE are film.
redefined as two-dimensional vectors, i.e.,
2
d d %
V=i %, j 7%, (14 c?—c.2
E:=E,i+E,j. (15) and introduce a new scalar potential functign
e
Let == —fw. (23
€
1 A 1
E=—-V¢— c, o (16) The purely electro-acoustic wave equati@i8) can be

. completely decoupled as follows,
where¢ andA are the scalar potential and the vector poten-

2
tial respectively, and the constannt/:=(gos§1)‘1/2, is the V2— iza_"zv - 0
speed of light in the piezoelectric material. The decomposi- Ca” ot
tion (16) can be uniquely determined by imposing the fol- ) (24)
lowing Lorentz gauge constraint within the transversely iso- 2 i ﬁ_lﬂ _
tropic plane, c,? at?
1909 Accordingly, the relevant constitutive equations take the
V-A+ c, at 0. 17 following forms,
Subsequently, the coupled wave equatitt® and(13) o~ oW I €15 0A;
. 013= C44_ + 615— + — -, (25)
can be further separated into two groups, namely, the purely Xy X, C, ot
electro-acoustic wave equations,
— 0w N oy N €5 dA, (26)
R 1 3¢ 023~ Cano—t €15+ — ——,
CaVW—p—7 = —en V- ——7|, e e G O
at c, dt <
(18 D1=e15(1—f)(7—w—es %_e_llg_Al (27)
e 1 9% X,  ox, ¢, ot
E’VZW — V2¢_ R I 4
€ c, at?)’

ow
and the rotational part of electromagneto-acoustic wave DZ:el5(1_f)a_x2_6 X, ¢, dt (28)

equations, whereC,,: =ck,+fe; /€.
1 #A P*w
VM= 2 gz T T ReRst g lll. SOLUTIONS
5 2 (19 In what follows, the SH electromagneto-acoustic wave
v Az—izﬁ—pz\z = _M0e15c/07_w- propagation problem discussed above is examined under
¢, ot - dtdx; three different sets of boundary conditions.

Define Problem 1 (The grounded surface solutiolm)this prob-
lem, the surface of the piezoelectric half spéaee Fig. lis

— e, &5 covered with an infinitesimally thin perfect conducting film,

C44'_C44+6T11’ (20 which implies that the additional mechanical effect is ne-

glected, and the scalar potential of the electric field is set to

be zero on the surface. This group of boundary conditions

are expressed as follows,

2

To\12
c __(044
a-—

p

: (21)
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oW Ay ey A, where the constant3:=e;s/\€j,Cas IS the piezoelectric
023(x1,0,t)=c44(9—xz+e15(9—x2+EW= ; (29 coupling coefficient in the quasi-static approximation. To
' this end, a simple velocity equation for the electromagneto-

€5 acoustic surface wave is derived,
$(x1,0t)= ¢+ —fw=0. (30

€11 ve=CaVf(1—B%. (42)
Assume As c,/c,—0,
W(X1,Xo,t)=wq exgd —kixs]exgi(wt—kxq)], (3D 1

f=——>—=1, (43

P(X1,X2,1) = o Xl —koXo]exdi(wt—kx)], (32 1-cylc,
Ag(X1,%0,t) = Ago ex] — KXo lexd i (wt—kx)], (39 B2=p=p2, (44)
A2(X1,X2,t):A20 exq_kl)(z]exr[i(wt_kxl)], (34) ’F: 1 :>1 (45)

where k2— k2= (w/c,)?, K2—k2=(w/c,)? The amplitude 1-pie’lc,?

coefficientswg, o, A1, and Ay are not independent. the surface wave speed recovers the classic BG solution,
Substitutingw, A, andA, into the Lorentz gauge constraint

(17), one may find the following relationships, vq=CaV1l—pB". (46)
Problem 2 (The free surface solutionh this case, the

,(Loe15C/0)k . . . .
Ap=— =12+ wlc sWo, (35  surface of the piezoelectric half space is a free surface, which
(kg Wity is in contact with a vacuum half space on the top. The full set
- o€15C, Ky " a8 of boundary conditions at, = 0 are as follows,
(K- K+ wPlc,p Y n-o=0, (47)
It should be noted that expressiof5) and (36) provide n-D:n-f), (48)
guantitative evaluation of the electromagneto-acoustic inter- -
action caused by the piezoelectricity. nXE=nXE. (49

By substituting(31)—~(34) into the boundary conditions Note that the quantities with symbol ~ on the top denote the
(29)—(30) and by considering the relatioi85) and(36), the  gyantities of the electric field in the free vacuum space.

boundary condition$29)—(30) lead to the following homo- For this particular boundary configuration, the above
geneous algebraic equations, boundary conditions can be put into explicit forms, i.e., at
E + Moeisw k e k W X2=01
M-k w?ic 2 T ° < a_W+e I 815 FAr_ (50)
=0. “ox, Pox, ¢, ot
€s 1 o s ~ ~
o o1y M ity b ey by
(37) 15 X, Hox, c, ot O9x, coq dt
(51
The nontrivial solution exists if and only if ~ R
Ay e ow 1 IA; dp 1 A
- ,u,oe§5w . s I T T T T T T (52)
Cast (k2 k2)+w2/C 5 kl 615k2 X1 €11 dXy C, ot dXy Cq dt
- / . "
! =0 (39) In addition, one may also note that the boundary condition
€15 ’ for magnetic induction is always fulfilled, i.e.,
— f 1 -
€1 n-B=n-B=0. (53
which yields The Maxwell equations in the free vacuum half space
take the form
€15 R
kj_: SC_ fk2 (39) VZA 1 §2¢ 0 54
€ S
11~44 ¢ Cé o2 ) (54
Let -
2 VoA, -~ e 0 (55)
- e 172 7 = U,
Br=———f=p%f, (40) co
€1,C -
11044 - 1 #A,
2 VA== —=5 =0, (56)
~ C, Co ot
fi= S =i o (41)
C/ _ﬁ Ca Whera:o: = (,LL060)_1/2.
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The associated Lorentz gauge in the vacuum space is

Z—i\f % Cl ‘;‘f 0. 57)

Assume

b= o extikaxz] exifi(wt—kx)], (58)

Ar=Aq exdkax,] exdi(wt—kxy)], (59)

Ay=Ag ex kax,] exdi(wt—kxy)], (60)
wherek3=k?— w?/c3.

To satisfy the Lorentz gauge constraig®), the ampli-
tude coefficientspy, Aqp, andA,q are related by

“ i “ “

A= ks (kAo (w/co) ¢o)- (61

Substituting (58)—(60) into the boundary conditions
(50)—(52) and considering61), one may obtain the follow-
ing linear homogeneous equations,

Caakiwo+e1skathg=0 (62)
€3 1koKatho+ €0kl o~ (0/C6)Aq] =0, (63
(e15/ €1) 0o+ tho— [ bo— (v/Co)A10] =0. (64)
Eliminate[:ﬁo — (U/CO)Alo] from the above equations. It
then yields
Ca4Ky 15K wq
€ 1+ (he0) k2k3) v =0. (65)

Lettingv = w/k and equating the coefficient determinant to
zero, one can find that the electromagneto-acoustic surface

wave speed must obey the following velocity equation,
(Ue/Ca)z\/l_(Ue/C/)Z\/l_

Caa€lV1— (velCo)?

+ €0CanV1— (velCy)?= e15\/1 (velc))?. (66)
Ifv/ic, < 1,v/cy<1,itreducesto

Caa €51+ €0)V1—v2ci=— (67)

Let

2
e €
2. 15 0
= (68)

Bo Cas€31 (€51F €0)
Once again, we recover the classic result

vq=Ca\1— ;. (69)

Remark 3.1Assumec,<c,<cy. One can readily verify
that the velocity equatiof66) has no real root in the speed
range c,<v<c,. Equation(66) may have complex roots

s

p b

E >

e, &’ , Ga , &5
hexagonal (6mm) medium 1

hexagonal | (6mm) medium 2
P, R 8, Gi, s
X2

FIG. 2. An interface between two different piezoelectric media .

Problem 3 (the interface solution}his is an analogy of
the well-known Maerfeld—Tournois surface wave that is also
obtained under the quasi-static approximafidthe interface
is located atx,=0 between two different piezoelectric half
spacegsee Fig. 2 In this case, the independent boundary
conditions are as follows:

u=u’, (70
n-o=n-o’, (72
n-D=n-D’, (72
NXE=nXxE’. (73

One can verify that the magnetic boundary conditions,
n-B=n-B’, (74)
nNXH=nxH’, (75)

are satisfied automatically.
The boundary condition§70)—(73) can be written ex-
plicitly as

w=w’, (76)
ow Ay epsdA, _  ow’ Ay’
Cha T gt 2 =Cpt —— + €15 ——
Max, B T e, ot M Taxg, o
e15, (?AZI
T 70
Vi
g1 f) o — o — 2 22
1(1-0 5% Uox, ¢, ot
w' Y €4 IA,
—e (1-f)— ) ———= "2 (78
15 ( )&xz €11 IX c, ot (78)
a¢+e15 ow 1 9A;
o7X1 611 (9)(1 C/ ot
gy e ow 1 A,
ey, T =T (79)
&Xl Ell (?Xl C/ ot

within this speed range, or it may have a real root after  For the lower half piezoelectric space, we still assume
v>cy. Some of these possibilities may imply the existencethat

of the electromagnetic surface wave on the interface between

. : : . - w=wg exd —KkiX,o] exdi(wt—Kkxy)], 80
vacuum space and the piezoelectric medium. The quasi-static o i —kixo] exli(w V] (80
approximation usually fails to predict such possibility. =y exd —koxs] exdi(wt—kxy)], (81
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AlelO eXF{_ k1X2] eX[{I(wt— le)], (82)

1 =
A=Az exl —kiXo] exfli(wt—kxy)], (83 0.998
with k?— k3= (w/c,)?, k?—k3=(w/c,)?; and consequently, '
A — po€1sC, wk -, 0.996 | -
— Wo, ~
G e R O 0994 [ B=07:——— ]
_ i /.Loelsc /(l)kl o
A0 [0E 8 T o, 7" (89 O
]
For the upper half piezoelectric space, we assume that > 099 | B=09: .. ]
w’ =W(I) exﬂ: kj;_XZ] eXF[i (a)t— le)], (86) 0.088 | 4
r— 4 k! H _ k
' = o exd ky] exdi(ot—kxg)], 87 0.986 | \
A=Al exikix] exdi(wt—kx)], (89)
0.984 9
Ag= Al exr kix,] extli(wt—kxy)]; (89)

. , , , ’ 0.982 L
with k?—(kj)?=(w/c})?, k?—(k;)?=(w/c,)? and conse- 0 0.010.020.030.040.050.060.070.080.09 0.1
quently, C_a/C |

— 1o€15C, wk FIG. 3. The ratiowe /v versusc,/c, for the grounded surface solution .

A ()1 + o1c2] 0

—ipgerC k] CaaV1—(vg/Ca)*+ Cag' V1~ (vglcy)?

[((KDP= 1)+ w?1c2] ™ . el (e
Inserting the assumed solutio(&))—(83) and(86)—(89)
into the boundary condition s€76)—(79) and taking equa- Remark 3.2Assumec,<c;, < c¢,<c,. The velocity
tions (84) and (85) and(90) and(91) into consideration, one €quation(93) can only have complex roots in the speed
may find the following existence condition for the interfacial rangec,<v<c, . Afterv>c,, it may have real roots. Once

[
AZO_ 2 S _sS/
_ €11€11

(99

S Sr |
€t en

electromagneto-acoustic wave: again, we cannot rule out the possibility that there is a
piezoelectrically-induced electromagnetic surface wave
1 0 -1 0 propagating along the interface.
KiCas  €15kr kiCaq 1K)

—=0. (92) IV.CONCLUSIONS
0 €51K> 0 €31K; i
As shown above, the exact solutions for the fully-
(e1s/ €1k k —(eidefpk  —k coupled SH electromagneto-acoustic surface wave can be
obtained in simple, closed forms. As expected, these solu-

Subsequently, it leads the following wave velocity equa-tions take the classic results, such as BG wave or Maerfeld—

tion, Tournois wave, as their limits, when the terméc, and
vlcy are negligible.

Cas€s V11— (06/C) 21— (ve/C )%+ CanesiN1— (velCy)? The new results obtained here reveal the acousto-optic
— —, s — interaction on the surface of piezoelectric materials, and im-

XN1=(velc, )"+ Cas €11Vl (velCa') plicitly indicate a possible existence of the piezoelectrically-

1= (0.1C,) 2+ Cas €1—(vo1Ca' )2 induced electromagnetic surface wave.

XV1=(velC/) ™ Cad' i V1~ (velCa') As far as the agoustic wave is concerned, the quasi-static

X 1= (velc, )2=AV1—(velc,)?\V1—(velc,')?, assumption does offer an excellent approximation for the
93 wave speed. This can be observed from Fig. 3. In Fig. 3, a

comparison between the current result and the classic result
is made forProblem 1 the grounded surface solution. Since

where in reality the ratioc,/c, is within the range of 6-0.0001,
12 the optical effect on acoustic wave speed is minor indeed.
A= (6_15) — ( ele;) .65 (94) However, the quasi-static approximation may not always
€11 €11 make life easy; it can cause some additional difficulties.

Such problems arise when one studies wave propagation or
Whenv/c,<<1, v/c,’<1, the above velocity equa- wave scattering problems in a piezoelectric material contain-
tion reduces to the Maerfeld-Tournois wave speed equétionjng defects’:® An obvious reason for this is that the govern-
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