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A computational multiscale method is proposed to simulate coupled, nonequilibrium
thermomechanical processes. This multiscale framework couples together thermomechanical
equations at the coarse scale with nonequilibrium molecular dynamics at the fine scale. The novel
concept of distributed coarse scale thermostats enables subsets of fine scale atoms to be attached to
different coarse scale nodes which act as thermostats. The fine scale dynamics is driven by the
coarse scale mean field. A coarse-grained Helmholtz free energy is used to derive macroscopic
quantities. This new framework can reproduce the correct thermodynamics at the fine scale while
providing an accurate coarse-grained result at the coarse scale. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2711432�

I. INTRODUCTION

The development of nanotechnology poses new chal-
lenges for computational physics. Very often we need to
simulate problems that traverse different spacial and tempo-
ral scales. This gives rise to a class of multiscale simulation
methods,1,2,57 which has become an active research topic in
computational science. Until now, most multiscale methods
focus on solving problems at zero temperature due to the
difficulties to include the temperature effect. Recently, there
has been considerable effort devoted on developing finite-
temperature multiscale algorithms.3–7 However, most of the
approaches in the literature can only simulate equilibrium
systems with a uniform environment temperature.

In this paper, we propose a new multiscale framework
that is capable of dealing with more complicated problems,
i.e., the steady-state nonequilibrium systems. The method is
based on a novel concept of distributed coarse scale thermo-
stats. Under this concept, each coarse scale node is viewed as
a thermostat and governs a set of atoms associated with it.
Coupled thermomechanical equations are solved at the
coarse scale so that each node has its own temperature. Mo-
lecular dynamics �MD� is carried out at the fine scale level
with distributed thermostats.

Developed in the late 1970s, the nonequilibrium molecu-
lar dynamics �NEMD� has long been a successful simulation
tool8–10 for many scientific and engineering problems.
NEMD has been widely used to compute transport
coefficients11–13 and simulate viscous flows.14–16 NEMD ex-
tends the equilibrium MD by introducing an external field.
For example, the DOLLS algorithm17,18 and the SLLOD
algorithm,9 both proposed to solve the Couette flow problem,
include prescribed shear strain rate, a macroscopic quantity
in molecular dynamics equations of motion �EOMs� to de-
duce the desired dynamics. However, in current NEMD
methods the external fields are usually constant, which poses
difficulties when applying to general Navier-Stokes equa-
tions and thermomechanical problems. In this paper, the pro-

posed multiscale method extends the NEMD approach by
introducing the coarse scale velocities and accelerations as
external fields. They drive the fine scale atomistic system off
the equilibrium state. Furthermore, subsets of the atoms in
the fine scale model are associated with different coarse scale
nodes, acting as thermostats. Via multiscale coupling, the
fine scale model can provide atom-level details for nonequi-
librium phenomenon that conventional NEMD cannot simu-
late.

In multiscale computation, it is very important to have a
coarse scale model that is consistent with the fine scale ato-
mistic model. This requires the coarse scale quantities such
as the stress to be derived from the knowledge of atomistic
interactions instead of an empirical potential. The most
popular approach to realize this is by coarse graining.
Among several methods of this category,18,19 the quasicon-
tinuum �QC� method20,21 is the most notable. In the QC
method, a coarse-grained internal energy is obtained based
on the Cauchy-Born rule. One limitation of the original QC
approach is that it does not include temperature effects. To
address this issue we construct a coarse-grained Helmholtz
free energy that is based on both the Cauchy-Born rule and
the quasiharmonic assumption. The expressions for the stress
and the specific heat are derived from the free energy, and
the finite element �FE� method is used to form the discrete
coupled thermomechanical equations.

Another key issue in multiscale computation is the
boundary condition at the coarse scale/fine scale interface.
The high frequency waves coming out of the fine scale re-
gion must be absorbed to prevent spurious phonon reflec-
tions. This is crucial for the temperature to be corrected.
Existing approaches are based on the generalized Langevin
equation22–24 and variational principles.25,26 In previous
works27,28 we have proposed to use the perfectly matched
layer �PML�, an absorbing boundary condition, to solve the
problem. The PML is constructed for the atomistic structure
and is designed to absorb the high frequency part, or the finea�Electronic mail: shaofan@berkeley.edu
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scale part of waves. We have shown that the PML is effective
for multiscale computation, and we use it again in our mul-
tiscale framework.

This paper is organized in the following way. In Sec. II
we outline the proposed multiscale framework. In Secs. III
and IV we discuss in detail the coarse scale model and the
fine scale model. We also discuss the PML briefly in Sec. IV.
The multiscale computational algorithm and a few numerical
examples are presented in Sec. V. We then conclude the pre-
sentation by making a few remarks.

II. THE BASIC FRAMEWORK

The starting point of the proposed multiscale method is
the following decomposition of the displacement field into a
coarse scale part and a fine scale part:

u�x� = ū�x� + u��x� . �1�

In this paper, we use the symbol to denote coarse scale quan-
tities and the symbol � for their fine scale counterparts.

We assume that u can be fully resolved at the atomistic
level, i.e., it becomes the atomistic displacement at discrete
atomic sites,

u�x� → qi, ∀ x = xi, i = 1, . . . ,N ,

where xi is the position vector of atom i and qi is the corre-
sponding displacement vector. While at the continuum level,
we can resolve the coarse scale component ū; the fine scale
part u� at this level is unresolvable.

The basic philosophy of our concurrent multiscale com-
putational model is as follows. For a general problem, we
build a coarse scale model over the whole domain, by which
we can obtain ū. For some specific regions where we are
interested in atomistic level details, we build fine scale mod-
els in them. Together with the coarse scale model, the fine
scale model leads us to obtain u or qi. The difference be-
tween this framework and many other multiscale models is
that our fine scale model alone cannot provide everything. It
has to be combined with the coarse scale model. Other than
“coarse scale” and “fine scale,” we also use the words of
“coarse region” and “fine region.” Since our coarse scale
model exists everywhere, a coarse region denotes a region
where no fine scale model is present, while a fine region is
where both the fine scale and coarse scale models exist. We
have mentioned the PML in Sec. I. The PMLs are appended
to fine regions. Physically fictitious, they are used to absorb
high frequency waves coming out of fine regions.

The conceptual picture of our multiscale framework is
illustrated in Figs. 1 and 2. By constructing a ubiquitous
coarse scale model and complementing it with fine scale
models, the framework fits well with the multiscale concept
�Eq. �1��. It also has some appealing features. For example, it
is very easy to build an adaptive multiscale model under this
framework: fine scale models can be constructed and re-
moved based on coarse scale level error estimates.

III. THE COARSE SCALE MODEL

Our course scale model is based on a coarse-grained
Helmholtz free energy. The theory, which is based on the
Cauchy-Born rule and quasiharmonic approximation, is
stated in textbooks.29 A few authors have utilized the idea in
various applications.30–32 We shall use the coarse-grained
free energy to derive macroscopic quantities in coupled ther-
momechanical equations.

Let us consider a general three dimensional �3D� lattice
which contains N atoms. For the sake of simplicity, we con-
sider the case in which the unit cell of the lattice has only
one atom. The domain is denoted by �e. The reference and
current positions of the atoms are denoted as Xi and xi, re-
spectively. At finite temperature, the atoms vibrate around xi,
and the displacement with respect to xi is ui. Let qi=xi+ui. If
we assume the deformation in �e to be homogeneous, then
we have the following equation:

ai = Feai
0, i = 1,2,3, �2�

where ai and ai
0 are basis vectors for the deformed and origi-

nal lattices, respectively. Fe is the deformation gradient.

FIG. 1. A domain with different regions of required resolutions.

FIG. 2. A domain with different physical modelings.
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Equation �2� is called the Cauchy-Born rule.33 In practice,
this finite lattice is embedded into a �linear� finite element.

If we only consider nearest neighbor interactions, U0, the
potential energy of the deformed lattice with all atoms rest-
ing in their current positions without thermal vibration can
be written as

U0 = �
i=1

N

�
j=i+1

N

��rij� , �3�

where � is the potential function between a pair of atoms and
rij is the distance between atoms i and j. In the case of
homogeneous deformation, the interactions along the direc-
tion of a1, a2, or a3 are the same. U0 can be written as

U0 = Np1���a1�� + Np2���a2�� + Np3���a3�� , �4�

where Npi is the number of nearest neighbor pairs in ith
direction.

There is no difficulty to extend the above discussion to
more general cases with multibody interactions and many-
atom unit cells. We will have the following general result:

U0 = U0�Fe� . �5�

It is noted that the evaluation of U0 takes less time. This is
because of assumption of homogeneous deformation, and we
do not need to calculate every interaction to compute U0.

Under the theory of quantum mechanics, the Helmholtz
free energy has the form of29

F�Fe,T� = U0�Fe� + kBT�
i=1

N

log�2 sinh���i�a�Fe��
4�kBT

	
 ,

�6�

where a= �a1 ,a2 ,a3�, T is the temperature, kB is the Boltz-
mann constant and � is Planck’s constant divided by 2�. �i

are normal mode frequencies for the lattice. They depend on
Fe through ai. It is possible to compute �i for some simple
type of lattices, e.g., a one-dimensional lattice with identical
atoms and quadratic potentials. For a general 3D lattice, one
simple way to compute �i is to adopt the local harmonic
approximation,32

m�ik
2 I −

�2U0

�xi�xi
 = 0, i = 1, . . . ,N , �7�

where �ik are the three frequencies for atom i. In general, the
frequencies are functions of the deformation gradient.

With F available, we can derive the expression for en-
tropy S,

S = −
�F
�T

=
kB

T
�

i
���i�Fe�

4�kB
	coth���i�Fe�

4�kBT
	

−
kB

T
�

i

log�2 sinh���i�Fe�
4�kBT

	
 �8�

and the internal energy E,

E = F + TS = U0 + kB�
i
���i�Fe�

4�kB
	coth���i�Fe�

4�kBT
	 . �9�

The governing equations at the coarse scale level are the
equilibrium equation and the first law of thermodynamics.
The former is written as

div P + �0B = �0ẍ , �10�

where P is the first Piola-Kirchhoff stress, �0 is the density in
material configuration, and B is the body force and div is the
material divergence operator.

The equation of thermodynamic first law can be ex-
pressed as34

ẇ = �0z − div Q + P · Ḟe, �11�

where �0 is the density, w is the internal energy per unit
reference volume, z is the heat source per unit mass, and Q is
the heat flux. The left hand side can be written as

ẇ =
E

Ve =
1

Ve

�E

�Fe · Ḟe +
1

Ve

�E

�T
Ṫ =

1

Ve

�F
�Fe · Ḟe

+
T

Ve

�S

�Fe · Ḟe +
1

Ve

�E

�T
Ṫ . �12�

If we define

P =
1

Ve

�F
�Fe , �13�

CT = T
�S

�Fe = − T
�2F

�T�Fe , �14�

CV =
�E

�T
= T

�2F
�T2 , �15�

then Eq. �12� can be rewritten as

ẇ = P · Ḟe +
CT

Ve · Ḟe +
CV

Ve Ṫ . �16�

Equations �13�–�15� are thermomechanical definitions of the
stress, the specific heat at constant temperature, and the spe-
cific heat at constant volume.

For the heat flux Q, we exploit the Fourier law,

Q = − �T � T , �17�

where �T is the thermal conductivity.
The final expression for the first law is obtained by sub-

stituting Eqs. �16� and �17� into Eq. �11�,

CT

Ve · Ḟe +
CV

Ve Ṫ = �0z + �T�2T . �18�

The derivation for the left hand side is now complete.
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The expressions for P, CT, and CV can all be derived
from the Helmholtz free energy F. They are listed below.

Pe�Fe,T� =
1

Ve

�F
�Fe =

1

Ve
�U0��F

e�

+
�

4�
�
i=1

N �coth���i�Fe�
4�kBT

	�i��F
e�
� , �19�

CV�Fe,T� = T
�2F
�T2

= kB�
i
���i�Fe�

4�kBT
	2

·
1

sinh2���i�Fe�/4�kBT�
,

�20�

CT�Fe,T� = − T
�2F

�T�Fe =
− �2

16�2kBT

��Fe����Fe�
sinh2���i�Fe�/4�kBT�

.

�21�

For the thermal conductivity �T, we exploit the result
from the kinetic theory,35

�T = 1
3CVv� , �22�

where CV is the heat capacity, v is the average particle ve-
locity, and � is the particle mean free path. For metals, we
have

� = vF� , �23�

where vF is the Fermi surface velocity and � is the collision
time. The values of both vF and � can be obtained from
standard references, e.g., Ref. 37. Since we already have the
expression for CV=CV�Fe ,T�, we can write �T as

�T = �T�Fe,T� .

Up to now, we have derived the expressions for P, CT,
CV, and �T, and all of them can be expressed as functions of
Fe and T. This facilitates our goal to use the FE method to
discretize the domain. The procedures to obtain FE equations
are as follows. We need the weak forms of Eqs. �10� and
�18�, which are written as

�
�0

�0ẍ · 	udV + �
�0

P · 	FdV = �
��0

t̄ · 	udS , �24�

�
�0

CV

�0
Ṫ	TdV + �

�0

CT

�0
· Ḟ	TdV + �

�0

�T � T · �	TdV

= �
�0

�0z	TdV + �
��0

Q̄ · �	TdS , �25�

where t̄ and Q̄ are given traction and heat flux at the bound-
ary.

The referential domain �0 is then broken into a set of
elements ��e� ,e=1, . . . ,Ne. The integrals in Eqs. �24� and
�25� are expressed as summations of integrals over �e. The
coarse scale displacement ū and temperature T are approxi-
mated by interpolation,

ū � Nud , �26�

T � NTT , �27�

where Nu and NT are shape function matrices36,37 for ū and
T. d and T are nodal displacement and temperature vectors.
It is easy to obtain that

F =
�x

�X
= 1 +

�ū

�X
= 1 + Bud , �28�

where Bu is the shape function derivative matrix for dis-
placement. So F is a function of d. Thus P, CT, CV, and �T

are functions of d and T with the FE approximation.
The final form of FE equations are

Mü = f ext − f int �29�

CVṪ + CTu̇ + KTT = hbody + hboun �30�

The matrices and vectors are

M = A
e
�

�e
�0Nu

eTNu
edX , �31�

f int�d,T� = A
e
�

�e
Bu

eTPe�de,Te�dX , �32�

CV�d,T� = A
e
�

�e

Cv�de,Te�
Ve NT

eTNT
edX ,

CT�d,T� = A
e
�

�e

CT
e�de,Te�

Ve NT
eTBu

edX ,

KT�d,T� = A
e
�

�e
�T�de,Te�BT

eTBT
edX ,

hbody = A
e
�

�e
�0zNT

eTdX ,

hboun = A
e
�

��e
BT

eTQ̄dS , �33�

where A is the assembly operator.36 Equations �29� and �30�
are nonlinear coupled equations for nodal unknowns d and
T.

In coarse regions we solve Eqs. �29� and �30� to obtain ū
and T. In fine regions we want to take advantage of the
additional information available, which is the atomistic posi-
tion q obtained through the fine scale model. The internal
force vector f int is then obtained by mapping the atomistic
force vector F to nodes. Similarly, in fine regions we use the
values of fine scale atomistic velocities to update coarse
scale temperatures. By doing so, the coarse scale model is
coupled with the fine scale model.

IV. THE FINE SCALE MODEL

As discussed in Sec. I, we should view the coarse scale
quantities as the mean field and the fine scale quantities as
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the fluctuation. The goal of our fine scale model, which is
built at the atomistic level, is to compute the fluctuations.

From Eq. �1�, we have the decomposition for velocities,

v = v̄ + v�. �34�

We claim that only the fine scale part of the momentum
contributes to the kinetic temperature,

3

2
NkBT =��

i

pi� · pi�

2mi
� , �35�

where 
 ·� denotes averaging in time.
In the classical concept of a thermal reservoir, an NVT

ensemble is embedded into an infinitely large thermal reser-
voir, whose temperature remains constant during an equilib-
rium process. For our multiscale model, we argue that in an
equilibrium process the coarse scale may be viewed as a
“coarse scale reservoir” since temperature is a macroscopic
or coarse scale quantity. Under this concept, each coarse
scale node represents a reservoir and governs a set of atoms
�see Fig. 3 for an illustration�. We call these subsets of atoms
nodal sets and the replica of these subsets in the phase space
nodal ensembles, and we call the collection of nodal en-
sembles the multiscale ensemble.

For a nonequilibrium process the same concept can be
applied if we adopt the local thermodynamic equilibrium
postulate, which is widely used in nonequilibrium
thermodynamics.9 To apply the postulate to our multiscale
model, we argue that the temperature of each coarse scale
nodal reservoir remains constant within each coarse scale
time step. Thus without external fields, the atoms of a nodal
set are assumed to be in a equilibrium state within one coarse
scale time step.

What raises the question mark is the fact that the nodal
sets of atoms are not isolated to each other. They are open
subsystems with flux exchange from each other. Although we
belive that the these subsystems are very closed to equilib-
rium within one coarse scale time step, the validity of the
local equilibrium postulate remains to be verified.

While the coarse scale mean fields are decided by the
coarse scale model, they act on the fine scale model as ex-
ternal fields. The idea of including the effect of macroscopic
quantities to the atomistic model has long been established

by NEMD researchers. For example, in the DOLLS �Ref. 14�
and SLLOD �Ref. 15� algorithms designed to simulate Cou-
ette flow the shear strain rate is included as an external field.
In our fine scale model the coarse scale velocities and accel-
erations are treated as external fields.

We propose that our fine scale adiabatic EOM for one
particular nodal set can be derived from the following
Hamiltonian:

Hadia�q,p�� = �
i

Ne 1

2mi
pi� · pi� + U�q� + �

i

Ne 1

mi
p̄i · pi�

+ �
i

Ne

ṗ̄i · qi, �36�

where Ne is the number of atoms in the nodal set e. Our
unknowns are total scale position q and fine scale momen-
tum p�. At each atom the coarse scale momenta p̄i and forces

ṗ̄i are obtained by interpolating nodal values. The equations
of motion are

q̇i =
�Hadia

�pi�
=

pi�

mi
+

p̄i

mi
, �37�

ṗi� = −
�Hadia

�qi
= Fi − ṗ̄i. �38�

The above equations are nothing but decompositions of ato-
mistic velocity and acceleration.

Remark 4.1: The physical interpretation of the term

�iṗ̄i ·qi in Hadia can be seen as follows:

ṗ̄i = − f int�xi� , �39�

where fint is the coarse scale internal force. So

�
i

ṗ̄i · qi = − �
i

f int�xi� · qi � − �
�e

f int · udx . �40�

We assume that the work done by coarse scale internal force
on fine scale displacements is zero,

�
�e

f intu�dx = 0. �41�

This assumption is valid if we view u� as fluctuations. With
Eq. �41� we obtain

�
i

ṗ̄i · qi = − �
�e

f intudx = − �
�e

f intūdx = − Ū . �42�

So �iṗ̄i ·qi represents the negative coarse scale potential en-
ergy. Now if we define a coarse scale Hamiltonian,

H̄ = K̄ + Ū = �
i

1

2mi
p̄i · p̄i + Ū , �43�

then we have

Hadia + H̄ = �
i

Ne 1

2mi
pi� · pi� + �

i

Ne 1

mi
p̄i · pi� + �

i

1

2mi
p̄i · p̄i

+ U�q� = K + U = Htotal, �44�

FIG. 3. Illustration of the finite-element nodal ensemble.
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where Htotal is the total energy. So Hadia represents the fine
scale energy.

As previously discussed, the temperature of a nodal set
is decided at the coarse scale level. To maintain the fine scale
model in a steady state, thermostats need to be added to the
model. Similar to NEMD, constant temperature MD is a
well-studied subject. Among different approaches, we are in-
terested in reversible and deterministic thermostats. Among
them, the Gaussian thermostat38,39 aims to preserve the sys-
tem’s �fine scale� kinetic energy. The Nosé-Hoover �NH�
thermostat40,41 tries to make the time average in the thermo-
stated system equivalent to the ensemble average in a con-
stant temperature system. The Nosé-Hoover chain �NHC�
thermostat42 extends the NH thermostat by using a chain of
thermostat variables. At equilibrium it can be proven9 that
both NH and NHC thermostats can reproduce a canonical
distribution, while the Gaussian thermostat can achieve the
same goal in the thermodynamic limit, and the NHC thermo-
stat outperforms the NH thermostat for stiff systems. The
Gaussian thermostat can be easily extended to nonequilib-
rium cases, while both NH and NHC thermostats experience
setbacks when the system is far from equilibrium.43–46 We
choose to adopt the NHC thermostat in our fine scale model
because it is easier to handle a varying temperature. With the
local equilibrium postulate, we expect the system to stay in
the range where the NHC thermostat performs well. In prac-
tice we found satisfactory temperature control. The numeri-
cal results are shown in Sec. 5. Adoption of the Gaussian
thermostat and the comparison between different thermostats
will be explored in the future.

With the NHC thermostat, the equations of motion be-
come

q̇i =
pi�

mi
+

p̄i

mi
, �45�

ṗi� = Fi − ṗ̄i − �1pi�, �46�

�̇1
e =

1

Q1
��

i

1

mi
pi� · pi� − 3NkBTe	 − �2

e�1
e , �47�

�̇ j
e =

1

Qj
�Qj−1� j−1

e 2 − kBTe� − � j+1
e � j

e,

j = 2, . . . ,M − 1 �48�

�̇M
e =

1

QM
�QM−1�M−1

e 2 − kBTe� , �49�

where �� j
e� are a chain of thermostat variables for nodal set e

and Qj are parameters associated with them. M is the length
of the NHC. Te is the temperature for nodal set e. Equations
�45�–�49� cannot be derived from a Hamiltonian. But the
following internal energy is conserved:47

HNHC�q,p�,�� = �
i

Ne 1

2mi
pi� · pi� + �

i

Ne 1

mi
p̄i · pi� + U�q�

+ �
i

Ne

ṗ̄i · qi + �
j=1

M
� j

2

2Qj
+ 3NkBTe�1

+ �
j=2

M

kBTe� j . �50�

Now we want to show that the equations of motion �Eqs.
�45�–�49�� generate the correct thermodynamics. The quan-
tity we want to study is f , the probability distribution func-
tion of the phase space. For simplicity, the following discus-
sion is sketched based on the NH thermostat instead of the
NHC thermostat. However, since the NHC thermostat is an
extension to the NH thermostat, all the conclusions can be
obtained for the NHC thermostat without fundamental differ-
ences. With the NH thermostat, �2

e =0 in Eq. �47� and we do
not have Eqs. �48� and �49�. Our domain of interest is a
nodal set e. All superscripts e are dropped to make the ex-
pressions less cumbersome.

The distribution f defines the density of points in the
phase space.48 It is a function of time and phase space vari-
ables, which are q, p�, and �1 in our NH thermostated fine
scale model. Since the atoms in nodal set e have the same
temperature, f should be canonical,48

f�q,p�,�1,t� = C exp�− H0�q,p��� � g��1� � h�t� , �51�

where

H0�q,p�� = �
i

1

2mi
pi� · pi� + U�q� . �52�

In Eq. �51� the exponential term is the canonical distribution
function for q and p�. g��1� is the distribution function for �1

and h�t� represents the coarse scale contributions.
Now we want to see whether or not we can obtain such

type of distribution functions. The starting point is the well-
known Liouville equation,

df

dt
= − f� �

�q
· q̇ +

�

�p�
· ṗ� +

�

��1
�̇1	 . �53�

From Eqs. �45�–�47� we can easily obtain

df

dt
= 3Ne�1f . �54�

Now we consider the following pseudoenergy measure:

H0
* = �

i

1

2mi
pi� · pi� + �

i

1

2mi
p̄i · p̄i + U�q� . �55�

We want to compute �d /dt�H0
*, which is carried as follows:
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d

dt
H0

* = �
i
� 1

mi
ṗi� · pi� +

1

mi
ṗ̄i · p̄i − Fi · q̇i	

= �
i

− 1

mi
�pi� · ṗ̄i + �1pi� · pi� + p̄i · ṗi� + �1p̄i · pi��

= − �1��
i

1

mi
pi� · pi�	 − �1��

i

1

mi
pi� · p̄i	

−
d

dt��i

1

mi
pi� · p̄i	 . �56�

Both Eqs. �45� and �46� are used to obtain the above result.
Inspecting Eq. �56�, we find that if the following equation
holds:

�
i

1

mi
pi� · p̄i = 0, �57�

we can obtain

Ḣ0
* = − �1��

i

1

mi
pi� · pi�	 . �58�

If we assume Eq. �57� is true, combining Eqs. �47� and �58�
yields

d

dt
�H0

* +
1

2
Q�1

2	 = Ḣ0
* + Q�1�̇1 = − 3NekBTe�1. �59�

By recalling Eq. �54�, we obtain

d

dt
log f = 3Ne�1 = − 

d

dt
�H0

* +
1

2
Q�1

2	 . �60�

We can then solve for f ,

f�q,p�,�1,t� = C exp�− �H0
* +

1

2
Q�1

2	

= C exp�− �H0 + K̄ +

1

2
Q�1

2	
 . �61�

So for one nodal set the distribution function is indeed ca-
nonical. This conclusion is based on Eq. �57�, which has not
been justified. Equation �57� can be rewritten as

�
i

1

mi
pi� · p̄i = p� · v̄ = v� · p̄ = 0, �62�

where p�, v�, p̄, and v̄ are fine scale momentum, fine scale
velocity, coarse scale momentum, and coarse scale velocity
vector of all atoms in �e, respectively. So Eq. �57� represents
the orthogonality between fine scale momentum and coarse
scale velocity vectors. It means that the total scale kinetic
energy is decoupled in terms of p̄ and p�.

For the present formulation, we are not able to prove that
Eq. �57� holds. However, it holds in other multiscale models
such as the bridging scale method.49,50 We have constructed
another multiscale formulation with a complete multiscale
Hamiltonian formulation that can also generate nonlocal ca-
nonical distribution. The detailed discussions of that algo-
rithm will be reported in a separated paper.51

We now examine the problem from a different perspec-
tive. With the assumption of linear response, the distribution
function can be written as9

f�q,p�,�1,t� = f�q,p�,�1,0� + �f�q,p�,�1,t� . �63�

Let us assume at time zero we have a canonical distribution
function,

f�q,p�,�1,0� = fc = C exp�− �H0 +
1

2
Q�1

2	
 . �64�

Then by procedures described in Ref. 9, the change of dis-
tribution function can be computed to be

�f�q,p�,�1,t� = − �
0

t

ds exp�− iL�t − s�� · ��
i

1

mi
�pi�ṗ̄i

+ Fip̄i�
 fc, �65�

where iL is the Liouvillean operator. Equation �65� states that
the change of the distribution function is independent of the
thermostat. This result assures that the NH thermostat as well
as the NHC thermostat does not destroy the canonical distri-
bution with the presence of coarse scale fields. This is a more
general statement in the sense that we do not need extra
conditions such as Eq. �57�.

With the understanding of properties of the distribution
function, we conclude that the proposed fine scale model can
reproduce the correct nonequilibrium thermodynamics. One
point is worth explaining: In the above discussion of the
distribution function, we view each nodal set as a closed
system. In practice the nodal sets are connected with each
other. So fluxes between nodal sets should have their contri-

butions when we compute quantities such as Ḣ0
*. We argue

that inside the whole fine scale model, i.e., the collection of
nodal sets, the effect of fluxes can be omitted with the local
equilibrium assumption. A more elaborated analysis will be
presented in a separated paper.

We end the section with a brief discussion of the PML in
our multiscale model. Please refer to Ref. 28 for a detailed
study. The PML has the same lattice structure as the fine
scale atomistic model. The equations of motion in the PML
zone are

q̇i =
pi�

mi
+

p̄i

mi
, �66�

ṗi� = Fi
lin − ṗ̄i + 2dipi� + di

2miqi, �67�

where Fi
lin is the linearized interatomic force. The expres-

sions for damping coefficients di are

di = log� 1

R
	 3v

2LPML

rPML,i
2

LPML
, �68�

where R
1 is a free parameter, v is the wave velocity, LPML

is the thickness of the PML, and rPML,i is the distance be-
tween atom i and the MD/PML interface.
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V. IMPLEMENTATION AND NUMERICAL RESULTS

A pseudocode for the complete multiscale algorithm is
given as follows:

�1� Start at tI
c, with �uI , u̇I , üI ,TI , ṪI�.

�2� Start at t0
f , with �qI,0

MD, q̇I,0
MD� and �qI,0

PML, q̇I,0
PML�.

�3� Set up heat reservoirs with temperatures TI.
�4� Do tf = t0

f : tncyl
f .

�5� Solve MD equations for �qI,i
MD, q̇I,i

MD, q̈I,i
MD� with each

atom associated with a heat reservoir.
�6� Solve PML equations for �qI,i

PML, q̇I,i
PML�.

�7� Fine scale cycle ends.

�8� Solve FE equations for �uI+1 , u̇I+1 , üI+1 ,TI+1 , ṪI+1�.
�9� Advance to tI+1

c .

We have ncyl fine scale time steps in one coarse scale time
step.

The explicit central difference method is used to inte-
grate coarse scale equations. For PML equations of motion,
the velocity Verlet algorithm47 is adopted. To integrate the
fine scale equations of motion, we adopt the VV-1 algorithm
described in Ref. 52. This algorithm is known to have prob-
lems for very long simulations of stiff systems.53,54 Under
the conditions of our simulations, they work fine. Neverthe-
less, it is definitely worthwhile to implement other algo-
rithms for NHC dynamics, e.g., Ref. 55, for comparison pur-
pose.

To validate the proposed coarse scale model, we exam-
ine the equilibrium distance of an atomistic system as a func-
tion of temperature in the absence of external forces. We
carry out a series of simulations, in which we first start at
zero temperature and then increase the temperature to a cer-
tain level. After the atoms reach their equilibrium state, we
measured the equilibrium distance among atoms at this tem-
perature by averaging the equilibrium bond lengths. For
comparison, we also compute the equilibrium distance at
various temperatures by minimizing the Helmholtz free en-
ergy F. For a given potential, this minimization can be done
analytically.

We choose the Morse potential with parameters for alu-
minum in the numerical example. The expression for the
Morse potential is

��rij� = De−2��rij−r0� − 2De−��rij−r0�. �69�

The parameters for aluminum are56

r0 = 3.253 A, � = 1.1646 A−1, D

= 0.2703 eV, and m = 26.98 amu. �70�

We used 100 atoms and 10 elements in the simulation. The
result is shown in Fig. 4. The result obtained from the
coarse-grained formulation is very close to the theoretical
result.

To illustrate how the proposed multiscale model captures
the thermomechanical coupling at small scale in a nonequi-
librium process, we simulate a problem of one-dimensional
thermostated sine-Gordon equation whose soliton solution
may be interpreted as the dislocation motion. The potential
energy of the system is

��r� = D�1

2
��r�2 + 1 − cos���r − r0��
 , �71�

where r0 is the equilibrium distance. D, �, and r0 are chosen
as the same ones in Morse potential for aluminum. We simu-
late a domain of �−300r0 ,300r0� with a total of 60 FE ele-
ments. The fine scale domain is at �−60r0 ,60r0� and consists
of 120 atoms. The PML at each side has 15 atoms. The
coarse scale time step is 10−13 s and the number of subcycles
per coarse scale time step is 10. We have a total of 12 ther-
mostats. Each thermostat governs ten atoms.

We compute three cases. The first case has a uniform of
100 K initial temperature. The second case has a uniform of
10 K initial temperature. For the third case we have a 0 K
initial temperature at �−300r0 ,−60r0� and a 200 K initial
temperature at �60r0 ,300r0�. At the fine region �
−60r0 ,60r0� the initial temperature varies linearly from
0 to 200 K. In all cases we have a random initial velocity.
The magnitude of the velocity is adjusted so that the initial
kinetic energies are 100, 10, and 100 K for the three cases.
The initial displacement is set to be zero in all three cases.
The length of the simulation is about 600 coarse scale time
steps.

Figure 5 shows the histories of the displacement field of
one-dimensional “dislocation motion” or soliton motion un-
der different initial temperatures. For the same initial distur-
bance, the displacement profile for the initial temperature T
=10 K is almost negligible, whereas for the initial tempera-
ture T=100 K one can observe the motions of solitons or
dislocations. This suggests that a higher initial temperature
will trigger solitons or dislocation motions. This result agrees
with the observation in a similar NEMD simulation reported
in Ref. 12. Furthermore, for the case �c�, one may observe
that the displacement waves have higher amplitude in the
higher temperature region. This is another indication of the
thermal activation of dislocations. The multiscale simulation
results are juztoposed with the simulation results based on
the coupled thermal-mechanical macroscale formulation:
Figs. 5�d�–5�f�. One can find that the temperature fluctuation
has significant effects on the displacement field.

FIG. 4. Comparison of the equilibrium distance between atoms.
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To study the thermomechanical coupling, the histories of
the coarse scale temperature evolution for all three cases are
shown in Figs. 6�a�–6�c�. We find that in the first two cases
that the dislocation motion” or the soliton propagation trig-
gers temperature fluctuations. Such temperature fluctuation

follows the dislocation motion and propagates from fine
scale region to the coarse region. However, the magnitude of
the fluctuation is limited to about 10% of the total tempera-
ture. For the case with a temperature gradient, we find that
the temperature gradient also propagates with dislocation

FIG. 5. �Color� Simulations of thermal activation of dislocation. �Displacement histories� Multiscale simulation: �a� T0=10 K, �b� T0=100 K, and �c�
non-uniform initial temperature. Macroscale simulation: �d� T0=10 K, �e� T0=100 K, and �f� non-uniform initial temperature.
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motion toward the region with higher temperature. More-
over, the slope of the temperature distribution reduces with
time, which indicates that the steady-state, coarse scale heat
diffusion phenomenon is correctly captured and predicted by
the proposed nonequilibrium multiscale algorithm. Again,
the multiscale simulation results are compared with the
macroscale-only simulation results: Figs. 6�d�–6�f�. One may

find that the coarse scale temperature evolutions are visibly
different for two types of simulations, and these differences
are solely attributed to the fine scale temperature fluctation.
It should be noted that both the heat conductivity coefficient
and the specific heat coefficients are evaluated based on the
coarse graining or quasicontinuum thermodynamics, and
they are kept the same in both the multiscale simulation and

FIG. 6. �Color� Simulations of thermal activation of dislocation. �Coarse scale temperature histories� Multiscale simulations: �a� T0=10 K, �b� T0=100 K, and
�c� temperature gradient case. Macroscale simulations: �d� T0=10 K, �e� T0=100 K, and �f� nonuniform initial temperature.
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the macroscale simulation. Realistically, temperature fluctua-
tion will affect those coefficients as well, which becomes
especially significant in small scale. Therefore, those coeffi-
cients should be reevaluated after each cycle of coarse scale
integration in each finite element. This can be done either
based on the transport theory or based on the ratio between
heat flux and temperature variance. Only if this procedure is
correctly carried out, the proposed multiscale simulation will
be a precise nonequilibrium simulation. This part of the work
will be reported in the subsequent work.

Figure 7 shows the fine scale temperature distribution at
the final time step when the mechanical disturbance has al-
most passed through fine scale region. We find that the NHC
thermostat provides a good temperature control mechanism
to maintain correct temperature distributions in the first two
cases, i.e., the near constant thermodynamic temperature dis-
tribution. For the third case, one can find that qualitatively
the kinetic temperature distribution is almost linear over the
fine scale region, which is in accordance with the prescribed
thermodynamic temperature distribution.

VI. CONCLUSIONS

In this work, a multiscale formulation is proposed to
simulate nonequilibrium thermomechanical processes in
small scale lattice systems. The proposed nonequilibrium
multiscale model not only provides a means to perform con-
current multiscale simulations of relative large system with
local atomistic resolution but also reproduces the correct un-
derlying statistical physics. Both aspects have been the chal-
lenges in the multiscale computation. The proposed multi-
scale formulation connects the fine scale statistical
mechanics to the coarse scale deterministic responses. It has
been shown that the proposed multiscale formulation can
accurately capture the coarse scale mean field, and it can also
provide the fine scale fluctuations in localized regions.

The proposed model also raises many questions for the
multiscale simulation from both theoretical aspects and nu-
merical aspects. For example, how should we relate and uti-
lize linear response theory in a multiscale simulation? These
questions shall be addressed in future researches.

FIG. 7. Instantaneous kinetic temperature �fine scale� profiles at t=600�t: �a� T0=10 K, �b� T0=100 K, and �c� temperature gradient case.
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