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Abstract

A micro/nano-scale computational contact mechanics model is proposed to study the adhesive contact between deformable bodies. To moc
adhesive contact, an interatomic interaction potential is incorporated into the framework of nonlinear continuum mechanics. The ensuing contac
model is cast into an efficient finite element formulation which is implemented using an updated Lagrangian approach. The scaling of the
model with respect to its geometrical size and the strength of adhesion is investigated. The proposed computational contact model is validate
by a comparison with the analytical JKR and Maugis—Dugdale models.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction limitations: They are restricted to infinitesimal deformations
and special, e.g. spherical, geometry. To obtain more general
In this work we consider dry adhesive contact between smallmodels, the authors of11,12] have considered finite ele-
scale, continuum bodies. The adhesive contact interaction b&ent approaches to model adhesive contact. These approaches
tween two bodies originates from the interaction of individualachieve to generalize the geometry and they have been suc-
atoms belonging to the bodies. These interatomic interactiongessfully validated by the JKR and M-D models. However,
are characterized by weak, long range attraction and strond} both [11,12] the interaction between the contacting bodies
short range repulsion. Adhesion is particularly strong if the bodis not taken into account since one of the bodies is supposed
ies are highly compliant, so that a geometrically exact, largeto be rigid, thus decoupling the deformation between the two
deformation description should be considered. bodies in contact and simplifying the computational treatment
The first adhesive contact model to appear is the widelygubstantially. In oder to capture the interaction of largely de-
used JKR theory by Johnson et §l]. The JKR model is forming bodies during adhesive contact, a more general model
an analytical model which extends the non-adhesive Hertziai$ called for.
contact theory (e.g seR]). In the wake of the JKR model General large-deformation contact between deformable con-
other theories followed, most prominently the DMT model bytinua has been extensively studied by the field of computational
Derjaguin et al[3] and the Maugis—Dugdale (M-D) modd]. ~ contact mechanic 3,14] Here, the research has been driven
Although these models have been successfully applied to studgrgely by the study of contact at the macroscale. From the
rubber adhesiorfl], MEMS stiction [5], adhesion of living macroscopic viewpoint contact is perceived as the impenetra-
cells [6], nanoindentatiorj7,8], atomic force microscopy9]  bility of two continua and is therefore usually modelled as
and the adhesion used by the Gefkd), they have some major a constrained optimization problem. Two bodies approaching
each other do not interact as long as there is a gap in between.
As the gap closes the impenetrability constraint becomes
* Corresponding author. suddenly active. At the nanoscale, on the other hand, the tran-
E-mail addressrogers@ce.berkeley.ed®.A. Sauer). sition is smooth and ranges from the weak attraction of bodies
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well separated to the strong repulsion between bodies squeezeith these are the two deformation gradiefts = Grade,
together. It is this smooth behavior and its atomic foundatiorand F»> = Grade,, where the gradient operator is taken with
which characterizes the interaction of nanoscale bodies. Thesespect to the reference configuratidhg andQ,0. The bodies
mechanisms carry over to the macroscale as can be seen by e subjected to the usual prescribed displacement and traction
adhesion used by the GecKD,15] On the toes of the Gecko boundary conditions. The internal response of each body is
millions of tiny spatula-shaped hairs, nanoscale in dimensiongonsidered as hyperelastic, i.e. it is described by the internal
interact with an underlying surface leading to very strong adpotential
hesive forces and enabling the animal to cling to very rough or
smooth surfaces. Iin = wW(FE)dv, Q)

In view of existing approaches, the objective therefore arises Qo
to incorporate the interatomic interaction occurring betweerwhere W (F) is the stored energy density in the reference
two deformable bodies into a computational, large-deformationgonfiguration. It follows from the chosen constitutive relation
continuum mechanical framework to study dry adhesive conmodelling the material response. One such choice is the
tact for small scales. At such scales the interatomic interactiogtomistic-based Cauchy—Born rule, which has been used to
can lead to the strong coupling between large regions of thgreat extent in the literature, e.g. sgk7] and references
bodies, so that from the numerical viewpoint it further becomesherein. The conjunction of the Cauchy—Born rule with the pro-
important to formulate efficient algorithms. posed CGC model has been studied in our earlier b8k

In [16] the present authors have proposed a largeinstead of the Cauchy—Born rule one can also consider a phe-
deformation, continuum contact model based on interatomigomenological energy density functig¥ like a Neo-Hookean
interactions. These are homogenized, or coarse-grained, frogt related model, e.g. s¢#8].
the molecular dynamics description and the model is therefore Returning toFig. 1, we consider two generic points, denoted
termed the ‘Coarse-grained contact model' (CGCM). In thatpy X; € Q19 and X € Qo9 in the material domain and by
work, the focus has been placed on the theoretical develop, € Q; andx, € Q5 in the spatial domain. Further, the atomic
ment of the model and its efficient implementation within aor particle densities in the two respective configurations are
nonlinear finite element framework. The present paper servagenoted byB10 and i, (in number of particles per reference
to extend the previous work: The general behavior and scalingolume), and; andp, (in number of particles per current vol-
of the CGCM are further investigated and its application toume). The two descriptions are related by the Jacobian deter-
adhesive contact mechanics is considered. In the following tweninant of the mapping, as
sections we review the theory and FE implementation of the
CGCM. Section 4 discusses its general behavior in dependende = /8. J = detF, 2

of two model parameters, which characterize the geometricq}a”d for both bodies. In view of the relatiorvd= J dV be-

scale and the strength of adhesion. In Section 5 we validatg ey the volume differentials of the spatial and material con-
the model by comparing it with the analytical M-D model. iy, ations; it becomes apparent that the number of particles in
Conclusions are drawn in Section 6. a given volume is conserved, i.e. we have

2. Continuum mechanical framework BodV = fdv = const. €))

This implies that, for now, we are not considering a flux of
articles from, or into the bodies.

_ Within the CGC model the interaction between the two con-
Sinua is modelled based upon the interaction of individual par-
ticles. For this, we consider that the interaction between two
%articles located at; andxp, with distancer = |x1 — X/, is
modelled by a two point potential(r). In generalg(r) may

be any potential applicable to the nature of the interaction be-
tween the particles; see for instar{d®] for a comprehensive
overview. A particular example is the van der Waals interaction,
which is typically modelled by the Lennard-Jones potential

s =)= 2(2)" @

r

In this section the proposed model, the CGCM, is formulate
in the framework of large deformation continuum mechanics.
We start by considering the interaction of two bodies as
illustrated inFig. 1 The bodies are denoted 810 and Qg in
their reference configurations. Their current configurations ar
denoted by21 andQ,. The deformation from one configuration
to the other is described by the mappiggsande,. Associated

Here rg is the equilibrium distance where the forégr) =
—0¢(r)/0r vanishes, anelcorresponds to the energy wellat
ro. Integration over all pointg; andx; leads to the interaction
energy

Fig. 1. Nanoscale continuum contact mechanics.

e = /Q 1 fQ Babab) v, (5)
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for the two interacting continua. Such a continuum approachigid, such that the integration domains in Eq. (10) become
dates back to the 1930s with the works of Brad|2@] and fixed. This corresponds to the approach of infinitesimal contin-
Hamaker[21], who have evaluated (5) for rigid spheres. In uum mechanics, where equilibrium is formulated on the unde-
recent years the interaction enerffy: has been considered in formed configurations.
the numerical study of carbon nanotubes in the works of Arroyo Collecting the term of Egs. (7)—(9) above, the principle of
etal.[22] and Qian et a[23]. The novelty of our approach is the stationary potential energy yields the weak form
general setting within large deformation continuum mechanics
and its efficient implementation into a numerical framework,
such as the finite element method. It is noted that, due to a cuto
range of¢, the interaction can be restricted to the subdomaing =*
Q1 C Q1 andQ, C Q5 shown inFig. 1 _/ dor - B;by dvl} =0 Vog,, (12)

With the definition of the internal energifin: (1) of each Q
body, their interaction energy/c (5), and the further presump-  overning the quasi-static two-body-interaction. We note that
tion of the existence of an external enerffyx, the system e gerivation above can be extended to dynamic, impact-type

shown inFig. 1 becomes conservative and is governed by g,rgplems by including the kinetic energy of the two bodies. For
variational principle. Its total potential energy is given by this we refer to our earlier work.6].

2

|:/Q grad((S(p,) L0y dU[ — 5Hext,1
I

(Tint.; — Hexts] + e, (6) 3. Efficient finite element implementation
1

=
1
The weak form (11) is implemented within the finite element

wherel =1, 2 denotes the two bodies. Quasi-static equilibriumyethog using an updated Lagrangian formulation, e.gi2se
then follows form the principle of virtual work statemeiil = For this, the displacemeni=x — X and its variationje are
0. The variation of the internal enerdyi,; of each body can approximated by the nodal sums

be written as

Nno

ot = [ grad(ée) : ac, @ U~ 3 N,
Qo 1
.. . no
where dgp denote_s the variation of the ‘Totloa,denotes the Bp(x) ~ Z N OOV (12)
Cauchy stress field and the operator ' denotes the tensorial 7
inner product. The external energy of each body is considered o
such that its variation can be expressed as Herenno denotes the total number of finite element nodes of the
two-body systemy; andv; denote the nodal values of fields
5Hext=/ ¢ - bdv +/ ¢ -Tda 8) andde, andN; (x) denotes the finite element shape functions.
Q I, ' In its discretized form, Eq. (11) is then written as

whereb andt denote applied body forces and surface tractionsy ' [fint + fc — fext] =0 WV, (13)
With the help of relation (3), the variation of the interaction

energyllc becomes whereu andv are the stacked vectors of all nodal valugs

andv;, and wherdjy, fc andfey; are force vectors acting at

N 0¢ 00 the finite element nodes. Eq. (13) holds for all variatiorso
ollc = /Ql /Qz BBz <6_X1 Hog1+ o 5(‘”2) dvz dvg that equilibrium is given by the nonlinear equation

= — f d@1 - fybrdug — / d¢2 - fobo dug, 9 f=fint+fc—fexx=0, (14)
Q1 Q)

which we assemble from the element level and solve using the

where we have identified the'body forces Newton—Raphson method. We emphasize that the internal and

2 external contribution§n; andfey; are in the same form as they
bi(x1) := T P2(x1) 1= /Q P2 d(r) dva, are usually treated in continuum mechanics. For instance, in the
od, 2 updated Lagrangian formulation, the elemental contribution to
bo(x2) := T D1(X2) := /Q f1 d(r) dvs. (10)  the internal forces is given as
1
This leads to the following physical interpretation: the mutualfiy; = /Q BBLG dv, (15)

presence of the two continua leads to body forces acting on

both bodies. The body forde; acts atx; € 21 and depends where By is the strain—displacement matrix, e.g. §&8].

on the current shap@, of body 2; the body forcd, acts at For the rest of this section, our attention is devoted to the
X2 € Q2 and depends on the configurati@a. Such is the con- novel contributionfc arising from the interaction potential
tinuum nature of this interaction. We note that the interactionlI¢ (6). On the element level, the two-body interaction leads
is substantially simplified if one or both bodies are consideredo the interaction of individual finite elements. Based on
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expression (9) the interaction of an elemélfte Q1 and an by = —0®,/0x; (= 2 or 1) where the fieldp, follows by
eIementQj. € Q; expresses itself by the two contributions (no analytical integration as
sum on indices!)

9 3
1/ r 1( r
0 @ ._/ dvy, — sl (o) _ (8
_ T . : v TThyer,
fe /;/;’-N"ﬂ"ﬂfa_x,-d”’dv“ 0= Jo Pode=mhes e\ r ) ~a\r

0 a7)
fc,,:/ / N]Tﬁiﬁj—d)dv,-dvi, (16)
@ JQ 0x; Herer,f’ denotes the distance betwegnand the surfacé,.

whereN; andN; are matrices containing the shape functionsTo.ev"’lllpu""te (1.7) we need to de_termme the clogest projection
pointx, , of pointx; onto0Q,, as is shown in the figure. Here

of the nodes of elemen®? and Qj and whereg;, ; are the we have defined
current densities at; € QF andx; € Qj In Eq. (16)fc; is

the force acting on elemef’ while fc ; is the force acting on PP x P_ Py fP . rf 18
elementQ¢. We note that, due to a cutoff radiusof potential '« = %k — ™ Tk = Il T = E' (18)

¢, beyond which the interaction becomes negligible, not all el-

ements of the two bodies interact: Only elements pairs whosb is noted that this approximation becomes very accurate if
distance is below; interact. The formulation above has beenthe surface curvature and the densftyof @, do not vary
implemented and studied in our previous w@tl§]. It is the  strongly within the cutoff radiusc. Compared to the original
most direct formulation following from Eq. (9) without intro- formulation of Eqg. (16), we can thus reduce the double volume
ducing any further approximation apart from (12), which be-integration to a single volume integration. As a further approxi-
comes arbitrarily accurate by refining the finite element meshnation we reduce the remaining volume integration d¥eto

In [16] we have illustrated that this formulation can become@ surface integration ové; by writing dv, =F/ - ny dr day,
computationally costly. The reason for this is that, even wheraiccording taFig. 2, and integrate analytically aloﬁé’ , the di-
considering a cutoff radius,, any pointx of one body is influ-  rection of @. This corresponds to projecting all body forces
enced by aolumeof the neighboring bodly, also termed the ‘in- by inside 2 and acting on the line along the directitfy, i.e.
fluencing region’. We showed, that by introducing reasonablevhich have the same projection poiq,"t, onto the surfacég.
approximations on the evaluation of integral (9), the influencing~or this the body forcéy is written as

region can be reduced to a surface area, which leads to a sur- » »

face interaction method. Depending on the FE discretizatiorbk(x )= _a‘pf(rk ) _ 09 al = —F,( PP (19)
such a method becomes much more efficient while still giv- Xy orf o Kk

ing excellent accuracy. At most, the region of influence can be

reduced down to a point, which introduces further approximawhere we havedr/ /ox; = —; and where the force, :=
tions but gives a highly efficient method. This strategy, denoted-0%¢/dr; follows readily from Eq. (17). The projection of all
by Method 3 in[16], is outlined below. The idea of Method these forces acting anrfj’ onto 0Qy is then obtained by the

3, the ‘point formulation’, is simple: instead of obtaining the integration

body forcesh; andby, given in Eq. (10), by numerical integra- o

tion over the deformed configuratio®y andQz, we approx-  Fg(rg) := / Fo(r)dr = &4 (rg), (20)
imate these domains by simpler shapes, over whiatan be rs

integrated analytically. In the following we will consider ap-
proximating each domain in Eq. (10) by a flat half-space with
constant density and consider to be given by the Lennard-
Jones potential (4). This case is illustrated-ig. 2 The body
force acting at the generic poinj; (k =1 or 2) is given by

so that the nodal force vector acting on a surface elemgnt
discretizingdQ is given by the surface integral

fck =/ N/IﬁkFS(VS)F]f cosuy, day. (21)
Iy

HereNy, is the matrix containing the shape functions of element

I't and we have defined cag := f,f - ng. We note that above

the densityf, is assumed constant along, s it otherwise

appears inside the integration of Eq. (20). It can be seen, that

from the numerical point of view, Method 3 (21) is much more

efficient to evaluate as the original formulation (16), since the

double volume integration is replaced by a single surface inte-

gration. For this, we have approximat€y in the vicinity of

x,f by a flat half-space with constant density and assumed

the densityp, of @ to be constant along. We further note

that numerically, the projection poile depends on the cho-

Fig. 2. Method 3: Closest point projection and approximatio®efby a flat ~ S€n surface discretization. The case of linear surface elements

half-space. in described in further detail ifl6].
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In closing this section, we discuss how the approach preg
sented above relates to some of the computational methods tra-
ditionally employed for contact mechanics problems, e.g. se&
[13,14] Method 3 can be seen as a ‘Barrier Method’, where
the barrier function is modelled upon an interatomic potentia
¢ and thus captures some of the physical aspects of atom { ‘
interaction. Compared to common contact approaches like thed
Penalty, Lagrange Multiplier or Augmented Lagrangian meth- [
ods, the proposed method presents some real advantages. Fi
the surface integral (21) can be evaluated for all surface el
ments regardless of their distance to the neighboring body, thu
avoiding the distinction between active and inactive constraintg FHH
needed for the traditional approaches mentioned above. Seco
since the presented formulation is purely displacement basee
one does not need to consider the LBB or inf-sup condition,_. . W .

- . . . Fig. 4. Finite element discretization of the model problem: (a) Entire mesh;
characterizing numerical stability of mixed method approaches,; 5. of the contact region.
e.g. sed26] and references therein. An important test to as-
sess the accuracy of a given contact formulation is the contact
patch test proposed by Taylor et i27] and later modified by . . ) ) ,
Crisfield[28]. It can be verified that Method 3, proposed above odulus in the linear case, will be varied. The two bodies
passes the patch tei9]. In summary, Method 3 avoids the ar€ pushed together by the relative approactvhich causes
LBB condition and passes the contact patch tes{30] the e resultant force®. We further suppose thaly := f10 =

authors argue that some of the existing contact algorithms, déo- A finite element mesh used to compute the results of the
not satisfy the LBB condition or the contact patch test. CGC model is depicted iffig. 4. It contains 1515 nodes and
1408 elements. It can be seen that the half-space is modelled

by a block of size 81 x 8R1, which is sufficiently large to
eliminate spurious boundary effects. The enlargement (b) shows

In this section we consider a simple axi-symmetric bench_the initial gapg between the tip of the sphere and the half-space

mark problem and study the general behavior of the conta&eneath'
model derived in Section 2. The study here confirms and ex- o _
tends our initial study of the plane strain example reported irf-2. Normalization and scaling of the model problem

[16]. The foremost attention here is placed on the scaling of
the CGCM. The quasi-static formulation of the CGC model can be fully

normalized by selecting a reference len@$and a reference
energyEg. We choose the radius of the sphere as our reference
length, i.e.Rp = R1. It is an overall, macroscopic length scale.

To illustrate the physical and numerical behavior we investi—On the other hand, the interatomic equilibrium spacta@f

gate the following model problem. Consider the axi—symmetricDOtemie_ll‘Zs (4) represents an intrinsic, micros_copic_length scale.
contact between a sphere with radiks and a half-space The ratio between these two length scales is defined by

(R2 = o0) as shown irFig. 3. Both bodies are modelled by a Ro

nonlinear, hyperelastic (e.g. Neo-Hookean) constitutive model. ‘= 7~ (22)

with constantsY := E1 = E2 andv := v1 = v2. The latter,

which corresponds to Poisson’s ratio in the linear case, is fixett is a non-dimensional parameter describing the size of the

at v = 0.2. The parameteY, which corresponds to Young's considered problem. If; = @(1) the geometry is of nanoscale
proportions ¢ 10~ m and below) and contains only few inter-
acting atoms; ag; increases the geometry becomes larger and
larger, containing more and more atoms. (Valuesfox (1)

4. General behavior of the CGC model

4.1. Benchmark problem

e R are not considered here, as the continuum modelling breaks
lp ! down at some point.)
The reference energ¥o is chosen based on the internal

energyIlin: (1). As an example we consider a Neo-Hookean

2% R constitutive model with

2
W=UW+Eu -3 —uny, (23)
Es, vy TP 2

whereU (J)=AIn(J) is the chosen volumetric response, where
Fig. 3. Axi-symmetric contact between a sphere and half-space. J = detF and I =tr (FTF) characterize the deformation and
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where A and p are material constants, which are proportionalwhich increases linearly with the length scalg due to the
toY. In view of this proportionality we define fact that, from the macroscopic viewpoiiif;,; increases by the
volume whereaglc increases with the surface area. Secondly,
to assess stability one has to look at the stiffness. The deforma-

as areference value of the internal energy densityaid fur- tion of the solids is of the order afg, whereas the sizg of the
ther, in view of Eq. (1) we define eeference quantity of the 9aP changes by the ordermf It thus follows that the stiffness

VVint,O = Y! (24)

internal energylTin; as associated witllTin; is characterized by theeference quantity
. - 3 II:

Mo = ¥R, @) Kmoi= 150 =vko, (31)

For a given deformation, i.e. constait the internal energy 0

IIint scales with the volume. This is reflected Byt o, which
is also constant for progressing deformation. We chdase
IIint0 @s the normalization parameter of the CGC model.

which is proportional to the derivativéITint,0/0R2, while the
stiffness associated witH¢ is characterized by theeference

Similar to the internal energy density, discussed above, quantity
we define the ‘interaction energy density’ Hco
Kco = —5 = WcoR§/ro, (32)
We = cofod, (26) o

which is based on the interatomic interaction potenfiadnd  which is proportional to the derivativ@IIc o/0r2. Therefore

the atomic densitys,. Hereco is an arbitrary constant factor, the stiffness ratio betweekiin: g and K¢ o follows as
which is introduced to adjust the formulation. In order to nor- '

malize the FE nodal force vectts ; (21) the choiceo:ﬁorg, __ Ko 7w
which is a material constant, is particularly convenient. The/K = Kco E
equilibrium energy of the potentiap is characterized by the

material constant. With this in mind we further definéhe  which decreases for increasing length scajesdue to the fact

(33)

reference quantity that, asy; increases, the intersolid, contact stiffndég g in-
creases with respect to the internal, bulk stiffn&sg, 0. Sev-
We,0 1= cofoe, (27)  eral aspects of the behavior of the interacting two-body system

can be explained by looking at eith&fnt o, Kc,0 Of yg, as is
discussed in later sections.

We summarize that we have defined two paramegysnd
Eo, to normalize the CGC model, and two parametgysand
yw to investigate the scaling of the model. The scaling, which
is examined in the following two sections, is determined by
relative changes in; andyy,, their magnitudes are arbitrary
it scales with the volumeg. Depending on the scaldlc is vaIL_jes, Which_ follow from the previous_ definitions. In_ the re-
thus perceived as a surface energy or a bulk energy. In Vie\gpamder of this paper we use the equivalent parameiers
of this scaling we define theeference value of the interaction V374, andiy =3y
energylic as

which is a material constant lik&int 0. Associated with the
density W is the interaction energ¥ic of the two solidsQ4
andQ, given by Eq. (5). Due to the rapid decay¢fthe energy
IIc only penetrates a distance proportionatganto the solids
and it therefore scales b%ro, i.e. from the macroscopic point
of view (for largey; ) it scales with the surface aré% of the
bodies, whereas from the microscopic point of view= (1))

4.3. Scaling of the geometry

Ilco = WC’QRSI’Q = ﬂ(Z)SR(Z)rg. (28)
Next, we define the ratio between the energy densitigso _ This section illustrates hqw the CGC_: model behaves for var-
andWc o as ious length scaleg; . For this we consider the energy density
' ratio fixed aty,; =200 and compare the behavior for the seven
_ Winto Y casesy; = 2, 5,10, 20, 50, 100, 200. Fig. 5 shows the depen-
VW L - ’ (29)
Wco  cofoe dence of the load® (1) and gapg (1) on the approach as the

which is a problémespecific constant siféeco, B ande are two bodies come into contact. The seven curves displayed in
P P 0. Po ¢ both frames (a) and (b) correspond to the list of paraméters

t_reated as materi} const_a nts. Wiin(22) andVW. we have de- . . The curves are computed with Method 3 using sufficiently small
fined two parameters which control the behavior of the consid-

. . . isplacement incrementsu for the shown curves to appear
ered model problem. The scaling of this problem, with respec . )
. . . . smooth. The overall behavior of the load—displacement curve
to y; andyy, is discussed in the following two sections. Be-

: P (u), shown in frame (a), and the gap-displacement curve
fore proceeding, let us comment on some consequences of th . . .

S g?u), shown in frame (b) is characterized by three phases. We
definitions above. he fi h said oh h h .

First, let us define the continuum energy ratio term the first phase th gid phase where the two bOd'e.S ap-

' proach each other rigidly, without yet interacting. During this

_ Hinto 30 phase the force between the bodies and thus their deformation

= Hco LTws (30) is zero; the gap decreases linearly. The second phase, termed
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Fig. 5. (a) LoadP («) and (b) Gapg () in dependance of; , for yy, =200.
Fig. 6. (a) LoadP(u) and (b) Gapg(«) in dependance ofy,, for y; =50.

theadhesion phaseés characterized by an attractive (here neg-
ative) forceP. During this phase the slope gfu) becomes
steeper, i.e. the rate of change of the gap increases. The thi
phase is characterized by a large repulsive fdPcend only
slight changes of the gagp This last phase is termed tleen-
tact phase

Fig. 5 shows the self-similarity ofP () and g(u#) across
the geometrical scaling. In particular, as the length seale
decreases, it can be observed that the gap and the minimum
Pmin Of P(u) (i.e. where the adhesive attraction between thet.4. Scaling of the energy
two bodies is strongest) decrease and attain their minima for
larger displacements. Further, frame (a) shows that, during In this section we assess the influence of the energy density
the contact phase, i.e. for large positReghe behavior of? (1) ratio yy, on the behavior of the load, stiffness and gap. For this
is essentially unchanged for varioyg: the curves all adopt we fix the length scale g, =50 and consider the seven cases
the same stiffness as represented by the s®jge) in Fig. 5. 7y,=20, 50, 100, 200, 500, 1000, 20@8g. 6shows the behav-
The reason for this behavior is that during the contact phase ther of P (1) andg(u) for the consideredy,. It can be observed
increasing approach does not result in the decreasing of the gépat the maximum adhesioBnin decreases agy,, increases,
but is rather accommodated by the deformation of the solidsvhereas the contact stiffness and contact gap only depend
Q1 and 2, whose stiffness is characterized Kyt o which is  slightly of yy,. Furthermore, it can be observed, that below a
independent of; . During the adhesion phase on the other handhreshold value oy, the adhesive approach turns unstable, as

changes in the displacement are accommodated by changes of
gfwhich are characterized by the dependent stiffnes&c, o),
rather than by the deformation of the bodies.

In summary it is seen that, determines the beginning of
the adhesion phase, the magnitude of its extrenf4iy and
the size of the contact gap. On the other hand, the siBpe)
during the contact phase is hardly affectedyby
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occurs for the casegs, =50 and 20. For these cases the bodies 2 : : :
are very soft compared to their mutual attraction. As the bodies _ JH;;Z()\ DzMooT) (A=0)
approach each other the strength of attraction becomes so large 15 M-D, A = 1
that the stiffness of the two bodies is overwhelmed and they
snap together suddenly. Likewise as one separates the bodigs 1
they will suddenly snap apart. In the literature, this behavior is ¢
often referred to as ‘jump-to-contact’ and ‘jump-off-contact’, 2 05 t
e.g. se€31]. The unstable equilibrium path is marked as a s
dashed line irFig. 6. The appearance of this physical instabil- :8 0 : -
ity can be explained by the parametger. As v, decreases (due § o PRt
to the decreasing ofy,) the strength of adhesion, character-  -05 : v
ized by the stiffnes% ¢ o increases with respect to the internal f ." H
stiffnessKint,o. -1 r o ';: =A
Note that the load—displacement curve shownifgr= 20, N \
is not smooth but slightly oscillating. This is due to a dis- -1-5 = ' ' ' - '
cretizational error: for smally,, the surface deformation S ot 05005 ! 15225
becomes very large, due to the strong adhesion, such that Radial distance rfa

further mesh refinement is needed to improve the results.
The casey; = 50, y = 200 and the casg;, = 50, y = 20
are further examined in the examples of the following

Fig. 7. Pressure Distribution between the contacting bodies.

section. elastic modulus
5. Comparison with analytical contact models I -
E = 5 + B, ) (34)
1 2

This section aims to validate the proposed CGCM. Therefore,
the CGCM is compared with the prominent analytical theoriesand the reduced radius
developed for the contact of spherical bodies as showign 1
3. We start by summarizing these theories in the section belowg ._ <i + i) _ (35)
their relation and comparison with the CGCM follows in the Ri Rz

preceding two sections. Further we consider the normalization of the foR;éhe contact

i radiusa, the approacts and the pressune as
5.1. The Maugis—Dugdale (M—D) model

5._ P 3._ 3 4E
The earliest contact model was obtained by Hertz in 1882{D T awr ¢ T¢ 3rwR2’
e.g. seq?]. His theory, however, does not account for adhe-_3 3 16E2 3 3 OR

sion between the contacting bodies. In the 1970s the Hertziah ‘= 9 92w2R’ p=r onwE2’ (36)
model was extended by the JKR] and DMT [3] theories . . o . .
to include adhesion. The JKR model applies to the limit casévherew is thework of adhesiorwhich is measured in units

wheny,, — 0, whereas the DMT model applies to the case©f energy per surface area. It is defined as the work required
7w — oco. In the 1990s Maugi$4] proposed a more general 10 separate two bodies adhering over a unit area from their

model valid for anyy;, and which contains the theories men- €quilibrium position to infinity, e.g. sefl9]. It is similar to

tioned above as special cases. Since these models have béBf surface energy, which is defined as the work necessary to
experimentally verified, e.g. s¢&,9], they are used to validate Increase the surface area of a body, and which can be viewed
the CGC model. The Hertzian, JKR, DMT and M-D models@s the work required to separate two bonded (e.g. cohering)

can be distinguished according to their predicted contact pre§ections of the body. According to the Hertz theory we have
sure distribution between the two contacting bodies. Thisisil-; _. 3 < _=
lustrated inFig. 7. According to the Hertz and the DMT model P@=a’, o@=a’ (37)

the pressure distribution is elliptical and positive (i.e. compres; e _ the force increases cubically, while the approach increases

sive) throughout the contact zone. In case of the JKR mode}yadratically with increasing contact radaisCombining these
the contact pressure turns negative at the fringe of the contagfg expressions one arrives at the load displacement ddieve
zone. Atr = a the pressure is singular indicating a drawback p(5). By substituting (36) into (37) it can be confirmed that
of the JKR model. According to the M-D model the pres-the work of adhesiom has no influence on the model. For the

sure extends beyond the contact zomehy taking a constant Hertz model the pressure distribution within the contact area is

value withina <r<ma, wherem > 1 is a parameter of this gjven by
model.
In the following we outline the Hertz, JKR, DMT and M-D _ 3a r\2
theories, e.g. sef,32]. We start by defining the combined P =— /1~ (;) for r<a. (38)
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Outside the contact area, i.e. for a, the pressure is zero. For 4 : : —
the JKR theory we have the two relations — JHESZ(A o) J
_ _ T2 =._ _ = 3 {{.-- DMT(A=0) s
P@)=a’—v6as, o) =a"— %V 6a, (39) M-D forA = 0.3 , ~
which depend on the work of adhesion sinceloes not cancel 27 T
as it does for the Hertz formula. For the DMT model the cor- s
responding relations between forBgapproach and contact '& 4 -~
radiusa are g
S .
P@=a*-2 o@a=a? (40) of o7
/7 ,,’ -
which also depends an. To present the M—D model we require Pl ' R
the transition parameter e LTt b8
9R 2t

. 3
Ai=o00, —. 41

0 2nwE? (1)

45 -1 -05 0 05 1 15 2 25 3
It is dimensionless and corresponds to the normalization of Approach 3
00, Which is the assumed constant value of the adhesive stress

within a <r <ma. Letting4A — oo yields the JKR model, while Fig. 8. Load-displacement curve3(d) for the Hertzian, JKR, DMT and
A — 0 gives the DMT model. Givert and the contact radius M-D models.

a one can solve the transcendental equation

2a2 z direction, due to a concentrated point Idaétr =0,z =0,
7 <\/ m2 -1 + (le — 2) arCtar(\/ m2 — 1)) is given by
4)%a
+ a (\/mz—larctam\/mz— 1) —m+1> =1, (42) __3_F£
3 0.(r,2) = 27 5’ (45)

for the parametem. This parameter corresponds to the ratio

of the Hertzian contact radiusand the contact radiumaof = Wherep? := r? + 72, e.g. se€2,33]. The stress field has a
the M=D model, as is illustrated ifig. 7. The JKR model Singularity beneath the applied point load, which vanishes in
is obtained fromm — 1 while m — oo corresponds to the the following integration. Integrating the stress field (45) for all
DMT model. For the M—D model the relation between force,Point loadsF = p(s) dA yields

approach and contact radius are, for a given

3 [c 7'c Z3
) =2 = dods, 46
P(a) =a® — Ja? (\/m2 —1+4+m? arctan(x/m2 — 1)) , o =-g /0 SP(S)/O p’° e (49)

oa)=a?— Fai/m? — 1. (43)  wherep’? =2 + z2 andr'’? = r2 — 2rs cosp + s2 (see[29]

for details). Due to the complexity of the integrand, Eq. (46)
is evaluated numerically. It may be noted that at the surface
(z = 0) we must haves,(r, 0) = —p(r), so that we can avoid

5) 3a 1 r\2 evaluating the integrand at the surface, where it turns singular.
0=53-()
T a

Further, for a given.. and a the radial pressure distribution
follows as

5.2. Formal relation between the M—D and CGC models

N

24
— — arctan
T

for r <a, (44)
1- (5 In order to relate the two models we have to identify the work
of adhesiorw in the CGC model. Recall that is defined as
the work per unit surface area required to separate two adhering
The load-displacement curves = P(3), given implicitly by ~ bodies from their equilibrium position to infinity. In Section 2
Egs. (37), (39), (40) and (43) for the four models, are displayedve derived the forcé's (20). It corresponds to the force exerted
in Fig. 8 It can be observed that for the Hertz mode0, ~ upon the surface elemenzdof body ¢ due to the presence
since no adhesion occurs. It can further be seen that the M—Bf the neighboring body2,. The work of adhesion can thus be
model, depending oii, poses a transition between the JKR defined as
and DMT model. The pressure distributigrir) according to /oo
w = —f;

pry=—4 fora<r<ma.

Egs. (38) and (44) is displayed Fig. 7. Fs(r)dr, (47)
We are further interested in the stress field inside the half-

space due to the surface presspre). It can be obtained by wherersg is the equilibrium distance of the two neighboring

integrating the known solution for a point load acting on a half-bodies which follows from the conditiods = 0 asrsp =

space. As an example, the stress componerin the vertical  ro//15. It is sensible to consider the reference configuration

S,0
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in Eg. (47) so that we usf;y and fi5g instead off8; and f3, a X107
in the definition above. Without this approximation the work 16 “MD ' ' ' ' B
of adhesion becomes dependent on the local deformation and 14 H_° CGCM R
we cannot associate with a material constant anymore, as o | N
is usually considered. For the caggy = fioo = g EQ. (47) is
evaluated as 51w
w= fufferd, (48 & 8 S
. . & 6 o
where we have introduced the abbreviatifn:= (/8)v/15. E Y
In view of definition (28) we have the identity - 4
wR% = fwllco, (49) 2 f '..".
i.e. the interaction energjic is proportional to the work of O premsesmsnssssnenn, e
adhesionw multiplied by the areaR?. -2 : ' : : : :
Further, we need to establish a link between the normaliza- -0.04 -0.02 0 002~ 004 006 008
tion of the CGC model, as discussed in Section 4.2, and the Approach - u/Ro
normalization of the M-D model defined by Eq. (36). For this |y 0.8
we consider the specific problem displayed-ig. 3 and par- 0.07 F*—a .. “C"éEéM
ticularized byY = E1 = E2, v=v1 = v2, R1 = Ro, R = 00 \‘\\
and By = f10 = Bao. According to Egs. (34) and (35) we thus 0.06 °r AN
haveE = frE1, fr := 1/2(1—v?) andR = Ro. As mentioned 2 005 | \
in Section 4.2 the CGCM is normalized by the parameRys EC, oba | \\
and Eg := Ilint0 SO that the normalization of a forde be- i \
comesFc = Ro/ EoF, where the bar and subscript C are used 3 0.03 r \\
to indicated the normalization scheme of the CGCM. The nor- 3 002 \
malized forceFyp, as used by the M-D and related models, g 001 t \\
is given by Eq. (36). From Egs. (49) and (30) it thus follows |
that o L e
~ ~ nfw -0.01 -
Fc=frFfwo, fri=_———, (50) -0.02 . . . .
TwiL 0 01 0.2 0.3 0.4 05
i.e. we have established the factg¢ relating the two nor- rRo

malization schemes. Likewise we treat the normalization of o c ison fof, 50, 3,y — 200: (a) Load-displ ©)
a length, given byLc = L/Ro for the CGCM and given by F'9- 9- Comparison fop,, =50, jy =200 (a) Load-displacement curve;
. P h half- .
Egs. (36) and (363 for the contact radius. and approacld ressure distribuition between sphere and half-space
within the M—D model. Now by using Egs. (49), (30) and the
definition of fr we establish the relation between the normal-

ization of the contact width Physically it corresponds to a normalization of the peak attrac-
~ _ 3 tive surface stressp, a quantity that may be difficult to assess
ac = faamp,  fa = v afF/fE (51) experimentally. Further, the parameteis assumed fixed for

a given material, a restriction which breaks down during the
adhesion phase when the peak adhesion has not yet been at-
dc = fsomp. f5:= f2. (52) tained. It can therefore not be expected that the M—~D model
is very accurate during this phase. The model is further re-
Finally, the relation between the stress normalization is obtainegiicted to infinitesimal deformations, so that we cannot expect

as the M—D model to perform well as the deformation becomes

and the relation between the normalization of the approach

large.
oc= feomp, foi= \3/ ngfE- (53) The CGCM, on the other hand, is a large deformation model

which accurately captures the long-range interaction during the
where 6c = aRS’/Eo is the stress normalization within the adhesion phase. Fully normalized, it depends on two parame-
CGCM and whereyp is the stress normalization of the M-D ters, the length scalg and the energy density ratjg,, which
model, given by Eq. (3@) give the model greater flexibility in modelling adhesive con-

With Egs. (50)—(53) we have established the formal relatiortact. It is further emphasized that the CGCM is a model formu-

between the two models, the analytical M—D model and thdated for arbitrary geometry, whereas the M-D model applies
computational CGCM. It is noted that the M—D model only only to particular cases like the spherical contact considered
contains one free parameter, namely the transition pararheter above.
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Fig. 10. Stress field,; for (a) the CGCM and (b) the M-D model, both for 0

1 =50, 7w =200. Fig. 11. Comparison fofj; = 50, jy, = 20: (a) Load—displacement curve;

(b) Pressure distribution between sphere and half-space.

5.3. Comparison between the M-D and CGC models
compressive p > 0) regime we observe excellent agreement
Let us now compare the behavior of the analytical M—Dbetween the two models. In the tensile regife<0), it is
model, discussed above, and the CGCM. As a first exampleeen that the pressure distribution of the CGCM is continuous
we pick the parameterg = 50 andyy, = 200. The results for and decays smoothly to zero, whereas the pressure distribution
this case are displayed kigs. 9and 10. Fig. 9a) shows the of the M—D model is discontinuous and drops to zero abruptly.
load—displacement curve(u) of the computational and ana- In all results presented on the first example, the paramietér
lytical models. The agreement is excellent over a wide range ahe M-D model, which corresponds to the tensile stress level,
displacements. As the approach grows large Q) the M—D  is chosen on a best fit basis &s- 0.25.
model loses its accuracy since the small deformation assump- Fig. 10 shows the vertical stress componentof the two
tion is violated. As has been mentioned earlier the M—D modemodels, which are in excellent agreement, even quantitatively.
is not defined for large separations, so that for this situatiohe same statéP, u} as above is chosen. For the chosen pa-
(z <0) only the computational CGCM result exists. As the bod-rameterg,; , yy, the tensile, adhesive stresses, which are present
ies are pulled apart their interaction decays smoothly but, it the fringe of the contact zone, are small compared to the
principle, remains non-zero for arbitrary large distances, an efeompressive stresses. The CGCM result is obtained from a fi-
fect which is failed to be captured by the M—D model. nite element solution with the shown mesh, the M-D result is
Fig. 9(b) shows the normal pressure distributiptr) acting  obtained from the numerical evaluation of Eq. (46).
on the surface of the two opposing bodies. It is taken from As a second example we pick = 50 andyy,, = 20, a
the stateu ~ 0.043Rg and P ~ 5.8 x 10~3Eg/Rp, shown case where a physical instability exhibits itself during contact
as an open circle on the(u) curve. This state corresponds as has been discussed before in Section 4.4. The results for
to a contact radius of ~ 0.23Rg in the M-D model. In the this case are displayed irigs. 11and12. In Fig. 11(a) the
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load—displacement curveR®(u), as obtained by the two mod-

els, are compared. Their overall agreement is very good. The

physical instability displays the characteristic looping behav-ig. 13. Deformation and stress fiedd during adhesive contact at the states

ior, where for a given displacementwe have three possible shown as open circles iRig. 11(a).

loadsP. As has been remarked earlier the analytical contact

theory cannot capture the adhesion phase accurately. Therefore

differences between the analytical and computational results

are inevitable. The path d? (), as obtained by the CGCM, is sive stress peak developing between the two contacting bodies.

also supported by the numerical results reporte@4), which  To capture this stress peak and the associated strong deforma-

are based on infinitesimal theofjig. 11(b) shows the normal tion a highly resolved FE mesh is needed, as is shown in frame

pressure distributiop (r) acting on the surface of the two op- (a). The stress distribution, is computed at the same state

posing bodies. Again we observe excellent agreement. Now,P, u} considered for the pressure distribution above. It is noted

the adhesive pressure is much larger than for the first exanthat fory,, =20 the bodies are so soft that their adhesion leads

ple. Its magnitude dominates over the compressive pressur@ a strong bulging deformation of the two opposing surfaces,

The pressure is taken at the stater 0.042Rp and P ~ 0,  as can be seen in frame (a). This follows from the fact that

as corresponds to one of the states indicated by an open cihe stiffness ratigx decreases along withy,. For low yy, the

cle on theP (u) curve. The M-D results are obtained for the behavior of the M—D comes very close to the behavior of the

choicea ~ 0.33Rp. SinceP = 0 the vertical component of the JKR model.

shown pressure distribution integrates to zero. In all the results The evolution of the deformation and stress distributign

presented on the second example, the parameatéthe M-D  of the two contacting bodies, as we trace the load-deformation

model is chosen on a best fit basis/as 1.3. curve, is shown irrig. 13 The five displayed states correspond
Fig. 12shows the excellent agreement of the vertical stress the open circles shown on the load—displacement curve in

components, of the two models. Note the large local, adhe- Fig. 11(a). In particular, note that for the state in frame (d), the

-0.1
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