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A contact mechanics model for quasi-continua
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SUMMARY

A computational multiscale contact mechanics model is proposed to describe the interaction between
deformable solids based on the interaction of individual atoms or molecules belonging to the solids.
The contact model, formulated in the framework of large deformation continuum mechanics, is derived
from coarsening the molecular dynamics (MD) description of a large assembly of individual atoms,
and it thus bears some of the characteristics of the underlying atomic structure. The multiscale contact
model distinguishes between atoms interacting within a small neighbourhood within the solids and atoms
interacting over large distances between remote regions of the solids. The former furnishes a constitutive
relation for the continuum, like the Cauchy–Born Rule, while the latter is used to model the interaction
between distinct bodies. The proposed contact model is formulated as a variational weak form and
implemented within an updated Lagrangian finite element method. It is shown that, as the problem size
increases, the description of the model can be simplified to yield more efficient computational algorithms.
In this respect, the proposed multiscale formulation leads to a smooth transition from MD to continuum
contact mechanics. The general behaviour of the contact model is studied, and some numerical examples
are given. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Much attention has been devoted to the contact description of large-scale objects, either analyti-
cally, [1] or computationally, [2, 3]. On the other hand, with the emergence of nanotechnology, the
nanoscale treatment of contact and related subjects such as adhesion, indentation and tribology are
becoming more prominent. In macroscopic contact modelling, the contact behaviour of two inter-
acting bodies is governed by the principles of continuum mechanics and the unilateral constraint
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932 R. A. SAUER AND S. LI

that the bodies may not penetrate each other. As the problem size decreases to the nanoscale, the
contact interaction between two small objects may not be appropriately described by macroscale
contact mechanics, due to the emergence of atomic effects.

Contact interaction at atomic or sub-atomic scales can be simulated by first-principle methods
such as molecular dynamics (MD) e.g. [4]. This is the predominant case in the study of interactions
among flexible nanotubes [5, 6], DNA strands and proteins [7], nanoindentation [8–10], and atomic
force microscopy [11, 12]. However, most of these simulations are qualitative in nature and focus
on general scientific principles rather than the quantitative engineering design in nanotechnology.
Even in the near future, it may not be practical to use first principle-based simulations to model
such systems in engineering design, due to the computational expense, complexity, and difficulties
in interpreting results. Small-scale contact phenomena can be efficiently modelled by the analytical
theories of Johnson, Kendall and Roberts (JKR) [13], of Derjaguin, Muller and Toporov (DMT)
[14], and by the related Maugis–Dugdale model [15]. These analytical mesoscale contact models
have shown close agreement with experimental results, and have been successfully applied to some
engineering and biology problems. Despite their success, these models are restricted to infinitesimal
deformations and simple geometry of the interacting bodies.

In this work, we present a computational quasi-continuum contact mechanics model, formulated
for arbitrarily shaped nanoscale solids undergoing large deformation, whose interaction is based on
the interaction of individual atoms. In recent years, the atomistic potential-based quasi-continuum
model developed by Tadmor et al. [16], see also Knap and Ortiz [17], has been used successfully
in multiscale modelling. Nevertheless, it seems to us that a systematic treatment on the contact
mechanics of a quasi-continuum is still lacking. The key to build a nanoscale contact model
within a quasi-continuum framework is the homogenization of the long-range atomic interaction
to obtain the effective interaction between continua. To capture this effective interaction, we propose
three different computational strategies, which form a seamless transition from MD to macroscale
computational contact mechanics: at large scales two bodies interact via tractions acting on their
contacting surfaces, whereas at very small scales the interaction expresses itself as a body force
field extending over large parts of the interacting bodies. With the proposed three methods, we have
successfully formulated and implemented a quasi-continuum contact mechanics model within the
framework of the finite element method [18, 19]. The model, termed the coarse-grained contact
model (CGCM), is computationally more efficient than MD simulations, while, at the same time,
is capable of predicting some effects of atomic interactions under finite deformations.

The next section serves as an introduction and idealization of the proposed contact model. It
is followed by Section 3, which provides a detailed derivation of the theory of the model. The
finite element implementation of the model is discussed in Section 4. The general behaviour of
the model and some numerical examples are presented in Section 5. We conclude the presentation
in Section 6.

2. A QUASI-CONTINUUM APPROACH TO CONTACT

We proceed by presenting a conceptual overview of the CGC model. Figure 1 illustrates how the
model fits into the approaches of classical continuum contact mechanics and MD. At large scales
the interaction between two bodies is described by a continuum approach. The bodies under study
are considered to be continuous media, whose loading–deformation relation is modelled upon
some constitutive relations. In the case of hyperelasticity, the material response derives from a
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Figure 1. Coarse-grained contact mechanics model (CGCM).

stored energy function W , which can be considered a property of the continuum. The contact of
two such bodies is usually modelled as a globally constrained problem, where the constraint is the
impenetrability of the two bodies. In other words the gap g between the two bodies must remain
positive. Analytical and numerical aspects of continuum contact mechanics can be found in [1–3].

On the other hand, the behaviour at the atomic scale is governed by interactions among individual
atoms, which are modelled by interatomic potentials (see Figure 1). Conceptually, we distinguish
between two such potentials: the interaction potential �, acting between atoms of two distinct
bodies and therefore also termed the intersolid potential, and the interaction potential �, governing
atoms within the solid and thus termed the intrasolid potential. This notation is in analogy to the
behaviour of carbon nanotubes (CNTs), where we distinguish between the interlayer and intralayer
response, e.g. see the review by Qian et al. [20]. Molecular dynamics provides a powerful tool
to simulate the behaviour of large assemblies of atoms (or molecules), modelled by point masses
and atomic interaction potentials. Comprehensive background information on interatomic forces is
provided by Israelachvili [21], an introduction into MD can be found in [4]. We note, that a single
cubic millimeter can contain more than a billion billion (1018) atoms and that the time scale of
atomic oscillations is of the order of picoseconds (10−12 s). Thus, it quickly becomes impossible
to solve such systems even with state-of-the-art computing technology. Furthermore, for many
practical applications, the detailed knowledge of the positions and velocities of all these atoms
over time, is of little interest.

A great ambition of multiscale modelling is the concurrent simulation combining both the
character of a continuum with the character of a discrete lattice. That is, one seeks to develop
a model capable of seamlessly transcending from one scale to the other. The proposed quasi-
continuum contact model CGCM combines features from both the continuum and the molecular
approach (see Figure 1). From the continuum model ‘above’ we take the general continuum
description of the bodies under consideration. In particular, we use a hyperelastic material model
described by an internal potential W . From the molecular approach ‘below’ we take the short-
range interaction potential �, to generate the stored energy function W , and we take the long-range
interaction potential � and use it to model the interaction between the bodies. In other words �
furnishes a constitutive relation for the solids,W =W (�), whereas � generates an external potential
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934 R. A. SAUER AND S. LI

field, denoted as �=�(�), enveloping the solids like an ‘aura’. Physically, the intrasolid interaction
can be associated with covalent, ionic, and metallic bonds, which are strong but only act over
a close range. An example for the intersolid interaction is the van der Waals attraction between
solids, which is relatively weak but of much longer range.

Thus, the essence of the CGCM is an atomic potential-enriched hyperelastic continuum with
a surrounding long-range field, which affects the interaction, like adhesion and contact, among
different solids. We stress that this continuum model is based on two distinct components: the
generation of an internal potential W from �, and the generation of an enveloping field � based on
�. The former has been studied extensively by the original quasi-continuum method, e.g. [16, 22],
and we will, for this reason, focus more of our attention on the latter ingredient. The treatment
of this second component has a long history in the calculation of continuum van der Waals
forces, [21, 23, 24]. However, to the best of our knowledge, the combination of both components
into a single model, its formulation within the setting of large deformation continuum contact
mechanics, its implementation into a suitable numerical approach, like the finite element method,
and the investigation of its general behaviour, have not been studied before.

It is further noted, that for some applications [25, 26], the internal response W can also be taken
from an empirical, not atomistic, constitutive approach [27]. In this fashion it becomes apparent
that the CGC Model approaches the traditional continuum model for increasing scales, i.e. as the
‘aura’ � vanishes to be replaced by the contact constraint. It is because of this, that the model
takes two minor variations: the molecular motivated model, where both the internal response and
the enveloping field are based on the quasi-continuum treatment of the atomic behaviour, and
the continuum motivated model, where both W and � are motivated form the usual continuum
modelling. The motivation of our contact model from both these directions is discussed in the
following section.

3. THEORY OF THE COARSE-GRAINED CONTACT MODEL

In this section, the weak formulation of the CGCM discussed above is derived. We start by showing
that our model can be motivated from coarsening the underlying MD formulation.

3.1. Coarse-graining: forming the mesoscale Lagrangian

Consider the current configurations �̂1 and �̂2 of two bodies consisting of discrete atoms or
molecules (see Figure 1). The bodies are not continua and we use the hat on �̂1 and �̂2 to indicate
this. The location of all atoms within �̂1 is described by the position zi ∈ �̂1 for i ∈I1, where
I1 is the set of n1 subscripts denoting the n1 number of atoms within body 1. Further, z j ∈ �̂2,
with j ∈I2, describes the position of the n2 atoms within body 2. For such a discrete assembly
of atoms, the potential energy is given by

�̂(Z) = �̂int(Z) − �̂ext(Z) (1)

where the hat is used to emphasize that this is the energy of a discrete system and whereZ={zi , z j }
is the collection of all n1 + n2 atomic positions.

In principle, each atom interacts with all other atoms. In this derivation we only consider pairwise
interaction between atoms and disregard interactions involving three or more atoms. We further
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assume the additivity of the interactions. Then the internal energy can be written as

�̂int(Z) =
b1∑
k=1

�1(rk) +
b2∑
k=1

�2(rk) +
b12∑
k=1

�(rk) (2)

where the first sum is over all two-atom bonds, b1, of body �̂1, the second sum is over all b2
bonds of body �̂2, and the last contribution is the sum over all b12 bonds involving one atom of
each body. Further, �1, �2 and � denote the interaction potentials of the three cases, which are
considered to be different, since the two bodies may be comprised of atoms belonging to different
elements. These two-point potentials only depend on the distance between atoms, i.e. the length
of bond k, denoted by rk . We term � the intrasolid potential, since it governs the interaction of
atoms within the solid, and term � the intersolid potential since it governs the interaction of atoms
belonging to two distinct solids. Now, let us rewrite the internal energy (2) as

�̂int(Z) = �̂int,1(Z1) + �̂int,2(Z2) + �̂int,12(Z) (3)

where Z1 ={zi }, i ∈I1 and Z2 = {z j }, j ∈I2 are the collection of atomic positions in body 1
and 2. The sum over the bonds can be converted into a double sum over the atoms, so that the
three contributions can be written as

�̂int,1 :=
b1∑
k

�1(rk)=
1

2

∑
i∈I1

k �=i∑
k∈I1

�1(rik), rik :=|zi − zk |

�̂int,2 :=
b2∑
k

�2(rk)=
1

2

∑
j∈I2

� �= j∑
�∈I2

�2(r j�), r j� := |z j − z�| (4)

�̂int,12 :=
b12∑
k

�(rk)= ∑
i∈I1

∑
j∈I2

�(ri j ), ri j :=|zi − z j |

Note that a factor of 1
2 is required in the first two equations, since each bond is counted twice

in the double summation. This does not occur in the third equation, since the sets I1 and I2

are disjoint, hence no factor of 1
2 is needed. In the equations above �̂int,1 and �̂int,2 denote the

internal energy of bodies 1 and 2, and �̂int,12 denotes the interaction energy between the two
bodies (which can be seen as an internal energy contribution of the entire system).

In the case of the external potential let as look at its variation which is written as

��̂ext = ∑
i∈I1

�zi · fi + ∑
j∈I2

�z j · f j (5)

where fi and f j are the external forces acting on the atoms of body 1 and 2, and where �zi
and �z j are the variations in the atomic positions. The kinetic energy of the discrete system is
expressed as

K̂ = 1

2

∑
i∈I1

mi |żi |2 + 1

2

∑
j∈I2

m j |ż j |2 (6)
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936 R. A. SAUER AND S. LI

given the atomic masses mi , m j and velocities żi , ż j . With the energies defined above, the n1 +n2
equilibrium equations of the discrete system follow from

d

dt

(
�L̂
�żk

)
− �L̂

�zk
= 0, k = 1, . . . , n1 + n2 (7)

where L̂ = K̂ − �̂ is the Lagrangian of the system.
Now we would like to coarsen, or ‘smear-out’ the discrete system of atoms into a continuous

medium, called a quasi-continuum since it is based on the underlying atomic system. The quasi-
continuum is valid at an intermediate scale lying in between the atomic scale and the macroscale.
The coarsening procedure, termed coarse-graining, is similar to the procedure of smoothed particle
hydrodynamics used in meshfree methods, e.g. [28, 29].

Consider two continua with current configurations �1 and �2 corresponding to the discrete
configurations �̂1 and �̂2. We define two co-ordinates x1 ∈ �1 and x2 ∈ �2, which are continuous
functions within these domains. When no distinction between the two bodies is necessary, we
can drop the subscripts and also write zi ∈ �̂ and x∈ �. Given a function g(x) defined on such a
domain �, the discrete summation over the lattice sites zi ∈I can be written as∑

i∈I
g(zi ) =

∫
�

∑
i∈I

�(x − zi ) g(x) d�x (8)

due to the property of the Dirac delta function �(x− zi ). To coarsen the discrete field, we use the
Gaussian distribution

�h(y) := 1

(
√

�h)3
exp

(
−y · y

h2

)
(9)

also denoted as the coarse-graining function, to approximate the delta function � in Equation (8)
above. In can be verified that ∫

R3
�h(y) d�y = 1 (10)

and �h(y)→ �(y) as h → 0. In passing, we note that other normalized, positive functions can be
used as coarse-graining functions, e.g. see [30]. By using the distribution �h we can define the
coarse-graining operation of a function ĝ(x) as

g(x) :=
∫

R3
�h(x − y)ĝ(y) d�y (11)

where the new function g(x) can be seen as an approximation of ĝ(x). The physical meaning
of this operation is the weighted averaging over the support space S(x)={y||x − y|�h}. From
Equation (11) follows that the discrete particle density �̂(x) (measured in number of particles per
volume) and mass density �̂(x), given by

�̂(x) := ∑
i∈I

�(x − zi ), �̂(x) := ∑
i∈I

�(x − zi )mi (12)

are coarse-grained into the smooth functions

�(x) := ∑
i∈I

�h(x − zi ), �(x) := ∑
i∈I

�h(x − zi )mi (13)
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Given these coarse-grained densities the discrete summation (8) can be approximated as

∑
i∈I

g(zi ) =
∫

�
�̂(x)g(x) d�x ≈

∫
�

�(x)g(x) d�x (14)

Clearly, as h → 0 this approximation becomes exact. Equation (14) is also exact, for all h, if g(x)
is a constant or even linear function in x, due to the symmetry of �h . Therefore, if h is chosen such
that g is approximately linear within the support space S, the accuracy of Equation (14) will be
very good. In fact, according to this criteria, approximation (14) can be made arbitrarily accurate,
thus enabling a seamless transition between MD and the CGCM.

Based on the coarse-graining of the discrete system, we now derive the Lagrangian of the
quasi-continuum. In order to coarsen the internal energy �̂int,I , I = 1, 2, given in Equation (4),
let us introduce the function �(zi ) such that the internal energy for both bodies can be written in
the form

�̂int = ∑
i∈I

�(zi ), �(zi ) := 1

2

k �=i∑
k∈I

�(rik), rik = |zi − zk | (15)

With the definition of the particle density �(x) in Equation (13) the internal energy is coarse-
grained as

�̂int =
∫

�

∑
i∈I

�(x − zi )�(x) d�x ≈
∫

�

∑
i∈I

�h(x − zi )�(x) d�x

=
∫

�
�(x)�(x) d�x =: �int (16)

where

�(x)= 1

2

∑
k∈I

�(rk), rk = |x − zk |, zk �= x (17)

is the continuous counterpart of the discrete function �(zi ). We thus have obtained the continuum
potential �int from the coarsening of the corresponding discrete potential �̂int. We note that for
a deforming solid, the current interatomic distance rk depends on the deformation gradient F, so
that we can write � =�(F). In view of the usual expression of the internal energy �int for a
hyperelastic continuum, the function �(F) can be associated with the strain energy density. The
energy density per current volume and the energy density per reference volume follow as

w(F)= ��(F), W (F) = �0�(F) (18)

where �0 = �/J denotes the atomic density of the reference configuration and where J = detF is
the Jacobian determinant of the deformation gradient.

Applying the coarsening procedure to the interaction energy �̂int,12 we immediately obtain

�̂int,12 = ∑
i∈I1

∑
j∈I2

�(|zi − z j |)

≈
∫

�1

∫
�2

�1(x1)�2(x2)�(|x1 − x2|) d�x1 d�x2 =:�C (19)
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938 R. A. SAUER AND S. LI

where �C denotes the interaction potential of the CGCM. We note that the interaction energy
�C is implicitly dependent on F, since the current integration domains �1 and �2 depend on the
deformation.

Using the coarsening procedure once more, the variation of the discrete external energy ��̂ext =
��̂ext,1 + ��̂ext,2, given in Equation (5), can be approximated as

��̂ext,I ≈
∫

�I

�xI · b̄I dv +
∫

�t,I

�xI · t̄I da =: ��ext,I (20)

where the external atomic forces fI have been identified with applied body forces b̄I (per unit
volume) acting on �I and with applied tractions t̄I acting on �t,I ⊂ ��I , the traction specified
part of the boundary of �I . The fields t̄I and b̄I are considered in a form such that ��ext,I is
derivable from a potential �ext,I . We remark that from the physical point of view, the traction
boundary condition does not make much sense, since forces on the individual atoms can only be
applied through the interaction with neighbouring atoms. The traction contribution to �ext can
therefore be replaced by the interaction potential �C. However, it is useful to retain the traction
boundary condition for numerical purposes and we will keep it for this reason.

Analogously to the coarse-graining of the potential energy the kinetic energy of the discrete
system is approximated as

K̂ = ∑
i∈I

mi |żi |2 =
∫

�

∑
i∈I

�(x − zi )mi |ẋ|2 d�x

≈
∫

�

∑
i∈I

�h(x − zi )mi |ẋ|2 d�x =
∫

�
�(x) |ẋ|2 d�x =: K (21)

where we omit the hat on K to indicate that it is the kinetic energy of the continuum.
With the coarsening given in Equations (16), (19), (20) and (21) we can write down the mesoscale

Lagrangian of the quasi-continuum as

L =
2∑

I=1
[KI − �int,I + �ext,I ] − �C (22)

with

KI = 1

2

∫
�I

�I (xI )|ẋI |2 dvI

�int,I =
∫

�I

wI (FI ) dvI (23)

�C =
∫

�1

∫
�2

�1(x1)�2(x2)�(r) dv2 dv1, r = |x1 − x2|

and where �ext,I is the potential associated with the variation ��ext,I . Note that the kinetic energy
KI and the internal and external energies �int,I and ��ext,I are in the same form as commonly
considered in continuum mechanics. On the other hand, the potential �C is a new contribution
modelling the interaction of the two separate continua. We note that the integration in �C is
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(a) (b)

Figure 2. (a) Nanoscale contact description; and (b) Lennard-Jones potential.

over the current configuration of the deforming bodies, leading to a strong non-linear coupling of
the behaviour of the two bodies. The study of the continuum interaction energy �C has a long
history. The first work dates back to the 1930s by the prominent contributions of Bradley [31]
and Hamaker [23], who evaluate integral (23)3 for simple, rigid geometry such as two spherical
particles �1 and �2. Recently, the interaction energy �C has also been considered in the study
and simulation of CNTs. In the works of Arroyo and Belytschko [32, 33], the Cauchy–Born
rule is extended to two-dimensional manifolds via the exponential map to model the response of
deforming crystalline films. To model the non-bonded response of atoms, the authors consider an
expression analogous to Equation (23)3. In the work of Qian et al. [20] the interaction energy
�C is used to model the interlayer response of multiwalled CNTs. Here, the authors motivate
�C by its increased efficiency over the atomic summation of Equation (4). To the best of the
authors’ knowledge, a general finite deformation contact theory for small scales and its non-linear
finite element implementation for arbitrarily shaped bodies, as is studied here, has not been given
before. We also believe that, especially in three dimensions, the interaction energy �C has to be
approximated further to increase the efficiency of large-scale computations. Such approximations
are considered in Section 4, which discusses the implementation of the CGCM.

In summary, we remark that we have considered a simple spatial coarse-graining technique and
that our approach can be generalized by including temporal coarse-graining and thermal effects,
e.g. by using other coarse-graining functions �h [30, 34]. One may also consider an approach which
distinguishes between the internal energy of surface atoms and the internal energy of bulk atoms.
This is not studied here, however, the formalism of the present model can accommodate such an
approach. We further stress that we have coarse-grained a discrete model into a continuum, whereas
often the numerically motivated coarse-graining of a discrete system into a coarser discrete system
is considered [34].

3.2. The variational weak formulation

Having obtained the coarse grained Lagrangian we can proceed deriving the corresponding weak
form. Before we do so, we first show that the mesoscale Lagrangian, in particular contribution
�C, can also be obtained directly from a continuum approach. Figure 2(a) shows the interaction
of two bodies in the context of finite deformation continuum mechanics. Here, �10 and �20 are
the reference configurations of the two bodies with the atomic densities �10 and �20. These coarse
grain densities have been introduced in the previous section. They depend on the atomic structure
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as is discussed in Section 3.3. For a given material, the reference densities �10 and �20 are given
parameters. Further, in Figure 2, u1 = x1(X1, t) and u2 = x2(X2, t) are the motions mapping the
reference configurations �10 and �20 onto the current configurations �1 and �2 of the two bodies.
The atomic density in the current configuration is denoted by �1 and �2. The bodies are subjected
to the usual prescribed displacement and traction boundary conditions. We consider two arbitrary
points x1 ∈ �1 and x2 ∈ �2, whose distance is given by r := |x1 − x2|. In the proposed model,
we assume that two atoms (or molecules) located at x1 and x2 interact with each other via an
interatomic potential �(r). In general, � may be any potential suitable to describe the physical
situation at hand, and one may find many different cases in the literature [21]. A popular choice
is the Lennard-Jones potential

�(r) = �
(r0
r

)12 − 2�
(r0
r

)6
(24)

where r0 and � are a length and an energy scale. The force F(r) between the two atoms is then
given by the gradient

F(r)= −��

�r
= 12�

r0

[(r0
r

)13 −
(r0
r

)7]
(25)

It can be seen that r0 is the equilibrium distance between the atoms, i.e. the distance where F = 0,
and that � is the energy of the well at r = r0. This well depth corresponds to the energy required
to pull the two atoms apart from r = r0 to ∞. A normalized graph of �(r) and F(r) is shown in
Figure 2(b).

To set � apart from the intrasolid potential �, let us also write r� := r0 and �� := �. The
parameters r0 and � are empirical material properties that have been listed in the literature for
various materials. In case the two atoms belong to two distinct materials a and b with parameters
ra0 , r

b
0 , �a and �b, the equilibrium distance and well depth of the combined system can be taken as

the arithmetic and geometric mean

rab0 = ra0 + rb0
2

, �ab = √
�a�b (26)

e.g. see [35]. Given �(r), the total interaction between bodies �1 and �2 follows from the
integration over all points x1 ∈ �1 and x2 ∈ �2. We thus obtain the interaction potential of the
CGCM

�C :=
∫

�̄1

∫
�̄2

�1�2 �(r) dv2 dv1 (27)

just as given in Equation (23)3. Note that by choosing the integration domains �̄1 ⊆ �1 and
�̄2 ⊆�2, as shown in Figure 2(a), we have allowed for the possibility that the bodies only interact
via these subsets. This is motivated by the fact that � decays rapidly and may be neglected beyond
a cutoff radius rc. We note that the dependence of �C on the deformation of the two bodies �1
and �2 leads to a strong non-linear coupling between the bodies. Another salient property of �C
is that it is strongly controlled by the gap between �1 and �2 since the interaction is strongest
between closest points.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:931–962
DOI: 10.1002/nme



A CONTACT MODEL FOR QUASI-CONTINUA 941

For the quasi-continuum system shown in Figure 2, the total potential energy is given by

�=
2∑

I=1
[�int,I − �ext,I ] + �C (28)

We note that in general, for a discrete lattice the system’s potential energy �̂ (1)–(4), comprised of
the summation of the individual atomic interaction potentials � and �, is not convex and has many
local minima, corresponding to several possible equilibrium configurations of the lattice. This
non-convexity carries over to the potential � of the interacting quasi-continua. The non-convex
behaviour of the internal energy �int of the quasi-continuum has been noted by Tadmor et al.
[16]. Depending on the shape of �1 and �2, the interaction potential �C will also contribute to
the non-convex behaviour of �. For instance, surface asperities lead to the non-convexity of �C
[25]. For an appropriate refinement of the geometry of the bodies, it is possible to obtain local
convexity.

Thus, for a quasi-static motion of the given conservative system, equilibrium follows from the
principle of stationary potential energy, that is, from the stationary value of �,

�� =
2∑

I=1
[��int,I − ��ext,I ] + ��C = 0 (29)

we obtain the weak form of the equilibrium equation. The variation of the internal energy �int,I
of body I can be written as

��int,I =
∫

�I

grad(�uI ) : rI dvI (30)

where grad(...) denotes the gradient with respect to the current configuration and where rI is the
Cauchy stress tensor in body I . This stress follows from a particular choice of W as is considered
in the following section. The variation of the external energy �ext,I is given by expression (20),
where �xI = �uI .

We now consider the variation of the interaction energy �C. The total number of atoms n = � dv
within the current volume element dv = Idv is considered to be conserved during deformation,
i.e.

� dv = �0 dV = const (31)

By virtue of the chain rule, the variation of �C then becomes

��C =
∫

�̄1

∫
�̄2

�1�2

(
��(r)

�x1
· �u1 + ��(r)

�x2
· �u2

)
dv2 dv1 (32)

which can also be written as

��C = −
∫

�̄1

�u1 · �1b1 dv1 −
∫

�̄2

�u2 · �2b2 dv2 (33)
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where we have defined the body forces

b1(x1) := −��2

�x1
, �2 :=

∫
�̄2

�2�(r) dv2

b2(x2) := −��1

�x2
, �1 :=

∫
�̄1

�1 �(r) dv1

(34)

The physical interpretation of Equations (33) and (34) is as follows: each body �I (I = 1, 2) is
surrounded by a field �I (see also Figure 1), which generates a body force within the other body.
In other words the presence of body �2 exerts a body force field, b1, on body �1, whereas �1
exerts the field b2 on �2. We see that ��C has the same structure as the first part of ��ext,I ,
however, we emphasize that b̄I and bI are conceptually different: the body forces bI arise from
the interaction of the two bodies of the considered system, b̄I on the other hand is considered
imposed externally onto the system. An example for the latter case is the body forces arising from
a immersing gravity field.

By applying the gradient operator to the integrand, Equation (34) can also be written as

b1(x1) = +
∫

�̄2

�2F(r)r̄ dv2

b2(x2) = −
∫

�̄1

�1F(r)r̄ dv1

(35)

where F =−��/�r and the where unit vector r̄ is defined by

r= x1 − x2, r = |r|, r̄= r
r

(36)

We remark that for any two points x1 and x2 the force F(r) acting in between is equal in magnitude
and opposite in direction. The body forces b1 and b2 acting at x1 and x2, however, are neither
equal in magnitude nor act in opposing directions in general. The resultant forces on both bodies,
obtained from integrating bI over body �I , are again equal in magnitude and act in opposite
direction.

In general, the motion is time dependent, and the kinetic energy of both bodies, given in Equation
(23)1, must be included. The Lagrangian of the quasi-continuum model is given by Equation (22),
and the weak form now follows from Hamilton’s principle which states that the action

A=
∫ t2

t1
L dt (37)

attains its stationary value for the true solution among all kinematically admissible variations
within the time interval {t1, t2}. Thus, from �A= 0 we obtain the weak formulation

2∑
I=1

[∫
�I

�uI ·�I ẍI dvI+
∫

�I

grad(�uI ) : rI dvI−
∫

�̄I

�uI ·�IbI dvI−��ext,I

]
= 0 ∀�uI (38)

of the contact problem illustrated in Figure 2.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:931–962
DOI: 10.1002/nme



A CONTACT MODEL FOR QUASI-CONTINUA 943

Before proceeding further, we consider two simple extensions to the theory presented above.
Firstly, we may consider the interaction potential to be given by

�C =
∫

��̄1

∫
��̄2

�̃1�̃2�(r) da2 da1 (39)

Here, the two-body interaction is restricted to the surface subsets ��̄I ⊆ ��I , a situation which
arises for example from the interaction of two bodies with charged surfaces. In this formulation
�̃I denotes the atomic surface density in number of atoms per surface area. For this case, the
derivation of the weak form follows the same steps as above replacing �̄I by ��̄I and �I by �̃I .
We thus obtain an analogous weak form statement as given in Equation (38), where bI is now a
surface traction acting on ��̄I and which arises from the neighbouring surface.

A further extension of the above result is to study the interaction among N bodies. If we consider
any two of the N bodies to be interacting the same way as discussed above, the total multibody
interaction potential will be

�C = 1

2

N∑
I

N∑
J �=I

�C,I J , �C,I J =
∫

�̄I

∫
�̄J

�I�J�(r) dvJ dvI (40)

Note that this multibody summation is analogous to the atomic summation in �̂int,1 and �̂int,2,
given in Equation (4).

3.3. The Cauchy–Born rule

In this section, we shall briefly discuss a particular constitutive model supported by the Cauchy–
Born rule, e.g. see [36, 37]. Under the assumption that the deformation is homogeneous within
some neighbourhood, the deformation of a crystal lattice behaves as is shown in Figure 3(a). Then
the vector R between two undeformed atomic sites is mapped onto the vector r=FR between two
atoms in the deformed configuration.

Consider a given undeformed, representative crystal unit cell Sc with atomic density �0. Using
the Cauchy–Born rule the stored energy function, given by Equation (18), can be restated as

W (F) = �0
2

∑
k∈Sc

�(rk), rk = |rk |, rk =FRk (41)

where the summation runs over all atom pairs k within the unit cellSc, which has to be sufficiently
large to include the range of possible interactions. The simplest case is to consider interaction

Figure 3. (a) Cauchy–Born rule; and (b) fcc nearest neighbour unit cell.
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between nearest neighbours only. For a face centred cubic (fcc) crystal the smallest possible unit
cell Sc is displayed in Figure 3(b). The cell contains k = 6 atomic bonds. The fcc crystal extends
in space by reflection of this unit cell across its faces. As an example, the intrasolid interaction
may be given by the Lennard-Jones potential

�(r) = ��
(r�
r

)12 − 2��
(r�
r

)6
(42)

with well depth �� and equilibrium spacing r�, which is the spacing of atoms in the undeformed
configuration. For the considered unit cell the reference density is then given as

�0 =
√
2

r3�
(43)

From the stored energy function W (F) the second Piola–Kirchhoff stress now follows as

S= 2
�W
�C

= �0
∑

k∈Sc

��

�rk

Rk ⊗ Rk

rk
(44)

where C=FTF is the right Cauchy–Green tensor. Subsequently, the Cauchy stress can be
expressed as

r= 2

J

�W
�B

B= �
∑

k∈Sc

��

�rk

rk ⊗ rk
rk

(45)

where B=FFT is the left Cauchy–Green tensor. The material and spatial tangent are then
obtained as

C = 4
�2W
�C2

= �0
∑

k∈Sc

(
�2�
�rk2

− 1

rk

��

�rk

)
Rk ⊗Rk ⊗Rk ⊗Rk

r2k
(46)

and

c = 4

J
B

�2W
�B2

B= �
∑

k∈Sc

(
�2�
�rk2

− 1

rk

��

�rk

)
rk ⊗ rk ⊗ rk ⊗ rk

r2k
(47)

We note that for a cubic crystal, as shown in Figure 3(b), the Cauchy–Born rule leads to a
finite, anisotropic, cubic material law. We emphasize that this constitutive model is a local model
and it only applies as long as the deformation is homogeneous within the considered unit cell.
Highly inhomogeneous deformation, e.g. in the presence of dislocations, cannot be treated by the
Cauchy–Born rule and we must then adopt a non-local formulation accounting for the varying
deformation gradient F at the individual atomic sites. An approach combining the local and non-
local formulations is the quasi-continuum method developed by Tadmor et al. [16]; see also [17, 22]
for recent reviews. A mathematical study of the Cauchy–Born hypothesis can be found in [38].

We finally remark that the summation of potential � in Equation (41), can yield a non-convex
function W (F) with many local minima. However, it is reasonable to assume that a given crystal
is initially stable, so that W will be convex in some neighbourhood around the undeformed
configuration. This is the case for the shown fcc crystal.
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Figure 4. (a) Rigid half-space; and (b) plane strain cross section.

3.4. Analytical integration

In some cases the body forces (34), arising from the interaction between the two bodies, can be
obtained by analytical integration. As an example let us consider the case where �̄2 = �2 is given
by the rigid, three-dimensional half-space displayed in Figure 4(a). By considering � to be given
by Equation (24) and supposing constant density �2, the integration in �2 (34)1 can be carried
out analytically, obtaining

�2 = ��2�r
3
0

[
1

45

(
r0
y

)9

− 1

3

(
r0
y

)3
]

(48)

The potential �2 describes the interaction energy between the half-space and a point x1 at the
distance y away from the half-space. The force acting at x1 follows as

F�2 =−��2

�y
= ��2�r

2
0

[
1

5

(
r0
y

)10

−
(
r0
y

)4
]

(49)

Compared to the potential �(r) and the force F(r) given in Equations (24) and (25), the exponents
of the argument of the functions �2(y) and F�2(y) decrease by three due to the volume integration.
The equilibrium spacing between half-space and the point is y0 = r0/

6
√
5.

We remark that, depending on the function �(r), other simple shapes, like for example a rigid
cylinder or sphere may also be integrated analytically.

A further important case is the case of plane strain, since it requires the use of analytical
integration of �. Figure 4(b) shows a three-dimensional body �2 with an arbitrary cross section
S2, which is considered to be in the state of plane strain. The body force at x1 ∈ �1 can then be
written as

b1(x1) = − �
�x1

∫
S2

�2�̂(r) da, �̂(r) :=
∫ ∞

−∞
�(r) dz (50)

where �̂(r) is the potential we obtain from integration along z, the direction perpendicular to S2.
An analogous expression follows for b2, the body force in body �2. For the potential �(r) given

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:931–962
DOI: 10.1002/nme



946 R. A. SAUER AND S. LI

by Equation (24) we find

�̂(r) = ��r0

[
63

256

(r0
r

)11 − 3

4

(r0
r

)5]
(51)

and the corresponding force becomes

F̂(r) =−��̂

�r
= ��

[
693

256

(r0
r

)12 − 15

4

(r0
r

)6]
(52)

We note that in Equations (51) and (52) above, the distance r = |x1 − x2| refers to points x1 and
x2 located within the plane strain cross section of the two bodies.

A similar analytical integration can be carried out for the case of axi-symmetry problems.
Furthermore, if both bodies are considered rigid, with constant density and simple geometry,

the interaction potential �C can be fully integrated analytically, e.g. see [21, 23, 24, 31]. In some
cases the interaction integration can also be simplified if infinitesimal deformations are assumed.
A recent example is given in [39].

4. FINITE ELEMENT DISCRETIZATION

4.1. Method 1: the direct approach

The weak form (38) is implemented within the finite element method using an updated Lagrangian
formulation, [19], due to its efficiency. The displacements u= x − X (and likewise the variation
�u) are approximated by u(x) ≈ ∑

I NI (x) uI , a sum of the nodal displacements uI and shape
functions NI . From Equation (38) the weak form of the discretized system can then be written as

vT[Mü + rint + rC − rext] = 0 ∀v (53)

where u is the stacked vector of all nodal displacement uI , v is the stacked array of the variations
�uI ,M is the mass matrix of the discretized system and r= rint+rC−rext is the nodal force vector.
Since the equation above holds for all nodal variations �uI we obtain the discretized equations of
motion

Mü + r(u) = 0, r(u) = rint(u) + rC(u) − rext (54)

For a quasi-static problem we have ü= 0 and thus r(u) = 0. We therefore will also denote r as
the residual. In the absence of external loading, as is considered in some of the later examples,
we have rint + rC = 0, so that the problem becomes a balancing between internal and interaction
forces (represented by the potentials � and �).

In this section we focus on the contributions arising from the interaction potential �C given
in Equation (27). To formulate the residual and stiffness corresponding to �C let us consider an
element �e

i ∈ �̄1 and an element �e
j ∈ �̄2 as displayed in Figure 5(a). From ��C (32) the residual

contributions for element �e
i and �e

j can be derived as

rC,i =
∫

�e
i

∫
�e

j

NT
i �i� j

��

�xi
dv j dvi , rC, j =

∫
�e
i

∫
�e

j

NT
j �i� j

��

�x j
dv j dvi (55)
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Figure 5. (a) Interacting elements; and (b) symmetry considerations.

(see [25]). These quantities correspond to the nodal force vectors acting on the two elements due
to their mutual interaction. Here, Ni and N j are arrays containing the shape functions of element
�e
i and �e

j . Both Ni and N j have the form

N=[N1I, N2I, . . . , NnI] (56)

where n is the number of nodes per element and I is the identity tensor in R3. As has been noted
in Equation (35), we have

��

�xi
= −F(r)r̄,

��

�x j
= F(r)r̄ (57)

with

r= xi − x j , r = |r|, r̄= r
r

(58)

The total interaction force vector reC,i of element �e
i is the sum of the contributions rC,i over all

elements �e
j . Likewise the total interaction force r

e
C, j of element �e

j is the sum of the contributions
rC, j over all elements �e

i . That is, we have

reC,i =
∑

�e
j∈�̄2

rC,i , reC, j =
∑

�e
i ∈�̄1

rC, j (59)

To employ the Newton–Raphson method to solve the resulting non-linear equation, the tangent or
stiffness matrix corresponding to �C is required. Linearizing rC,i with respect to the degrees of
freedom (dofs) of element �e

i and �e
j gives the two contributions

kC,i i =
∫

�e
i

∫
�e

j

NT
i �i� j

�2�
�xi�xi

Ni dv j dvi

kC,i j =
∫

�e
i

∫
�e

j

NT
i �i� j

�2�
�xi�x j

N j dv j dvi

(60)
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while the linearization of rC, j w.r. to the dofs of element �e
i and �e

j yields

kC, j i = kTC,i j

kC, j j =
∫

�e
i

∫
�e

j

NT
j �i� j

�2�
�x j�x j

N j dv j dvi
(61)

The mixed derivatives in the equations above can be written as

�2�(r)

�xi�x j
= F(r)

r
I +

[
F ′(r) − F(r)

r

]
r̄⊗ r̄

�2�(r)

�xi�xi
= −�2�(r)

�xi�x j
= �2�(r)

�x j�x j

(62)

Finally, the total stiffness matrices keC,i i and keC, j j arising from the interaction between element
�e
i and body �2, and between element �e

j and body �1, is obtained by the summation

keC,i i =
∑

�e
j∈�̄2

kC,i i , keC, j j =
∑

�e
i ∈�̄1

kC, j j (63)

just as seen in Equation (59). No summation occurs for the off-diagonal contribution kC,i j , and
we can write keC,i j = kC,i j . The global force vector rC and associated global stiffness matrix KC

is obtained from the assembly of all contributions reC,i , r
e
C, j , k

e
C,i i , k

e
C,i j , k

e
C, j i and keC, j j of all

elements �e
i ∈ �̄1 and �e

j ∈ �̄2.

We note that if �̄1 =�1 and �̄2 =�2, i.e. the interaction occurs between the entire domains,
the global stiffness matrix will be completely filled in due to the interaction between all dofs of
body �1 and all dofs of body �2. However, for cases where �̄1 and �̄2 are substantially smaller
than their corresponding domains �1 and �2, the global stiffness matrix will be sparse. For cases
where the physical situation demands that the entire domains interact with each other we propose
two efficient approximations discussed in Section 4.2.

Due to the property kC, j i =kTC,i j the global stiffness matrix is symmetric, as it should be since
we are considering a conservative system.

Let us briefly remark on the case of a symmetric problem as is shown in Figure 5(b). Even
though we may only model half of the system, we still have to account for the fact that the
interaction reaches across the plane of symmetry. In other words the generic points xi and x j not
only interact with each other, but also interact with the mirror images x j ′ and xi ′ .

4.2. Approximate approaches: Method 2 and Method 3

In this section we propose two approaches to approximate the finite element formulation presented
in Section 4.1. We shall refer to the original finite element formulation as Method 1 and denote
the following two approximations by Method 2 and Method 3. We shall see that they are valid
under certain, realistic assumptions and constitute more efficient and stable numerical methods. A
quantitative comparison is shown in the following section. The basic idea of the two approximations
is to introduce some form of analytical integration into the expressions for the force vector rC
given in Equation (55). We do this without restricting the geometry in any way.
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Figure 6. (a) Integration over �1; and (b) integration over �2.

The idea of Method 2 is to reduce the volume integration in rC to a surface integration, by
mapping the domain of interaction �̄I and the body forces bI evoked inside the bodies onto the
surface. To illustrate the method, we consider the case of plane strain where �I ∈ R2, for I = 1, 2,
now refers to the cross section in plane strain. According to Figure 6 the volume elements of the
two bodies can be written as

dv1 = r

r̃s
dr cos �1 da1, dv2 = r̃s

rs
dr̃s cos �2 da2 (64)

with cos �1 =−r̄ · n1 and cos �2 = r̄ · n2. The integration, say over �1, can then be written as

∫
�1

. . . dv1 =
∫

��1

1

r̃s

∫ rc

r̃s
r . . . dr cos �1 da1 (65)

where rc is the cutoff radius associated with �(r). The integration scheme is valid for arbitrary rc
and we can set rc → ∞ for convenience. From Equation (64) we thus have

dv1 dv2 = r

rs
dr dr̄s cos �1 cos �2 da1 da2 (66)

Here rs is the distance between two surface points xs1 and xs2 written in the familiar structure

rs = xs1 − xs2, rs = |rs|, r̄s = rs
rs

(67)

Note that r̄s = r̄. We now assume that the densities �1 and �2 are approximately constant along r .
Substituting Equation (66) into (55), we obtain (see [25] for details)

rC,i = −
∫

�e
i

∫
�e

j

NT
i �i� j Fs(rs)r̄s cos �i cos � j da j dai

rC, j = +
∫

�e
i

∫
�e

j

NT
j �i� j Fs(rs)r̄s cos �i cos � j da j dai

(68)
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for the contribution to the residual due to the interaction of two surface elements �e
i ∈ ��̄1 and

�e
j ∈ ��̄2 with shape functions Ni and N j . Here, the force function

Fs(rs) := lim
rc→∞

1

rs

∫ rc

rs

∫ rc

r̃s
r F(r) dr dr̃s (69)

can be integrated analytically, if F(r) is a simple function. In particular, for plane strain, where
F(r) is given by Equation (52), we find

F̂s(rs) = ��r20

[
77

2560

(
r0
rs

)10

− 5

16

(
r0
rs

)4
]

(70)

where the hat indicates that we are considering a state of plane strain. Thus, with the steps above,
we have reduced the volume integration of Equation (55) to the surface integration of Equation
(68). It is noted that the arrays listed in (68) characterize the interaction between single surface
elements. To obtain the interaction due to the entire surfaces an analogous summation scheme as
listed in Equation (59) is required.

The cosine terms in Equation (68) can be replaced by cos �i =−r̄s · ni and cos � j = r̄s · n j ,
where ni and n j are the outward normals of the current surface elements �e

i and �e
j . For practical

integration purposes it is convenient to map the current integrals (68) back to the undeformed
reference configuration �10 and �20. Using Nanson’s formula

n da = JF−T Ñ dA (71)

where Ñ dA is the oriented surface element in the undeformed reference configuration. (The surface
normal Ñ should not be confused with the shape function array N.) The spatial integrals (68) can
then be expressed by the material integrals

rC,i = −
∫

�e
i0

∫
�e

j0

NT
i �i0� j0Fs(rs)r̄s	i	 j dA j dAi

rC, j = +
∫

�e
i0

∫
�e

j0

NT
j �i0� j0Fs(rs)r̄s	i	 j dA j dAi

(72)

where �e
i0, �e

j0 and �i0, � j0 are referential quantities corresponding to their spatial counterparts.
To simplify the notation we have introduced the two scalars

	i := r̄s · F−T
i Ñi , 	 j := r̄s · F−T

j Ñ j (73)

where Fi and F j are the deformation gradients within elements �e
i and �e

j . We remark that the
linearization of integrals (72) is complicated by the parameters 	i and 	 j . An approximate tangent
to Equation (72) can be obtained by neglecting the contribution from 	i	 j . Such an approximation
is believed to be very good, since the main variation of Equation (72) is caused by Fs(rs) rather
than 	i	 j .

We remind that Method 2 is only valid if the assumption holds that the densities �1 and �2
are constant along r within the interaction zones �̄1 and �̄2. This is appropriate when the cutoff
radius of F(r) is very short compared to the distance over which the deformation of the body
varies. Method 2 thus reduces the domain integration to a surface integration. We can say that
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Figure 7. (a) Method 3; and (b) closest point projection.

the interaction of the two bodies is mapped onto their surfaces. In the context of infinitesimal
deformations, a similar procedure has been derived in [40, 41].

Moreover, Method 2 can also be seen as an independent physical method to discretize Equation
(39), i.e. the case for which the interactions are physically restricted to the surfaces. If the cosine
terms are dropped and �i� j Fs is replaced by �̃i �̃ j F , then Equation (68) corresponds to the
discretization of the surface interaction formulation given by Equation (39).

Method 3 takes the analytical integration another step further. Consider the body force
formulation of Equation (34). Let us rewrite this as

bk(xk) =−���

�xk
, �� =

∫
�̄�

���(r) dv� (74)

for a point xk ∈ �k influenced by the body ��. Here, we have either �k = �1, �� = �2 or �k = �2,
�� =�1. Let us now suppose the two interacting bodies behave as illustrated in Figure 7(a), that
is we consider that the curvature of the surfaces ��1 and ��2 is much smaller than the curvature
of the cutoff radius rc. We can then argue that, from the point of view of xk , the body �� can
be approximated by a flat half-space located at the closest point projection, xPk , of xk onto ���

and sharing the same tangent plane with �� at xPk . We note that in a more refined version of
Method 3, we can include the principal curvatures of surface ��� for example by modelling �� at
xPk as an ellipsoid. The projection of xk onto xPk is shown in Figure 7(b) for the case where ���

is discretized by linear, two-node elements �e
� (e.g. for the case of plane-strain or axi-symmetry).

For this particular case, the projection of xk is obtained as

xPk = Na
� (
P

k )xa� + Nb
� (
P

k )xb� (75)

where Na
� and Nb

� are the two linear shape functions of nodes xa� and xb� of element �e
�, and 
P

k
is the location of xPk along this element. It is given by


P
k = (xb� − xa�) · (2xk − xa� − xb�)

(xb� − xb�) · (xb� − xa�)
(76)
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In the usual way, we define two normalized vectors along the projection and along the surface
element, i.e.

rPk = xPk − xk, r Pk = |rPk |, r̄Pk = rPk
r Pk

rab� = xb� − xa� , rab� = |rab� |, r̄ab� = rab�

rab�

(77)

Approximating �� by some simpler shape with constant density we can rewrite Equation (74), as

bk(xk) =−���(r Pk )

�xk
=−���

�r Pk

�r Pk
�xk

= −F�(r
P
k )r̄Pk (78)

where �r Pk /�xk =−r̄Pk and F� :=−���/�r Pk . We further assume that all these body forces within
�k , along the line defined by r̄Pk , are projected onto the surface ��k . The force vector of surface
element �e

k can then be written as [25]

reC,k =
∫

�e
k

NT
k �k FS(rS)r̄

P
k cos �k dak (79)

where

FS(rS) := lim
rc→∞

∫ rc

rS
F�(r) dr = ��(rS) (80)

is the force function obtained by projecting F� onto the surface ��k . Here, rS denotes the distance
between xPk and ��k . If �� in the neighbourhood of xPk is approximated by a flat half-space (see
Section 3.4), �� is given by (48) and the force FS becomes

FS = ����r
3
0

[
1

45

(
r0
rS

)9

− 1

3

(
r0
rS

)3
]

(81)

We remark that the above procedure applies to all surface elements on both surfaces ��̄1 and
��̄2. From the general arrangement of the two surfaces ��̄1 and ��̄2, it becomes apparent that
the projection points xP1 , of x1 onto ��̄2, and xP2 , of x2 onto ��̄1, are independent of each other.
Therefore, the global stiffness matrix KC obtained from the linearization of rC, in general, will no
longer be symmetric as is the case in Methods 1 and 2. However, it can be observed numerically,
that the stiffness contribution KC (as well as the entire stiffness matrix K) becomes symmetric at
equilibrium, i.e. when the Newton–Raphson iteration as converged to zero residual r= 0.

In summary, Section 4 presents three implementations of the CGC Model: Method 1—a volume
interaction formulation, Method 2—a surface interaction formulation and Method 3—a point
interaction formulation. Method 3 takes a similar approach as contact algorithms devised for
macroscale problems, e.g. see [3], and it therefore provides a natural transition between the
CGCM and the former. An investigation of the relation between the two and the application of
Method 3 to macroscopic contact problems is addressed in [25].
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5. NUMERICAL EXAMPLES

This section serves as an illustration and validation of the proposed contact model and its three
formulations mentioned above. For this we have constructed a simple, normalized benchmark
problem. Further, in Section 5.4 we present results obtained by using actual material data.

5.1. A model problem

Consider the model problem of a cylinder, with radius R0, located between two half-spaces, which
are pushed together by a displacement u, as shown in Figure 8(a). We further consider the problem
to be quasi-static and in a state of plane strain. Two discrete finite element models of the system,
which exploit the symmetry of the problem, are shown in Figures 8(b) and (c). At the left, bottom
and right boundary of the mesh we fix (imposed zero displacement) the dofs perpendicular to
these surfaces, as indicated by the short black bars. The red bars at the top indicate dofs where
the displacement u is prescribed. Apart from the deformation of the bodies we will monitor the
load–displacement curve P(u) and the evolution of the gap g(u) between the tip of the indenter
and the half-space below. To solve the problem we have used the three methods described earlier.
Both the cylinder and half-space are modelled by the same hyperelastic material based on the
Cauchy–Born rule. We consider a fcc crystal where only nearest neighbours are interacting via
the intrasolid potential � given in Equation (42). The crystal unit cell of such a material is shown
in Figure 3(b). We let this unit cell be aligned with the x , y and z (out of plane) axes of the
model problem. The intersolid potential �, governing the interaction between the two bodies, is
modelled by Equation (24). Initially, this model problems depends on the parameters R0, r�, ��,
r� and ��. The quasi-static problem can be normalized by selecting a reference length and a
reference energy. For this we chose the geometry parameter R0 and the energy E0 := �0��R

3
0. The

normalized problem can then be characterized by two parameters, the length and energy scale

�L := R0

r�
, �E := ��

c0��
(82)

0 1 2 3 4 5 0 1 2 3 4 5
x/R0

y/
R

0

x/R0

y/
R

0

(b) (c)(a)

Figure 8. (a) Model problem; (b) coarse FE mesh; and (c) fine FE mesh.
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Figure 9. (a) Deformation and stress I1; and (b) convergence of the FE solution.

where c0 is a material constant defined as c0 := �0r
3
�, which in view of Equation (43) becomes

c0 =√
2r3�/r3�. The length scale �L is the ratio between the cylinder radius R0 and the equilibrium

spacing r� of the potential �, while the energy scale �E is proportional to the ratio of �� and ��.
We note that, upon normalization, the equilibrium distance r� of potential � does not play any
role in this model problem. The reason for this is that the crystal unit cell Sc can be normalized
independently from the normalization of the problem geometry. Thus, we can normalize the unit
cell by r� even when the geometry is normalized by R0. We note that this only works for the
Cauchy–Born assumption that the deformation is homogeneous within the unit cell Sc. It must
only be assumed, that Sc is sufficiently small, such that the deformation can be considered
homogeneous within the cell. We further consider a cutoff radius rc beyond which the interaction
force F(r) (25) is negligible. At a given time/load step, the cutoff radius is selected such that F
drops below 1

1000 of the largest attractive force attained within the two bodies.
Figure 9(b) shows the rate of convergence of four successive meshes with largest element

diameters h1 = 5
√
2R0/4, h2 = 5

√
2R0/8, h3 = 5

√
2R0/12 and h4 = 5

√
2R0/16 for an example

using �L = 10 and �E = 5. Here, we have defined the error in the potential energy of the system as

e(h) := �(h)

�(h5)
− 1 (83)

i.e. relative to a very fine mesh with h5 = 5
√
2R0/20. The deformed configuration and the stress

invariant I1 = tr r of the finest mesh are shown in Figure 9(a). Note that the stress I1 has units
E0/R3

0. The results are obtained from Method 1.

5.2. Model problem results

We now discuss some of the results of the model problem shown in Figure 8. The first result,
obtained with Method 1 using the parameters �L = 10/ 6

√
2, and �E = 5, is shown in Figure 10.

For these parameters a physical instability occurs during adhesion, as can be seen from the load–
displacement curve P(u) and the gap g(u). In practice, there will be a jump between the stable
branches of P(u) and g(u), a situation commonly denoted in the literature by jump-to-contact
and jump-off-contact [12]. Furthermore, from Figure 10(a), one can see that for large u, P is not
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(a) (b)

(c) (d)
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Figure 10. (a) Load–displacement curve; (b) gap between cylinder and half-space; (c) deformation and
stress I1 = tr(r) during adhesion; and (d) deformation and stress I1 during indentation.

linear but rather some power of u, which is in agreement to experimental indentation results [8]
and analytical models [13, 14]. For large negative u, i.e. great separation distances, the force P
between the bodies vanishes. The deformed bodies and the stress measure I1 = tr(r) is shown in
Figures 10(c) and (d) for the specified values of u and P . Here, (c) shows the attraction as the
bodies adhere, leading to strong tensile stress, whereas (d) shows the repulsion during indentation,
giving large compressive stress. We remark that the adhesive stability is controlled by the ratio
between the stiffness associated with the interaction energy �C and the stiffness associated with
the elastic energy �int. In [25] it is shown that this stiffness ratio is controlled by the parameter
�K = �E/�L: For small �K the bodies are relatively soft, and the system develops an instability; for
large �K the bodies are too stiff for the system to become unstable. The size of the gap between the
two bodies is controlled by �L. The gap decreases for increasing �L, i.e. if the atomic equilibrium
spacing r� becomes smaller compared to the problem size given by R0. We note that the gap is
only slightly affected by �E.

As a second example we consider the parameters �L = 25, �E = 5, for which no instability occurs,
and show a comparison between Methods 1–3. The load–displacement curve P(u) and the gap
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Figure 11. (a) Load–displacement curve; (b) gap between cylinder and half-space; (c) deformation and
stress I1 = tr(r) for u = 0.91R0; and (d) enlargement of c.

g(u) for the three methods are shown in Figures 11(a) and (b). It can be seen that the force pushing
down on the cylinder, P(u), and the gap between cylinder and half-space, g(u), are practically
equal for all three methods. A small difference can be seen for P(u) between Method 3 and the
other two methods, Method 1 and 2, which are indistinguishable in Figure 11(a). The step size
chosen in this simulation is �u = 0.005R0 and it is increased to �u = 0.01R0 after 40 steps for all
methods. We have further used 5× 5 quadrature points for the volume integration of Method 1, 5
quadrature points per surface element of Method 2 and only 2 quadrature points for the surface
integration of Method 3. We note that we cannot use fewer quadrature points in Methods 1 and
2, since this will make the simulation numerically unstable. Effectively, the quadrature points will
be too far apart to ‘feel’ each other. Method 3 does not have this drawback. It runs stable for
only two quadrature points per surface element. The deformed mesh and the stress I1 is shown in
Figures 11(c) and (d) using Method 3 for u = 0.91R0. The enlargement (d) shows how small the
gap is for the chosen parameters. Considering that r� may be of the order of 0.5 nm, R0 becomes
of the order of 10 nm in this example.

In the following we illustrate the interaction between the two bodies from the numerical point
of view. Considering Method 1, Figure 12(a) shows the deformed FE mesh for the parameters
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(b)(a)

Figure 12. (a) Interaction zones for Method 1; and (b) projected Gauss points for Method 3.

Table I. Computational efficiency of the coarse-grained contact model.

MD M1 M2 M3

Number of dofs 258 000 1872 1872 1872
Number of intrasolid interactions 1.55× 106 20 736 20 736 20 736
Number of intersolid interactions 5.0× 106 231 875 2025 96

�L = 10 and �E = 5. The region formed by the yellow and pink element is a discrete snapshot
of the current interaction domains �̄1 and �̄2. As has been argued in Section 4, these domains
reach across the symmetry boundary. The interaction domains for two elements is shown. Element
�e
i interacts with the hemispherical region above, while �e

j interacts with the zone below. A

search algorithm is implemented which computes the interacting region for each element �e
i ∈ �̄I ,

I = 1, 2. During subsequent loading these regions are updated. Figure 12(a) can also be used to
illustrate the interaction implemented in Method 2. In this method the interacting domains ��̄1 and
��̄2 are formed by the exterior surface of �̄1 and �̄2. The interaction as derived in Method 3 is
shown in Figure 12(b) for the values �L = 5 and �E = 5. The quadrature points of surface elements
�e
i and �e

j are projected onto the closest point on the neighbouring surface as shown. Note that
this projection is not always perpendicular to the surface we are projecting onto. As is seen for
the first quadrature point of �e

i , the closest projection point is a FE node.
Finally, Table I assesses the efficiency of the three methods of the CGCM, designated as ‘M1’

through ‘M3’ compared to a full molecular approach (‘MD’). We consider the example shown
in Figure 11 (�L = 25, �E = 5). The finite element discretization contains 1872 dofs and 864 ele-
ments. For the sake of comparison let us assume that the equilibrium spacing of the fcc lattice is
r� = r�/2, i.e. half of the equilibrium spacing of the intersolid interaction�. It follows that in the un-
deformed configuration there are 50

√
2 atoms contained along the length R0. The quarter system of

Figure 11(c) thus contains around 129 000 atoms corresponding to 258 000 dofs for a state of plane
strain. Considering only nearest neighbour intrasolid interaction, each atom interacts with a shell

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:931–962
DOI: 10.1002/nme



958 R. A. SAUER AND S. LI

of 12 surrounding atoms, giving a total of about 1.55 million intrasolid interaction as stated in
Table I. The Cauchy–Born rule, on the other hand, lets us reduce the number of interactions to six
per unit cell (see Figure 3(b)). The total number of intrasolid interaction for the quasi-continuum
then follows as 20 736 (considering a 2× 2 quadrature rule to compute rint for each element).
The difference of the three methods comes into play when looking at the number of intersolid
interactions. For Methods 1 and 2 we can count 371 and 81, respectively, element pairs of body 1
and 2 interacting with each other. For the considered quadrature rules to compute rC (5× 5 points
for each volume element �e

i of M1 and 5 points for each surface element �e
i of M2) then follow

the numbers given in Table I. For Method 3 the interaction needs only to be computed for the 96
quadrature points spread over the 48 surface elements constituting ��1 and ��2. This stands in
strong contrast to the estimated 5 million intersolid interactions required for the molecular solution.

According to Table I it can be summarized that the number of dofs reduces by a factor of 138
from a full molecular model to the CGC Model. Likewise, the number of intrasolid interactions
is reduced by a factor of 75. Between the molecular model and Method 1, the reduction in the
number of intersolid interactions is about 22, from Method 1 to Method 2 it is a further 115 and
from Method 2 to Method 3 the reduction factor is about 21. We note that the computational cost
to set up rint and rC scales linearly with the number of intrasolid and intersolid interaction. Table I
thus shows the huge gains in efficiency between the full atomistic approach and Methods 1–3. The
number of dofs affects the solution time to solve the resulting equations of motion.

We emphasize that the comparison of Table I is by no means exhaustive, as it is restricted to
quasi-static, temperature independent conditions. The efficiency also depends on the chosen scale,
represented by �L. For small �L the savings compared to the molecular model will be much lower,
indicating that the more accurate, molecular model becomes the method of choice. On the other
hand as �L increases the efficiency of the presented CGCM, in particular Method 3, will become
even more dramatic.

5.3. Discussion

Let us now summarize some of the key findings from the study of the simple model problem
depicted in Figure 8.

1. Physically, the problem is only controlled by two parameters: �L, representing the geometry,
and �E, representing the relative strength between � and �. (Recall that we have fixed some
other parameters by considering both bodies to be of the same anisotropic material, governed
by the Cauchy–Born rule, with material axis aligned along x , y and z. Additional numerical
parameters are the finite element mesh, the density of quadrature points and the cutoff radius
rc of the potential.)

2. If the two interacting bodies are soft compared to the strength of their mutual interaction
an instability occurs during adhesion. This behaviour is controlled by the stiffness parameter
�K := �E/�L.

3. The parameter �L controls the length scale of the contact problem, and for the proposed
model to be applicable, �L has to be within a certain range. If �L becomes too small, the finite
element resolution approaches the atomic resolution, and it will thus make more sense to use
MD. On the other hand as �L becomes large we need smaller and smaller finite elements (or
more and more quadrature points per element) to numerically refine the atomic interaction
potential �. In this case it will be more efficient to model contact by traditional means, i.e.
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not based on atomic interaction but rather based on a macroscopic impenetrability constraint.
In other words the CGCM lives between two limit cases as has been argued in Section 2.

4. We note that for our model to be algorithmically stable, there is a limit on the load step size
�u (or time step size �t for dynamic problems). In principle �u should not be larger that
the gap g, since this would result in the intersection of both bodies, letting the method fail.
The load or time step can be increased significantly if an algorithmic treatment is included,
that pushes the bodies apart in the case of intersection, e.g. by a penalty-type approach [25].

5. Methods 1 and 2 are sensitive to the number of Gauss points used to integrate �C. Using
too few quadrature points can lead to the failure of the method since the quadrature points
are too far apart to feel each other, an issue which has also been noted in [33]. In this
respect, Method 3 is much more robust. Less refinement is required for the stable numerical
integration of Method 3.

6. The three methods can be ordered based on their different nature. For small �L Method 1
will be most appropriate since in this case the interaction zones �̄1 and �̄2 are large and
the deformation may vary strongly within these zones. A situation which cannot be captured
by Method 2 or 3. On the other hand, for large �L the interaction zones are confined to the
surface so that Methods 2 and 3 will constitute much more efficient schemes than Method 1
(e.g. see Table I). Thus, as �L increases we should also increase the numerical treatment from
Method 1 to Method 3. Below Method 1, a MD approach will be more suitable, whereas
beyond Method 3 conventional computational contact mechanics models should be used. (We
note that Method 3 can in fact be seen as one of those [25].)

5.4. Application to carbon nanotubes

As an application of the CGC Model, we consider the deformation of a (40, 40) CNT cross section
under plane strain conditions; for a CNT review see [42]. The tube consists of a hexagonal graphene
structure with 160 carbon atoms around the circumference. The intersolid potential parameters are
chosen as r� = 0.383 nm and �� = 2.39meV. The tube is modelled linear elastically with Young’s
modulus E = 5.0 TPa, Poisson ratio � = 0.19 and wall thickness t = 0.075 nm. See [43] for a
proposed range of material parameters.

Figure 13 shows the undeformed tube (a), its interaction with a rigid graphite substrate (b), with
neighbouring tubes in a bundle (d) and with itself as it collapses (c). All equilibrium configurations

(a)

(b)

(c) (d)

Figure 13. (a) Undeformed (40, 40) CNT; (b) adhesion of the CNT to a rigid substrate; (c) self collapse
of the CNT; and (d) adhesion of three CNT’s.
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shown are stable and drawn to scale. The tube is modelled by 40 geometrically exact 2-node beam
elements, derived in the works of [44–46]. The dots shown in the figures indicate the FE nodes.
Dynamic relaxation is used to obtain the deformed configurations. The results shown in Figure 13
are in agreement with the literature. A MD solution of case (b), the adhesion of the CNT to a
rigid substrate can be found in [6, 47]. Molecular simulations of the collapsing CNT have been
obtained by Gao et al. [5] and Tang et al. [48], a finite element solution can be found in [43, 49].
Experimental data showing the interaction of two CNT can be found in [50].

We note that, using simplifying assumptions on the geometry, the CNT self-collapse can also be
studied by analytical means, e.g. see [48, 51]. It may be noted that Figures 13(a) and (c) show that
the ring itself has two stable equilibrium positions, i.e. the potential energy � has at least two local
minima. In principle, if we consider a very stiff ring, there will be only one stable configuration,
namely the undeformed ring. As the stiffness of the ring becomes softer more local minima of
� will appear. For very small ring stiffness, one can imagine that there are many ‘collapsed’
configurations.

We finally note that the complex, three-dimensional behaviour of interacting CNT, as is for
example observed in [52], has been studied in much greater detail by the works of Arroyo and
Belytschko [32, 33] and Qian et al. [20, 53].

6. CONCLUSION

In this paper, we have presented a quasi-continuum contact approach, termed the Coarse-Grained
Contact Model (CGCM). The model is motivated both from the underlying molecular description
and from the macroscale continuum mechanics approach. The model describes the interaction
of solids based on the interaction of individual atoms belonging to the bodies. In our model,
the atomic interaction potential is divided into two cases, the intrasolid potential, furnishing a
constitutive relation for the continua, and the intersolid potential, determining the interaction
between distinct bodies (or remote regions of the same body). The CGCM is implemented in
an updated Lagrangian finite element formulation, and we have presented three variations of the
implementation, termed Method 1–Method 3. We showed that, as the length scale of the problem
increases, the approximations introduced in Methods 2 and 3 become increasingly appropriate: For
large-scale problems we should use Method 3, since it is the most efficient, whereas at small scales
we need to use Method 1, since it is more accurate. Computationally, the interaction between two
bodies leads to the coupling of the dofs of the two bodies. Even if the interaction is confined to
the neighbouring regions �̄1 and �̄2, the coupling can still affect a large number of dofs, as is
shown in Table I.

We have illustrated the behaviour of the CGCM and its implementations through a simple model
problem, which is controlled by two parameters: the length scale �L, the ratio between the problem
size and the interatomic equilibrium spacing, and the energy scale �E, relating the internal energy
�int and the interaction energy �C. Further, in Section 5.4, we have applied our model to the
interaction of CNTs. We have argued that, at both ends of the length scale spectrum, the CGCM
reverts to either a MD model or to a macroscopic computational contact mechanics model.

There are several possible extensions to the theoretical and computational aspects of the work
presented here, some of which are currently pursued by the authors. We have been able to obtain an
excellent numerical agreement, see [26], of the CGCM with the Maugis–Dugdale model [15], an
analytical adhesive contact model based on the JKR and DMT models [13, 14]. Another interesting
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topic is to study the formation and breaking of atomic bonds, which occur during sintering and
fracture processes. The inclusion of frictional and thermal effects is also worth considering. Further
computational topics are the consideration of surface smoothing in Method 3 and the scaling of
the CGC Model as it approaches macroscale continuum mechanics [25].
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