
ARTICLE IN PRESS
Journal of the Mechanics and Physics of Solids

55 (2007) 980–1000
0022-5096/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jmps
On configurational compatibility and multiscale
energy momentum tensors

Shaofan Lia,�, Christian Lindera, James W. Foulk IIIb,c

aDepartment of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
bDepartment of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

cSandia National Laboratories, Livermore, CA 94550, USA

Received 17 June 2006; received in revised form 2 November 2006; accepted 3 November 2006
Abstract

In this work the continuum theory of defects has been revised through the development of

kinematic defect potentials. These defect potentials and their corresponding variational principles

provide a basis for constructing a new class of conservation laws associated with the compatibility

conditions of continua. These conservation laws represent configurational compatibility conditions

which are independent of the constitutive behavior of the continuum. They lead to the development

of a new concept termed configurational compatibility, dual to the concept of configurational force.

The contour integral of the corresponding conserved quantity is path-independent, if the domain

encompassed by the integral is defect-free. It is shown that the Peach–Koehler force can be recovered

as one of these invariant integrals. Based on the proposed defect potentials and their corresponding

defect energies, two-field multiscale mixed variational principles can be employed to construct

multiscale energy momentum tensors. An application is outlined in the form of a mode III elasto-

plastic crack problem for which the new configurational quantities are calculated.
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1. Introduction

Fracture of materials is one of the most studied problems in material science and applied
mechanics. The first milestone of fracture mechanics is Griffith’s seminal work (Griffith,
1921) on the fracture of glass rods. Griffith postulated that crack propagation occurs when
the potential energy release resulting from an increment of crack growth is sufficient to
overcome the surface energy of the material. In the Griffith model, the fracture resistance is
assumed to come exclusively from the surface energy of the material and restricts the
application to brittle materials. Irwin (1948) extended Griffith’s approach to metals by
including the energy dissipated by local plastic flow. These concepts served as the basis of
classical linear elastic fracture mechanics. The foundation of the modern theory for crack
extension is due to the landmark contributions of Eshelby (1951, 1956) and Rice (1968). In
the quasi-static case, one may show that the J-integral is equivalent to the energy release
rate for an elastic body. For inelastic materials, the situation becomes more complex. In
metallic systems, the stress concentration at the crack tip may enable dislocation emission.
One of the first models to examine brittle (cleavage) and ductile (dislocation emission)
behavior was formulated by Rice and Thomson (1974). A more refined theory of
dislocation nucleation based on the Peierls–Nabarro model (Peierls, 1940; Nabarro, 1952)
was later proposed by Rice (1992). Subsequent experimental findings (Jokl et al., 1989;
Huang and Gerberich, 1992; Zielinski et al., 1992; Marsh et al., 1992; George and Michot,
1993) and recent results of large scale atomistic simulations (Grujicic and Du, 1995; Cleri
et al., 1997; Zhou et al., 1997; Bulatov et al., 1998; Cleri et al., 1998; Farkas, 1998;
Waghmare et al., 2000; Farkas, 2000; Farkas et al., 2001; Bernstein and Hess, 2003; Guo
et al., 2003; Mattoni et al., 2005; Farkas, 2005) have suggested that the fracture of brittle
materials is a multiscale phenomenon involving cleavage, dislocation emission, and a host
of grain and grain boundary dependent mechanisms such as twinning, recrystallization, or
phase transformation. Today, it has become a general consensus that fracture is an
archetype of multiscale phenomena in condensed solid state physics.

In addition to experimental and computational findings, another focus of contemporary
fracture mechanics is the study of configurational mechanics. Motivated by the belief that
the configurational structure of the material is intrinsic to defect mechanics, configura-
tional mechanics has become a framework for modelling defects. Continuum descriptions
in material space contrast the Newtonian approach to mechanics in physical space.
Literature on this topic can be found in Maugin (1993), Gurtin (1999), Kienzler and
Herrmann (2000), Kienzler and Maugin (2002), and Steinmann and Maugin (2005),
among others. Well-known examples of configurational forces on defects are the
Peach–Koehler force (Peach and Koehler, 1950) and the J-integral (Eshelby, 1951, 1956;
Rice, 1968).

The objective of the current work is to explore the relationship between the motion of
defects and configurational mechanics. The concept of configurational forces is based on
conservation laws in elasticity which are a manifestation of the symmetry properties of
equilibrium equations. Recently, in an effort to search for kinematic conservation laws of
elasticity, symmetry properties of kinematic conditions of the continuum have been studied
in Li (2004), Li et al. (2005) and Li and Gupta (2006). Based on the duality between forces
(equilibrium) and kinematics (compatibility) in continuum mechanics, it is natural to argue
that such a duality also exists in the framework of configurational mechanics. This leads to
the proposal of a concept termed configurational compatibility, dual to the well-established
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notion of configurational force. Our approach to configurational compatibility is through
the construction of a defect potential based on the continuum theory of dislocations. One
of the early proposals for a dislocation theory was brought forward by Burgers (1939)
which included an expression for the displacement field of a dislocation loop in terms of
line integrals over its length and an area integral over its enclosed area. Peach and Koehler
(1950) derived an expression for the configurational force on a dislocation segment. Nye’s
curvature tensor (Nye, 1953) has been found to be a useful equivalent of the dislocation
density which is a measure of defects inside the continuum. Kondo (1952) and Bilby et al.
(1955) independently developed a dislocation theory in the context of differential
geometry. Kröner (1958, 1960) and Kröner and Seeger (1959) extended this theory to a
non-linear theory of elasticity with dislocations and internal stress. Mura (1968) and Willis
(1970) transformed Burgers’ equation into a line integral for displacement gradients in
terms of an integrand containing the elastic Green function tensor. The incorporation of
disclinations was achieved by Anthony (1970) and deWit (1970) among others. More
recent contributions in this active field can be found in Kröner (1981), Teodosiu (1982),
Davini (1986), Naghdi and Srinivasa (1994), Steinmann (1996), Arsenlis and Parks (1999),
Davini (2001), Kröner (2001), Parry (2001), Cermelli and Gurtin (2001), Gurtin (2002).
The short list cited here is far from being complete.
From the viewpoint of multiscale modelling, the stress defined in continuum mechanics

is a macroscale quantity, which originates from the homogenization or idealization of a
continuum ensemble. Therefore, the configurational force derived from the equilibrium of
such stresses should also be considered a macroscale quantity. No configurational force
based on a microscale stress, such as the virial stress (Clausius, 1870; Lutsko, 1988;
Cormier et al., 2001; Zhou, 2003) or Hardy’s stress (Hardy, 1982; Zimmerman et al., 2004),
has been reported. In contrast, the incompatibility of the lattice is a concept of microscale
or even of atomic scale if the solid has a well-defined lattice structure. This suggests that
compatibility conservation laws may be able to capture the physics of the microscale.
Compared to the classical conservation laws based on stress equilibrium conditions,
conservation laws stemming from configurational compatibility will be valid at a much
smaller length scale. Therefore, it is natural to institute the concept of multiscale
configurational mechanics by combining the conservation laws based on equilibrium, valid
at the coarse scale (macroscale), with those based on compatibility, valid at the fine scale
(microscale). Combining coarse scale and fine scale energy densities yields the second
concept in this work, the multiscale energy momentum tensor. It will be shown that the
multiscale energy momentum tensor is composed of a coarse scale component, Eshelby’s
energy momentum tensor (Eshelby, 1951) and a fine scale component, a scaled
compatibility momentum tensor. The constructed multiscale framework will be applied
to mode III crack propagation. Ramifications of the new framework include a multiscale
driving force.
The paper is organized in six sections. We start in Section 2 by revising the linear

continuum theory of dislocations through the construction of defect potentials. In Section 3,
we introduce the concept of configurational compatibility and present a new class of
kinematic conservation laws based on the proposed defect potential. In Section 4, multiscale
energy momentum tensors are derived from coarse scale and fine scale potentials.
Configurational compatibility and multiscale energy momentum tensors are applied to a
mode III elasto-plastic crack problem in Section 5. We close the presentation in Section 6 by
making a few concluding remarks.
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2. Defect potentials based on the linear continuum theory of dislocations

In this section we will review the main aspects of the well-established linear

continuum theory of dislocations and propose defect potentials subsequently used to
construct the concepts of configurational compatibility and multiscale energy momentum
tensors.

To fix the notation, we first introduce the convention used to describe dislocations,
outline the assumptions made in deriving the theory, and then focus on the construction of
a valid defect potential. We identify a perfectly ordered state as a defect-free state. Crystals
are commonly classified as the most ordered structures of mass points. In order to obtain a
continuum description of the crystal, a limiting process is performed. If the crystal is not
defect-free, we obtain a continuum description of the defect. Identifying dislocations as the
main defect in this work, we obtain a continuum theory of dislocations. The incorporation
of plasticity into the continuum was achieved by decomposing the total strain �ij of the
plastic solid into an elastic part �eij, which gives rise to stresses based on the general
assumptions of elasticity theory, and a plastic or inelastic part �pij, which changes the shape
of the solid and leads to permanent deformation. In the infinitesimal case, this
decomposition is given as

�ij ¼ �
e
ij þ �

p
ij . (1)

Contrary to �ij , which is always a compatible field, �eij and �
p
ij are, in general, not compatible

fields. Since the plastic deformation is permanent, the elastic strain �eij no longer satisfies the
compatibility equations, which will be affected by a defect distribution that constitutes
inelastic deformations. The continuum defect theory is formulated with elastic or inelastic
kinematic variables in order to represent the defect distribution. Even though the elastic
strain �eij is a state quantity, which means that it can be uniquely measured at any time, it is
not enough to describe the influence of dislocations in the body (Kröner, 1958). The
curvature, which serves as another state quantity, plays a dominant role in the continuum
theory of defects, as it will be shown below. Following Kröner (1958, 1960, 1981), we
introduce the corresponding anti-symmetric rotation tensors oij, oe

ij , o
p
ij , and distortion

tensors bij , b
e
ij, b

p
ij as

bij ¼ �ij þ oij ; beij ¼ �
e
ij þ oe

ij and bpij ¼ �
p
ij þ op

ij, (2)

with the analogous decomposition as (1), namely

oij ¼ oe
ij þ op

ij and bij ¼ beij þ bpij. (3)

In order to describe how points in the body are transferred by the total distortion bij , we
introduce the total displacement vector as

duj ¼ bij dxi. (4)

The term distortion is used instead of displacement gradient, because the b’s are gradients
as in (4) only if the corresponding deformation is compatible. This is the case for the total
distortion but in general does no longer hold for the elastic and plastic distortion. Based on
the total displacement vector uj we can write the total distortion bij , the total strains �ij and
the total rotations oij as

bij ¼ uj;i; �ij ¼
1
2
ðuj;i þ ui;jÞ and oij ¼

1
2
ðuj;i � ui;jÞ. (5)
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In order to describe the defect, which is mainly referred as the dislocation in this work, we
define the geometrically necessary dislocation density according to Kröner (1958, 1960,
1981) in terms of the plastic distortion tensor

aij :¼eik‘b
p
‘j;k, (6)

where the permutation symbol eik‘ has been used. Since the total distortion b‘j has to
remain compatible, namely eik‘b‘j;k ¼ 0 has to be satisfied which means that the body is not
allowed to break, we can rewrite (6) as

aij ¼ �eik‘b
e
‘j;k. (7)

The condition of the conservation of Burgers’ vector follows directly from (7) as

aij;i ¼ 0, (8)

which implies that dislocations do not end inside the body. The physical interpretation of
(8) is the conservation of net Burgers’ vector sinceI

S

aijni dS ¼ bj. (9)

As usual we can express an anti-symmetric tensor by its axial (rotation) vector

oe
ij ¼ eijkyk or yk ¼

1
2

eijkoe
ij , (10)

where yk is the axial vector of the elastic rotation oe
ij. Based on (10), we can further write

eik‘oe
‘j;k ¼ eik‘e‘jmym;k ¼ yk;kdij � yi;j, (11)

where the Kronecker symbol dij has been used. Now we can use (2), (7), and (11) to obtain
the following expression for the geometrically necessary dislocation density

aij ¼ �eik‘�
e
‘j;k þ yi;j � yk;kdij. (12)

If we introduce the curvature kij as kij:¼yj;i, we can rewrite (12) as

aij ¼ �eik‘�
e
‘j;k þ kji � kkkdij . (13)

Taking into account that eik‘�e‘i;k ¼ 0 allows us, based on (13), to compute the trace of the
curvature kkk in terms of the trace of the geometric necessary dislocation density akk as
kkk ¼ �

1
2
akk, which further allows us to write the inverse relation of (13) as

kij ¼ ejk‘�
e
‘i;k þ aji �

1
2 akkdij. (14)

Summarizing (13) and (14), we have the following kinematic relations,

aij ¼ �eik‘�
e
‘j;k þ kji � kkkdij ,

kij ¼ ejk‘�
e
‘i;k þ aji �

1
2
akkdij . ð15Þ

Eqs. (15), which are extensively used in the open literature, are the basic formulas in the
continuum theory of dislocations. One way to simplify (15) is to neglect the contribution
from the elastic strain gradients, by assuming eik‘�e‘j;k ¼ 0 as in Kröner (1958, 1960, 1981),
which results in

aij ¼ kji � kkkdij ,

kij ¼ aji �
1
2
akkdij . ð16Þ
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Eq. (15) can also be simplified by introducing the contortion Kij (deWit, 1970) as

Kij:¼kij � ejk‘�
e
‘i;k. (17)

The contortion Kij is a measure of incompatibility and considered to be a source quantity
rather than a field quantity like the curvature kij (deWit, 1970). Since Kii ¼ kii, (15) can be
written as

aij ¼ Kji � Kkkdij ,

Kij ¼ aji �
1
2
akkdij . ð18Þ

One approach proposed by Nye (1953) is to use a ‘‘dislocation potential’’ to study a
geometrical object. Stimulated by Nye’s dislocation potential in kinematics (Nye, 1953), we
will construct a defect potential in terms of the dislocation density aij and the contortion
Kij in the form

W ¼ 1
2
aijKji. (19)

Remark 1. The proposed defect potential (19) in terms of the geometrically necessary
dislocation density aij and the transpose of the contortion Kij should not be confused with
existing dislocation potentials in terms of the geometrically dislocation density aij and the
curvature kij as in Nye (1953), where originally a defect potential in the form 1

2
aijkij has been

used. A quadratic form of the geometrically necessary dislocation density aij as
1
2
aijaij is often

used to incorporate the defect contribution to the free energy (Steinmann, 1996; Kröner, 2001;
Gurtin, 2002; Clayton et al., 2004). There may exist other defect potentials (Li et al., 2006)
which may provide further insight to the physical understanding of defects in solids.

In the next section, (19) is used as the departure point for the construction of
configurational compatibility within the infinitesimal theory. A single defect potential is
presented to clearly illustrate the methodology, even though other defect potentials may
yield similar results (Li et al., 2006).

3. Configurational compatibility

Based on the defect potential in (19), in this section we will construct conservation laws
stemming from kinematic relations for the infinitesimal theory. This procedure is
instrumental in leading to the discovery of configurational compatibility, a concept dual
to the concept of configurational force. We proceed by adopting the standard variational
approach, which is based on Noether’s theorem (Noether, 1918), though other approaches
(Gurtin, 1995) may be possible.

To motivate our approach, we first recall that when applying Noether’s theorem
(Noether, 1918; Logan, 1977; Olver, 1986; Ibragimov, 1994; Li et al., 2005, 2006) to the
potential energy (Knowles and Sternberg, 1972)

Pð1ÞðuÞ:¼
Z
O

W ð1ÞðruÞdO where W ð1Þ:¼
1

2
sij�ij , (20)

of an elastic body, where no decomposition (1) or (3) is required, whose Euler–Lagrange
equations can be written in terms of the elasticity tensor Cijk‘ as

Cijk‘u‘;ki ¼ 0 8x 2 O and ui ¼ ūi 8x 2 qO, (21)
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under coordinate translation with �ij and sij as the strains and stresses, respectively, results
in the conserved quantity

Eka ¼W ð1Þdka � u‘;ask‘ (22)

which is Eshelby’s energy momentum tensor (Eshelby, 1951). If body forces are absent, we
can write ska;k ¼ 0. For this case, one can easily verify that Eka is divergence-free, which
can be expressed as Eka;k ¼ 0. This leads to the invariant integrals

Ja ¼

I
S

Ekank dS, (23)

which are zero, provided that there are no defects inside the integral contour. For a ¼ 1,
we obtain the J-integral (Rice, 1968) which represents the configurational force acting on a
defect.
Contrary to these well-known developments of configurational forces and conservation

laws based on the equilibrium equations (21), we will focus in the remaining part of this
section on the compatibility equations of a body. Following the same procedure as above
for deriving the conservation laws based on the equilibrium equations, we will now derive a
new class of compatibility conservation laws. The stresses sij, introduced in (20), will only
reappear in Remark 5, a possible application of the derived compatibility conservation
laws.
In the following we will first state the variational principle and its corresponding

Euler–Lagrange equations. Then, we will apply Noether’s theorem for chosen symmetry
groups to the Lagrangian and derive the corresponding class of compatibility conservation
laws and their corresponding path-independent integrals.

3.1. The variational principle and corresponding Euler– Lagrange equations

In order to construct conservation laws stemming from kinematic relations, we will use
defect potential (19) in terms of the dislocation density aij and the contortion Kij as

W ð2Þ:¼1
2
aijKji, (24)

with aij ¼ �eik‘b
e
‘j;k and Kij ¼ aji �

1
2
akkdij given in (7) and (18), respectively. We assume

that the elastic distortion beij is prescribed on qO. Then the stationary condition dbeP
ð2Þ ¼ 0

of the following fundamental integral

Pð2ÞðbeÞ:¼

Z
O

W ð2Þðbe
;iÞdO, (25)

results in the Euler–Lagrange equations

�eik‘Kj‘;k ¼ 0 8x 2 O and beij ¼ b̄
e

ij 8x 2 qO, (26)

stating that the curl of the transpose of the contortion vanishes inside O.

Remark 2. (a) Note that the Euler–Lagrange equation (26) 8x 2 O can alternatively be
written in terms of the elastic distortion as be‘j;kk � bekj;‘k ¼ 0 together with
eik‘ejmnb

e
nj;mk ¼ 0.

(b) Based on Remark 1, the Euler–Lagrange equations corresponding to the defect
potential 1

2
aijkij used in Nye (1953) are given as r � be � r ¼ 0 and eik‘ejmnb

e
nj;mk ¼ 0,

where the second equation corresponds to the second Euler–Lagrange equation in



ARTICLE IN PRESS
S. Li et al. / J. Mech. Phys. Solids 55 (2007) 980–1000 987
Remark 2ðaÞ. For the quadratic defect potential 1
2
aijaij the Euler–Lagrange equation is

given as be‘j;kk � bekj;‘k ¼ 0, which corresponds to the first Euler–Lagrange equation in
Remark 2ðaÞ. We conclude that 1

2
aijaij is a special case of W ð2Þ.

3.2. The compatibility conservation laws

Based on the Lagrangian (26), we will derive the corresponding conservation laws (CL)
and path-independent integrals in this section.

Theorem 3. Consider a simply connected continuum under infinitesimal deformation. Let

O 2 R3 with Lipschitz continuous boundary qO. Assume that the elastic distortion beijðxÞ
satisfies the tensorial differential equations given in (26). Based on the result of Noether’s
theorem for a tensorial field (Li et al., 2006), the following compatibility conservation laws

hold together with their path-independent integrals:

CL1: Ska ¼W ð2Þdka � ekmiKjmb
e
ij;a ! La ¼

I
S

Skank dS, (27)

CL2: Tka ¼W ð2Þejkaxj þ epkiKjpðem‘axmb
e
ij;‘ � emjab

e
imÞ þ dkaKjmb

e
mj � Kjab

e
kj

! Fa ¼

I
S

Tkank dS, ð28Þ

CL3: Uk ¼W ð2Þxk þ
1

2
emkiKjmðb

e
ij þ 2beij;‘x‘Þ ! G ¼

I
S

Uknk dS, (29)

CL4: Pk ¼ �emkiKjmf ij ! H ¼

I
S

Pknk dS, (30)

where W ð2Þ ¼ 1
2
aijKji and f ij is an arbitrary constant tensor.

Proof. According to Noether’s theorem for a tensorial field under an r-parameter family of
transformations, the variational conservation laws can be expressed in the general form,

dCka

dxk

¼ 0; a ¼ 1; 2; . . . ; r, (31)

where the conserved quantity is

Cka ¼ W ð2Þdk‘ � beij;‘
qW ð2Þ

qbeij;k

 !
j‘a þ

qW ð2Þ

qbeij;k
xija; k ¼ 1; 2; 3. (32)

We outline the details of the proof as follows:
CL1. Coordinate translation: Let x̄i ¼ xi þ si and b̄

e

ij ¼ beij for a vector si, as in Li et al.
(2006). The corresponding infinitesimal generators for a ¼ 1; 2; 3 are

jia ¼
qx̄i

qsa

����
s¼0

¼ dia and xija ¼
qb̄

e

ij

qsa

�����
s¼0

¼ 0. (33)
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One may verify that the r-invariant conditions (Li et al., 2006)

qW ð2Þ

qxi

jia þ
qW ð2Þ

qbeij
xija þ

qW ð2Þ

qbeij;k

dxija

dxk

� beij;‘
dj‘a
dxk

� �( )
þW ð2Þ djia

dxi

¼ 0,

8x 2 O and a ¼ 1; 2; . . . ; r ð34Þ

are satisfied under coordinate translation. The conserved quantity Ska and the
corresponding path-independent integral La due to coordinate translation are then given
as

Ska ¼W ð2Þdka � ekmiKjmb
e
ij;a! La ¼

I
S

Skank dS. (35)

Remark 4. Since the energy momentum tensor (22) can be derived by a coordinate
translation starting from the strain energy density we denote the new conserved quantity
Ska, which is also obtained due to a coordinate translation, but now starting from
compatibility, as the compatibility momentum tensor.

CL2. Coordinate rotation: Let x̄i ¼ QjiðsÞxj and b̄
e

ij ¼ QkiðsÞb
e
k‘Q‘jðsÞ, for the rotation

matrix fQijðsÞg 2 SOð3Þ with fQijð0Þg ¼ fdijg. For an infinitesimal rotation Qij is given as

QijðsÞ ¼ dij þ eijksk þ oðsÞ; k ¼ 1; 2; 3. (36)

The corresponding infinitesimal generators for a ¼ 1; 2; 3 are

jia ¼
qx̄i

qsa

����
s¼0

¼
qQji

qsa

����
s¼0

xj ¼ ejiaxj, (37)

xija ¼
qb̄

e

ij

qsa

�����
s¼0

¼
qQki

qsa

����
s¼0

bek‘Q‘jjs¼0 þQkijs¼0b
e
k‘

qQ‘j

qsa

����
s¼0

¼ ekiab
e
kj þ e‘jab

e
i‘. (38)

One may verify that the r-invariant conditions (34) are satisfied under coordinate rotation.
The conserved quantity Tka and the corresponding path-independent integral F a due to
coordinate rotation are then given as

Tka ¼W ð2Þejkaxj þ epkiKjpðem‘axmb
e
ij;‘ � emjab

e
imÞ þ dkaKjmb

e
mj � Kjab

e
kj

! F a ¼

I
S

Tkank dS. ð39Þ

CL3. Scaling: Let x̄i ¼ ð1þ c1sÞxi and b̄
e

ij ¼ ð1þ c2sÞb
e
ij , for constants c1 and c2. The

corresponding infinitesimal generators for a ¼ 1 are

jia ¼
qx̄i

qsa

����
s¼0

¼ c1xi and xija ¼
qb̄

e

ij

qsa

�����
s¼0

¼ c2b
e
ij. (40)

By choosing the constant c1 ¼ 1 and c2 ¼ �
1
2
, one may verify that the r-invariant

conditions (34) are satisfied under scaling. The conserved quantity Uk and the
corresponding path-independent integral G due to scaling are then given as

Uk ¼W ð2Þxk þ
1
2

emkiKjmðb
e
ij þ 2beij;‘x‘Þ ! G ¼

I
S

Uknk dS. (41)



ARTICLE IN PRESS
S. Li et al. / J. Mech. Phys. Solids 55 (2007) 980–1000 989
CL4. Constant pre-distortion: Let x̄i ¼ xi and b̄
e

ij ¼ beij þ sfij, where fij is an arbitrary
constant tensor. The corresponding infinitesimal generators for a ¼ 1 are

jia ¼
qx̄i

qsa

����
s¼0

¼ 0 and xija ¼
qb̄

e

ij

qsa

�����
s¼0

¼ fij . (42)

One may verify that the r-invariant conditions (34) are satisfied under constant pre-
distortion. The conserved quantity Pk and the corresponding path-independent integral Ha

due to constant pre-distortion are then given as

Pk ¼ �emkiKjmfij ¼
1

2
ejkiamm � emkiamj

� �
fij ! H ¼

I
S

Pknk dS: & (43)

Remark 5. As it will be outlined in detail in Section 4, one possible application of the
developed compatibility conservation laws in this section can be obtained by combining
them with results obtained from conservation laws (22) stemming from equilibrium. As a
first immediate consequence of this merging we will point out a possible application of
conservation law CL4 in this remark:

(a) We can choose the arbitrary constant tensor fij to be fij ¼ sij in (43) and note that the
dislocation density amj is given as amj ¼ htmibj (El-Azab, 2000; Kröner, 2001; Hartley,
2003), where htmi is the ensemble average of the unit vectors of many distributed
dislocation lines, and bj is the Burgers’ vector. Now suppose the stress is symmetric. We
then have sijejkiamm ¼ 0 and (43) reduces to

Pk ¼ ekmihtmisijbj. (44)

If we denote gi:¼sijbj , (44) can be written as

P ¼ hti � g, (45)

which can be recognized as the Peach–Koehler force written in terms of the ensemble
average of the unit vectors of the distributed dislocation lines. Therefore, the physical
meaning of conservation law CL4 for this special case is a well-known result. If the
external stress field is constant, any contour integral of the Peach–Koehler force will be
zero,

H ¼

I
S

P � ndS ¼ 0. (46)

This result indicates that the Peach–Koehler force can be derived based on the concept of
configurational compatibility. A different recent derivation of the Peach–Koehler force can
be found in Lazar and Kirchner (2006).

(b) If the Cauchy stress sij is not symmetric as in Toupin (1962), we obtain a generalized
version of the Peach–Koehler force as

Pk ¼
1
2

ejkisijhtmi bm þ ekmihtmisijbj . (47)

(c) For the case of a single dislocation line, the dislocation density takes the form
(Kröner, 2001)

amj ¼ tmbjdðrÞ, (48)

where dðrÞ is the one-dimensional Dirac’s delta function and r is the shortest distance from
a point to the dislocation line. Therefore, the analogous expression to (45), now in terms of
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the delta function, is given as

P ¼ t� gdðrÞ. (49)

Under the constant external stress field the analogous expression to (46) is now given as

H ¼
X

D

t� g � n ¼ 0, (50)

where D is a set of points at which the dislocation line intercepts the surface S. This is a
more familiar form of the Peach–Koehler identity.

To this end, we have constructed the corresponding class of conservation laws based on
the defect potential in terms of the dislocation density aij and the contortion Kij . This was
achieved by application of Noether’s theorem to the corresponding Lagrangian based on
chosen symmetry groups of the system. These conservation laws are derived solely based
on kinematic arguments and belong to the introduced concept of configurational
compatibility, the dual to the concept of configurational force. In the next section, we
employ the developed defect potential and the results of configurational compatibility to
derive a multiscale energy momentum tensor.

4. Multiscale energy momentum tensors

The proposed defect potential (24) provides the basis for the construction of the
multiscale energy momentum tensor. Although the defect potentials proposed in Remark 1
are kinematic, their corresponding defect energy densities are frequently used in the study
of elastoplasticity, including strain gradient plasticity. Steinmann (1996), Kröner (2001),
Regueiro et al. (2002), Gurtin (2002), and Clayton et al. (2004) advocate a quadratic form
of the defect energy density 1

2
Að‘Þaijaij where aij is the geometrically necessary dislocation

density and Að‘Þ is an ad hoc material constant containing a characteristic length scale ‘.
The defect energy represents the stored elastic energy from geometrically necessary
dislocations. Because the Euler–Lagrange equations of the defect potential 1

2
aijKji, used in

the development of the concept of configurational compatibility in Section 3, contain the
quadratic form as a special case, we propose using the defect energy density 1

2
Að‘ÞaijKji to

characterize the fine scale stored elastic energy. Given a variationally consistent defect
energy density, we can employ a multiscale variational principle to construct a fine scale
contribution to the energy momentum tensor.

4.1. The multiscale variational principle and corresponding Euler– Lagrange equations

We first construct a multiscale energy density following a proposal suggested by Kröner
(2001) as

W ðmÞ:¼W ð1Þ þ ~W
ð2Þ
, (51)

where the strain energy density W ð1Þ is denoted as the coarse scale energy density and

~W
ð2Þ
:¼Að‘ÞW ð2Þ, with the defect potential W ð2Þ given in (24), is called the fine scale energy

density. Steinmann (1996) suggested the following form of Að‘Þ, namely Að‘Þ ¼ m‘2, where

m is the shear modulus, so that ~W
ð2Þ

has units of energy density. Again, we note that the
proposed theory is restricted to infinitesimal deformations. The fine scale energy density
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defines a ‘‘moment stress’’ (Kröner, 2001)

tij ¼ Að‘ÞKij . (52)

Then the stationary conditions duPðmÞ ¼ 0 and dbeP
ðmÞ ¼ 0 of the following two-field

multiscale mixed variational principle,

PðmÞðu; beÞ:¼

Z
O

W ðmÞðru;be
;iÞdO, ð53Þ

provided that ui and beij are prescribed on the boundary qO, results in the Euler–Lagrange

equations

duPðmÞ ¼ 0! Cijk‘u‘;ki ¼ 0 8x 2 O and ui ¼ ūi 8x 2 qO, (54)

dbeP
ðmÞ ¼ 0!�eik‘Kj‘;k ¼ 0 8x 2 O and beij ¼ b̄

e

ij 8x 2 qO. (55)

Both, the coarse scale (equilibrium) and the fine scale (compatibility) contribute to the
multiscale variational principle.

4.2. Derivation of the multiscale energy momentum tensor

Based on the Lagrangian (54)–(55) we will derive now the corresponding multiscale
energy momentum tensor by applying Noether’s theorem for the case of a coordinate
translation.

Theorem 6. Consider a simply connected continuum under infinitesimal deformation. Let

O 2 R3 with Lipschitz continuous boundary qO. Assume that the displacement uiðxÞ satisfies

the vectorial differential equation (54) and assume that the elastic distortion beijðxÞ satisfies the

tensorial differential equations given in (55). Then, based on the result of Noether’s theorem

for a vectorial and tensorial field (Li et al., 2006), the following conservation law holds

together with its path-independent integral:

S
ðmÞ
ka ¼ ðW

ð1Þdka � u‘;ask‘Þ þ ð ~W
ð2Þ
dka � ekmib

e
ij;atjmÞ¼:Eka þ ~Ska, (56)

LðmÞa ¼

I
S

S
ðmÞ
ka nk dS¼:Ja þ ~La, (57)

where W ð1Þ ¼ 1
2
sij�ij and ~W

ð2Þ
¼ 1

2
aijtji.

Proof. According to Noether’s theorem, the variational conservation laws can be
expressed in the general form,

dC
ðmÞ
ka

dxk

¼ 0; a ¼ 1; 2; . . . ; r, (58)

where the conserved quantity is

C
ðmÞ
ka ¼ W ð1Þdk‘ � ui;‘

qW ð1Þ

qui;k

� �
j‘a þ

qW ð1Þ

qui;k
xia

þ ~W
ð2Þ
dk‘ � beij;‘

q ~W
ð2Þ

qbeij;k

 !
j‘a þ

q ~W
ð2Þ

qbeij;k
xija; k ¼ 1; 2; 3. ð59Þ
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Under coordinate translation we let x̄i ¼ xi þ si, ūi ¼ ui, and b̄
e

ij ¼ beij. Then the
corresponding infinitesimal generators for a ¼ 1; 2; 3 are

jia ¼
qx̄i

qsa

����
s¼0

¼ dia; xia ¼
qūi

qsa

����
s¼0

¼ 0 and xija¼
qb̄

e

ij

qsa

�����
s¼0

¼ 0. (60)

One may verify that the r-invariant conditions (34) are satisfied under coordinate
translation. We then obtain the multiscale energy momentum tensor S

ðmÞ
ka and the

corresponding path-independent integral LðmÞa given in (56) and (57), respectively. &

In (56) we interpret Eshelby’s energy momentum tensor Eka as the coarse scale
contribution and the scaled compatibility momentum tensor ~Ska:¼Að‘ÞSka as the fine scale
contribution. The coarse scale and fine scale counterparts in (57) are denoted as Ja and
~La:¼Að‘ÞLa, respectively. Similar to the coarse scale driving force Ja, we interpret ~La as a
fine scale driving force acting on the defect. The fine scale driving force derived here is a
configurational force acting on a collective defect, a collection of geometrically necessary
dislocations.S

ðmÞ
ka is divergence-free andLðmÞa is path-independent if the solid is defect-free.

We would like to stress the fact that the multiscale energy density does not coincide with
the total potential energy density of a solid with a particular constitutive relation. The fine
scale energy density was not derived from a fine scale constitutive theory. Instead, it is a
defect energy density expressed in terms of a defect potential that reflects the density of
geometrically necessary dislocations. In fact, a defect energy, such as lattice misfit energy
density, has already been used to derive lattice resistance stresses or forces, such as the
Peierls potential or the Peierls energy (Peierls, 1940; Nabarro, 1952). The defect energy
density constructed here is not for a single dislocation but for a geometrically necessary
dislocation distribution based on the continuum dislocation theory. We furthermore
stipulate that the moment stresses generated by our formulation do not enter the coarse
scale balance laws and that the derivation of the defect potential does not rely on balance
laws at the fine scale. The fine scale energy density stems from configurational
compatibility.

5. Application to an example of a mode III elasto-plastic crack problem

In this section, the concepts of configurational compatibility and multiscale energy
momentum tensors are applied to an example of a mode III elasto-plastic crack problem.
The Hult–McClintock solution (Hult and McClintock, 1957; Rice, 1967) for the mode

III crack in an elastic perfectly-plastic medium, illustrated in Fig. 1, is considered in the
analysis. In the case of small-scale yielding, the plastic zone Op is assumed much smaller
than the crack length a. The shape of the plastic zone Op, illustrated in Fig. 1, is a circular
region ahead of the crack tip. The applied stress intensity is K III ¼

ffiffiffiffiffiffi
ap
p

t1 where t1 is the
applied, far-field stress. One may employ a matching condition to determine the size of the
plastic zone,

r0 ¼
K2

III

2pt20
¼

a

2

t1
t0

� �2

, (61)

where t0 is the shear yield stress. The small-scale yielding assumption r0=a51 is valid when
t1=t051. The center of the plastic zone is at a distance r0 ahead of the crack tip. All the



ARTICLE IN PRESS

Table 1

Field quantities in the elastic region Oe and the plastic region Op

Field Elastic region Oe Plastic region Op

r
KIIIffiffiffiffiffiffiffi
2pr
p

0 0 � sin
y
2

0 0 cos
y
2

� sin
y
2

cos
y
2

0

2
6666664

3
7777775

t0

0 0 � sin
y
2

0 0 cos
y
2

� sin
y
2

cos
y
2

0

2
6666664

3
7777775

ee
KIII

2m
ffiffiffiffiffiffiffi
2pr
p

0 0 � sin
y
2

0 0 cos
y
2

� sin
y
2

cos
y
2

0

2
6666664

3
7777775

t0
2m

0 0 � sin
y
2

0 0 cos
y
2

� sin
y
2

cos
y
2

0

2
6666664

3
7777775

be

KIII

m
ffiffiffiffiffiffiffi
2pr
p

0 0 � sin
y
2

0 0 cos
y
2

0 0 0

2
66664

3
77775

t0
m

0 0 � sin
y
2

0 0 cos
y
2

0 0 0

2
66664

3
77775

x1 θ
r0

Ωp

x2

Ωe

ΩpΩe

r

x1

x2

Fig. 1. Illustration of a mode III crack in an elastic perfectly-plastic medium. The circular plastic zone Op is

located ahead of the crack tip with radius r0.
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needed field quantities for both the linear elastic region Oe and the perfectly plastic
region Op are given in Table 1. Note that because only u3a0, we can easily calculate
the elastic distortion tensor be through the elastic strain tensor ee taken from the stress
tensor r.

5.1. Application of configurational compatibility

The importance of the J-integral in linear elastic fracture mechanics motivates the
application of the new path-independent integrals derived from the defect potential (24).
The compatibility momentum tensor and corresponding path-independent integral CL1,
given in (27), are calculated for the mode III elasto-plastic crack to improve our
understanding of the derived quantities.



ARTICLE IN PRESS
S. Li et al. / J. Mech. Phys. Solids 55 (2007) 980–1000994
Equipped with the needed kinematics given in Table 1, we can calculate the individual
components of the compatibility momentum tensor and its path-independent integral. The
dislocation density a as well as the contortion K are zero in the elastic region Oe and the
only non-zero component of a in the plastic region Op is

a33 ¼ �
t0
2rm

cos
y
2
8x 2 Op, (62)

from which also the contortion K in the plastic region Op can be easily computed. Further
calculations yield to the configurational compatibility tensor S and the corresponding
contour integral L as

S ¼
t20

32r2m2

�2 cos2
y
2
ð1� 2 cos yÞ sin 2y 0

4 cos2
y
2
sin y 2 cos2

y
2
ð1� 2 cos yÞ 0

0 0 2 cos2
y
2

2
6666664

3
7777775
8x 2 Op (63)

and

L ¼
3pt20
32r0m2

1

0

0

2
64
3
75 8x 2 Op. (64)

The integral is evaluated at the boundary of the plastic zone r0, which is in contrast to the
earlier studies of dislocation emission at the crack tip. Rather than focus on a single
dislocation positioned at a particular orientation, the L-integral provides an integrated
measure of configurational incompatibility. Note that we did not express either S or L in
the compatible, elastic field because all contour integrals will yield a null measure.
Therefore, any contour integrals outside the plastic zone will be path-independent

L ¼

I
S

n � SdS ¼ 0, (65)

whereas inside the plastic zone, the configurational integral is not invariant. The elastic
strain field inside the plastic zone is not compatible and results in a non-zero geometrically
necessary dislocation density a of screw type ða33a0Þ. The non-zero L-integral encircling
the incompatible, plastic region provides a measure of incompatibility.

5.2. Application of multiscale energy momentum tensors

Calculation of the multiscale energy momentum tensor S
ðmÞ
ka and corresponding

configurational force LðmÞa is straightforward. Given in (57), LðmÞa is composed of a coarse
scale component J and a fine scale component ~L:¼Að‘ÞL with L given in (64) for the
example of a mode III elasto-plastic crack. Lm can then be written as

Lm ¼

K2
III

2m
0

0

2
6664

3
7775þ Að‘Þ

3pt20
32r0m2

0

0

2
6664

3
7775. (66)
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The first term is the familiar J-integral for mode III propagation. The second term is the
configurational force stemming from incompatibility. We assume the form of Að‘Þ to be
m‘2 where m is the shear modulus and ‘ is the length scale governing incompatibility.
Taking the first component of Lm, denoting it as Lm and making use of (61), we express
the multiscale driving force as a function of the applied loading t1 and the crack geometry
a as

Lm ¼
pt21
2m

� �
aþ

3‘2pt40
16mt21

� �
1

a
¼:J þ ~L, (67)

where we introduced ~L:¼Að‘ÞL ¼ m‘2L where L is the first component of L. Let us
normalize the multiscale driving force Lm by J to obtain

Lm

J
¼ 1þ

1

ða=aminÞ
2

with amin:¼

ffiffiffi
3

8

r
t0
t1

� �2

‘. (68)

In Fig. 2, the normalized multiscale driving force Lm=J is plotted against the normalized
crack length a=amin. One can observe that as abamin, Lm ! J, which implies that for
macroscopic crack lengths, the driving force for brittle fracture is controlled by J. In
contrast, for a�amin, the fine scale driving force will dominate and result in a multiscale
driving force that is larger than the coarse scale driving force J. We also note that the fine
scale contributions to (51) and (67) scale with ‘. As ‘! 0, the multiscale driving force Lm

collapses onto the classical coarse scale driving force J.
In order to discuss the physical meaning of the introduced quantity amin, we perform a

stability analysis of the multiscale driving force Lm. For brittle fracture, we may assume a
constant fracture resistance 2gt, so qð2gtÞ=qa ¼ 0. Thus qLm=qao0 implies stable crack
L
m

/J

a/amin

multiscale
coarse scale

5

4

3

2

1

0
0 1 2 3 4 5

Fig. 2. The normalized multiscale driving force Lm=J versus the normalized crack length a=amin. As abamin the

multiscale driving force Lm approaches the coarse scale driving force J.
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growth. The minimum may be found via the stationary condition

qLm

qa

����
t1

¼
pt21
2m

� �
�

3‘2pt40
16mt21

� �
1

a2
¼ 0. (69)

Therefore, the minimum driving force to advance a crack and the stability point are given
as

Lm
min ¼

ffiffiffi
3

2

r
p‘t20
2m
¼

pt21
m

amin at a ¼ amin. (70)

The introduced quantity amin, used to express the normalized multiscale driving force in
(68), represents the crack length at instability. These findings indicate that an incompatible
field will yield a minimum driving force. In addition, incompatibility enables stable crack
growth under load control for aoamin.
In order to obtain an illustration of the stability analysis, we normalize the multiscale

driving force Lm by its minimum value Lm
min and obtain

Lm

Lm
min

¼
a

2amin
þ

1

2a=amin
. (71)

In Fig. 3, we plot this normalization of the multiscale driving force against the normalized
crack length a=amin. It can be seen from Fig. 3 that there is a well-located minimum at
a ¼ amin. This suggests that the driving force for crack growth cannot be zero, even if the
crack length a approaches zero. The reason for this is due to the fact that the total energy
release rate has two sources, namely ð1Þ the coarse scale energy release rate derived from
the strain energy W ð1Þ and ð2Þ the fine scale energy release rate derived from the defect
energy ~W

ð2Þ
. In this work, the fine scale defect energy represents the stored energy from a

collection of geometrically necessary dislocations.
L
m

/L
m

in

a/amin

multiscale
coarse scale

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5

m

Fig. 3. The normalized crack driving force Lm=Lm
min versus the normalized crack length a=amin. Contrary to the

coarse scale driving force J, the multiscale driving force Lm reaches a non-zero minimum at a ¼ amin.
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6. Closure

In this paper the multiscale phenomena of brittle fracture have been discussed. This was
achieved through the introduction of a concept termed configurational compatibility dual to
the concept of configurational force. The framework of configurational compatibility was
built upon the construction of a valid defect potential in terms of the dislocation density
and the contortion. Application of Noether’s theorem yielded a new class of compatibility
conservation laws. It was shown that the Peach–Koehler force can be viewed as a special
case of one of the derived compatibility conservation laws. We argued that the
conservation laws stemming from configurational compatibility will be valid for any
continuum independent of constitution. In contrast to classical continuum conservation
laws based on equilibrium conditions, kinematic conservation laws are valid at a smaller
length scale. Based on the proposed defect potential and its corresponding defect energy, a
two-field multiscale mixed variational principle was employed to construct a multiscale

energy momentum tensor. We showed that the multiscale energy momentum tensor is
composed of a coarse scale component, Eshelby’s energy momentum tensor, and a fine
scale component, a scaled compatibility momentum tensor. We then applied the new
framework to the example of a mode III elasto-plastic crack and illustrated that
incompatibility yielded a minimum driving force.

Not all the possible defect potentials and compatibility conservation laws have been
exhausted in this work. There may exist other forms of defect potentials and corresponding
conservation laws which will be explored in a subsequent work. The discovery and
interpretation of the kinematic conservation laws might enable new physical concepts and
improvements in material science. The understanding of the physical meaning of the
derived conservation laws needs to be improved and the multiscale energy momentum
tensors should be applied to additional realistic examples.
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