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ABSTRACT 

In Part I of this work, antiplane dynamic crack propagation in piezoelectric materials was studied under 
the condition that crack surfaces behaved as though covered with a conducting electrode. Piezoelectric 
surface wave phenomena were clearly seen to be critical to the behavior of the moving crack. Closed form 
results were obtained for stress and electric displacement intensities at the crack tip in the subsonic crack 
speed range; the major result is that the energy release rate vanishes as the crack speed approaches the 
surface (Bleustein-Gulyaev) wave speed. 

In this paper, an alternative assumption is made that between the growing crack surfaces there is a 
permeable vacuum free space, in which the electrostatic potential is nonzero. By coupling the piezoelectric 
equations of the solid phase with the electric charge equation in the vacuum region, a closed form solution 
is again obtained. In contrast to the electrode case of Part I, this case allows both applied charge and 
applied traction loading. In addition, the work of Part I is extended to examine piezoelectric crack 
propagation over the full velocity range of subsonic, transonic and supersonic speeds. 

Several aspects of the results are explored. The energy release rate in this case does not go to zero when 
the crack propagating velocity approaches the surface wave speed, even if there is only applied traction 
loading. When the crack exceeds the Bleustein-Gulyaev wave speed, the character of the crack-tip singu- 
larities of the physical fields depends on both speed regime and type of loading. At the other extreme, the 
quasi-static limit of the dynamic solution furnishes a set of new static solutions. The general permeability 
assumptions made here allow for fully coupled conditions that are ruled out by the a priori interfacial 
assumptions made in previously published solutions. Copyright 0 1996 Elsevier Science Ltd 

Keywords: A. crack propagation and arrest, A. dynamic fracture, A. electromechanical process, 
B. piezoelectric material, C. piezoelectric effect. 

1. INTRODUCTION 

In a previous paper (Li and Mataga, 1996), subsequently referred to as “Part I”, 
the problem of antiplane dynamic crack propagation in piezoelectric materials was 
formulated. The solution was obtained in closed form under the assumption that the 
crack surfaces behaved as though covered with a conducting electrode. Those results 
clearly show that piezoelectric surface wave phenomena are critical to the behavior 

t Part of this work was carried out while the author was a member of the Department of Aerospace 
Engineering, Mechanics & Engineering Science, University of Florida, U.S.A. 
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of the moving crack ; the reader is referred to Part I for a description of the relevance 
of the Bleustein-Gulyaev surface wave. Closed form results were obtained for stress 
and electric displacement intensities at the crack tip in the subcritical crack speed 
range; the major result is that the energy release rate vanishes as the crack speed 
approaches the Bleustein-Gulyaev wave speed. 

The “electrode” case may serve as a good mathematical model for cases in which 
the void inside the growing crack is a stress-free, conducting included phase, but 
physically this is of limited applicability. Furthermore, the driving force studied in 
Part I is a distribution of crack face tractions only ; there is no electric loading on the 
boundary. In this paper, we extend the previous results by relaxing these limitations. 
The crack included phase is modeled as a stress-free permeable vacuum space ; this 
allows the external loadings along the boundary to include applied electric charge as 
well as applied tractions. In addition, the full crack extension speed range is inves- 
tigated, whereas for the electrode case only the subcritical regime was analyzed. 

One motivation of these extensions is to study how an induced electric field affects 
dynamic energy release rate under different electric boundary conditions, and, in 
particular, whether surface wave speed still appears to be the upper speed limit for 
crack propagation. For opening mode crack propagation in a purely elastic material, 
when the crack velocity approaches the Rayleigh wave speed, the energy release rate 
goes to zero, indicating that the Rayleigh wave speed serves as a speed barrier for 
propagating cracks.t Naturally, one would expect that the Bleustein-Gulyaev wave 
speed would also behave like a speed barrier for crack propagation in a piezoelectric 
medium. Indeed, for the case considered in Part I, under the electrode type of bound- 
ary condition, the total energy release rate does go to zero when crack speed 
approaches the BleusteinGulyaev wave speed, seemingly supporting this expectation. 
However, the fact that the boundary condition of a conductive crack surface forces 
a uniform distribution of electrostatic potential along the crack surfaces, which 
automatically eliminates the electrical contribution to dynamic energy release rate. 
Thus, further examination is necessary. 

This question is intrinsically linked to a critical issue of piezoelectric fracture : the 
imposition of general electrical boundary conditions on the crack surfaces. The key 
question here is whether the void between the crack surfaces is permeable. In reality, 
as observed by Suo et al. (1992) there is a permeable free space inside the opening 
crack : 

“Specifically, for piezoelectric ceramics, the permittivity is lo3 times higher 
than environment (e.g. air or silicone oil). A crack may be thought of as 
a low-capacitance medium carrying a potential drop.” 

Hitherto, the general problem has not been solved. In published static analyses, an 
impermeability approximation has typically been made in order to simplify the analy- 
sis. For example, Pak (1990,1992) has argued that if the ratio of free space permittivity 
and material space permittivity edsm is small, the crack may be approximated as an 
impermeable cavity. As Pak observes, the resulting interfacial condition decouples 

t In reality, when the crack speed is up to about 70% of Rayleigh wave speed, crack bifurcation is 
predicted and observed (Yoffe, 1951). 
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the field equations for the domains occupied by the cavity and the surrounding 
piezoelectric material, allowing solution by consideration of the latter alone. 

Despite the fact that this impermeability assumption is overwhelmingly favored in 
static analysis, uncertainty about its validity has been raised. To test the physical basis 
of the impermeability hypothesis, McMeeking (I 989) calculated the electroelastic 
field in a 2-D isotropic dielectric body with an elliptical flaw. He found that the 
concentrations of both the mechanical and electrical field are controlled by a par- 
ameter 

“r b 
&,a 

where a/b is the aspect ratio of the ellipse. He concluded that : 

“The impermeable crack solution serves as a good approximation to actual 
solutions,. . . , as long as E,/E, is less than one tenth of b/a and b/a << 1. 
Thus, the flaw must exceed a certain degree of bluntness dependent on the 
ratio of permittivities. When b/a is comparable to &As,,,, there is a field 
concentration, but the behavior cannot be approximated by the imper- 
meable crack.. . . Thus, the question of whether the slender flaw can be 
treated as an impermeable crack must be decided on a case-by-case basis.” 

(1) 

In this paper, we are able to pursue physical generality without losing the math- 
ematical advantages of the antiplane problem. We discard the impermeability approxi- 
mation and study the propagating crack containing a permeable vacuum environment, 
solving the coupled wave equations in both the cracked piezoelectric region and the 
interior vacuum region between the crack surfaces. 

There are a number of intriguing consequences of this more general boundary 
condition. First, a potential distribution may now exist along the crack surfaces, 
leading to the possibility of a potential drop across the crack. This results in a 
Bleustein-Gulyaev wave of different character from that arising in the electrode case 
of Part I. Somewhat unexpectedly, even under purely traction loading, the energy 
release rate of the vacuum solution does not go to zero as crack speed approaches the 
Bleustein-Gulyaev wave speed chg. This is quite different from the parallel ela- 
stodynamic (in-plane) case, and from the “electrode” solution obtained in Part I. 
Moreover, applied electric charge loading may affect the energy release rate by 
decreasing it, implying that this type of external loading can retard crack extension. 

Second, particularly because the surface wave speed may not provide a barrier 

to crack propagation for this general case, we have studied crack propagation 
over the full speed range: sub-Bleustein-Gulyaev speed (t’ < c,,J, transonic speed 

(CLV < z) < c), and supersonic speed (U > c). The results show a variety of asymptotic 
behavior with change in crack speed regime. For the crack driven by mechanical load 
alone, there is no singularity in mechanical or electrical near-tip fields after crack 
extension speed exceeds the Bleustein-Gulyaev wave speed. In contrast to the purely 
elastic case, however, there are nonzero fields surviving in the piezoelectric body 
ahead of the crack tip, even when the crack is traveling at supersonic speed. On the 
other hand, if an electric charge loading is applied to the crack faces, the square root 
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singularity in physical fields is retained throughout the speed range, though the 
dynamic intensity factors change. 

Third, at the other end of the speed range, the quasi-static (v -+ 0) limit of the 
dynamic solution furnishes a set of new static solutions. The general permeability 
assumptions made here allow for fully coupled conditions that are ruled out by the a 
priori interfacial assumptions made in previously published solutions. An important 
consequence of this coupling is the existence of both self-induced and cross-over 
singular fields for each type of loadings. 

2. STATEMENT OF THE PROBLEM 

For the sake of a self-contained presentation (a more detailed presentation may be 
found in Part I), the basic governing equations of piezoelectricity in the anti-plane 
mode are briefly reviewed here. The anti-plane dynamic problem in a hexagonal 
piezoelectric medium (6~~2) can be described by the following equations (Bleustein, 
1968). 

cf4V2w+e,5V2f#J = pti, 

e,5V2W-Ey,V2~ = 0. 

(2) 

(3) 

Here w is the antiplane displacement (the Z-axis is assumed to be aligned with the 
hexagonal symmetry axis), C#J is the electric potential, and p is the mass density. V2 is 
the in-plane (X, Y) Laplacian, and a dot denotes material time derivative. The 
coefficients are the appropriate components of the elastic, dielectric and piezoelectric 
stress constant tensors. 

Through the transformation 

*b#F~w, (4) 

the governing equations can be decoupled as 

1 v2w = et?, 
v’+ = 0, 

where 

(5) 

is the piezoelectrically stiffened elastic constant. 
In terms of independent variables w and tj, the constitutive equations can then be 

written as 
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As in Part I, we consider a semi-infinite crack in an unbounded piezoelectric body, 
assuming that the crack is initially at rest starts to propagate at constant speed u after 
external loads are applied at t = 0. It is convenient to operate in the frame of a moving 
coordinate system, i.e. 

x = X-vt, y = Y, z = 2. (11) 

In this paper, we envisage that there is a permeable medium of negligible mechanical 
influence inside the crack, occupying the region (Fig. 1) 

R~,(t)~{(x,y)~-cc<x<o, -6<y<& S-,0}. (12) 

Let R denote the whole x-y plane. The cracked piezoelectric body occupies the region 
R-R,. Accordingly, the equations of motion in the piezoelectric medium and the 
Maxwell equation in the vacuum strip are 

I 
a34 a% 2~ azw s2_+_+_-_- 
ax2 ag 2 axat is= 0 inR--a,., (a) 

: 

aq a’$ 
s+,=o 

ay 
2” 2” 

g+so 

aY2 

in R-R,., (b) 

in R,., (c) 

(13) 

where 
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(14) 

and 

c44 ( 1 
l/2 

CA - 

P 
(15) 

is the bulk shear horizontal (SH) wave speed in the piezoelectrical material. 
For the case considered in this paper, the applied loadings may be electrical as well 

as mechanical. We consider a kernel problem in which a line load pair and line charge 
pair are suddenly applied at the origin at t = 0 (Fig. 1). The mechanical boundary 
conditions are similar to those discussed in Part I. Because of the antisymmetry of 
the problem (including the electric loading), we consider the upper half plane only 
and apply 

i 

(T,y,(x,o+, t) = -b(x+ut)H(t) x < 0, 

w(x, Of) t) = 0 x > 0. 
(16) 

It will later be convenient to put the conditions into expanded form by introducing 
two new functions c+(x, i) and w-(x, t), such that 

CT+ (x, t) k 
i 

0 x < 0, 

cTyy--(x,o+, t) x > 0, 

w-(x, t) h 
i 

w(x, o+, t) x < 0, 

0 x > 0, 

(17) 

(18) 

so that 

f&(x,0+, t) = -P,6(x+ut)H(t)+a+(x, t) -cc < x < 00, 

w(x, Of) t) = w_ (x, t) + 0 
(19) 

-m<x<<. 

The electrical parts of the boundary conditions are imposed in the standard form of 
electrostatics (e.g. Jackson, 1974). At an interface between two dissimilar dielectric 
materials, the boundary conditions are as follows 

n- (D’2’-J$‘)) = qo, 

nx(E (2) -EC”) = 0, (20) 

where q. is the interfacial trapped charge density. 
When the density of electric charge in the interface is zero, the interfacial conditions 

may be taken as 

n - (Dc2’ -DC”) = 0, 

p _#‘I = 0, (21) 

for this particular configuration (Pak, 1990) 
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Again, by the argument of superposition onto an initially quiescent solution, and 
by the decay of local electrostatic disturbances, we assume that in the perturbed field 
at Iy] + co 

gYz(x, y, t) = 0 and D,(x, y, t) = 0. (22) 

It should be noted that since 4(x, y, t) is limited to lying within a semi-infinite strip, 
it is not subjected the boundary condition at infinity. 

3. CRACK PROPAGATION AT DIFFERENT EXTENSION SPEEDS 

The first extension considered here is to restrict loading to the traction case con- 
sidered in Part I, and examine the consequences of the modified crack surface 
conditions. The work of Part I is also extended by allowing crack extension speeds that 
exceed the piezoelectric surface wave speed. The primary concern is the asymptotic 
behavior of the electroelastic fields, rather than the full set of closed form solutions. 

In the absence of charge loading on the crack faces, the boundary conditions for 
our problem may be written 

flYZ(x,O+,t) = -P,6(x+vt)H(t)+a+(x,t) --cc <x < co, (a) 

W(X, o+ , t) = w_ (x, t) + 0 
(23) 

-cc <x<co, (b) 

and 

~D~~(x,O+,r)-~~(x,O+,t) = 0 - cc < x < 0, (a) 

I ~(x,o+,~)+~~(x,O+,~)=$‘(x,O+,z) --co <X-CO. (b) 
(24) 

As will be shown later, the solution of this problem is the essential part of the general 
case. 

Applying multiple Laplace transforms to [13(a)-(c)], to convert them into a set of 
ordinary differential equations, 

‘- -P2(E2-12) 
dy’ 1 $*(i,y,p) = 0 v(i,JJ>P)EQ~--R,,j, (26) 

d2 
_ -P2(&2-12) J*(i.Y,P) = 0 v(i>_Y,P)EQ&w, 
d.v* 1 (27) 

where E -+ Of (see Part I for a more detailed discussion of this use of an auxiliary 
perturbation parameter) and 

0, k C(5) x R(Y) x C(P), (28) 
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Q”p 4 C(C) x [ - 6,6] x C(p). (29) 

Consideration of the boundary conditions at infinity leads to solutions of the form 

+*(LY,P) = sgn(.++A(I)exp(-AA), (30) 

$*(LY,P) = sgn(g)+Ni) exp(-pBl.vl), (31) 

I* = sgn(r)-+ wCf$lA), (32) 

where 

(33) 

(34) 

were introduced in Part I. 

Remark 1. The choice of solution in (32) does not come from the boundary 
condition at infinity, since 4(x, y, t) is not subjected to any boundary 
conditions at IyI + co. The complete form of the solution should be 

$*(LY,P) = y (C+ (0 mWlA) + C- (0 exp~-~Bl.A)h (35) 

The choice in (32) however, renders a physically plausible result. Specifi- 
cally, (32) predicts the surface wave solution. 

The transformed version of (24a) and (24b) provide the relationship between 
unknown functions A(c), B(c) and C(i) 

~A(i)+B(O = C(i), 

El IP(W(i) +sllP(i)C(i) = 0. 

These can be solved simultaneously together with (23b) to obtain 

A(5) = c’-(i), 

(36) 

(37) 

(38) 

(39) 

C(l) = & u-m, 
0 

(40) 

where 
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s 

0 

u- (0 4 P w*(x, Of, t) exp( -p[x) dx 
-CC 

0 

=P 

s 
w? (x, t) exp( --plx) dx. (41) 

--co 

Due to symmetry, it is sufficient to only consider the solution for y > 0. The stresses 
and electric displacements can then be expressed in terms of the single unknown 
function U_(i) 

iu- (0 ev 1 -P(v- WI di 

-k: s ig+im 

U- (0 exp [--P(BY - ix)1 di , (42) 
ia-im 

W u- (0 exp[ -P&Y- WI dC 

-k,Z s $+im 
P(C) u- (0 exp [ -PUG - ix)1 di , (43) 

(a-iw 

where 

1 I 
--<[,<- 

c-v c+v’ 
--E<&j<E, 

and 

k2 4 4, Eo _____ 
” 

EllC44 &II +eo’ 
(47) 

Substituting (43) into the transformed stress boundary condition (23a), we obtain the 
following Wiener-Hopf equation 

where 

(49) 
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Table 1. Electroacoustic constants of several piezoelectric materials 

PZT4 0.7026 0.0260 6.4634 0.0014 
PZT-5 0.6850 0.0226 8.1103 0.0011 
BaTiO,” 0.4799 0.0144 9.8722 8.986 x 1O-4 
PZT 65/35b 0.4921 0.0197 5.660 0.0016 
ZnO’ 0.2586 0.0837 0.0757 0.1170 

a Berlincourt et al., 1964 
b Chen, 1983 
’ Auld, 1973 

+02 C+(i) g:p 
s 

a*, (x, PI ew( -PM dx 
0 

+m 

=P 
s 

~~(x,O+ , P) exp( -pi4 dx. (50) 
0 

The Wiener-Hopf equation (48) has identical structure to that solved in Part I, except 
that the new Bleustein-Gulyaev function has a different electromechanical coupling 
coefficient k,, i.e. 

BG(5) = a(5) -k,‘P(i). (51) 

This function corresponds to a second kind of Bleustein-Gulyaev piezoelectric 
surface wave (the first being that corresponding to a half space with electrode bound- 
ary, as considered in Part I). This “vacuum abutted” surface wave (Bleustein, 1968 ; 
Ikeda, 1990) propagates at speed cbg defined by? 

(52) 

It should be noted that there is typically a huge difference between the elec- 
tromechanical coupling coefficient k, and k,. For a quantitative comparison, see 
Table 1. 

Since crack speed affects both number and location of roots of the Bleustein- 
Gulyaev wave function BG(C), the product factorization necessary to solve the 
Wiener-Hopf equation (48) is different for each crack speed regime. Here we consider 
three regimes : subcritical (v < cbg), transonic (cbg < v < c) and supersonic (v > c). 

t To distinguish the two different BG wave velocities, we denote the BG wave with electrode boundary 
condition as ct,’ and the BG wave with vacuum boundary condition as &i. In this paper, unless otherwise 
specified, the velocity cbg is always understood as cE. 
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3.1. Subcritical case v < cbg 

1841 

The case for which L’ < c,,. has been discussed in Part I under a different BG wave 
-n 

speed. There are two distinct real roots of the BG wave function 

&-1 
Cbg4 

cl=‘. 
cbg+u 

Each of them lies in a different half i-plane, [, E P_ (0 and &E P+(i), where 

P_(i) A {IeCIBe(O <s}, 

P+(i) 4 {iECIBe(i) > --E}. 

As shown in Part I, the result of product factorization gives 

BG(I) =(S--kf)J[l/(Cbg+U)--il[l/(Cbp-V)+ns+(i>s-<r>, 

where 

with 

k&/m 

o(rl) 4 sJ(l/(c-v)+q)(l/(c+v)-q)’ 

The final solution of (48) is 

/ 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

where 

1 
D, (0 = S,(i) ) 

1 
g*(i) = exp - 

is 

l/(cf72) 
arctan [O( T ?,I% . 

II E 

As /[I -+ co, one can show that 

(61) 

(62) 
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U_(i) + 0(5-“‘>, C+(i) + S(i-I”). 

Since, by the Abel theorem, 

c+ (0 
lim (r~x)“~o*,(x,p) = lir..(~[)“~ p 

x-to+ 

(63) 

(64) 

the stress field exhibits a square root singularity at the running crack tip. Manipulation 
of the results above allows the expression of the stress intensity factor of the fun- 
damental solution as a function of crack extent and speed 

Kg)T(Ut,v) = J zp (1 -GJg) Q+(l/u) 
XOJiqc fi’ 

(65) 

In the notation K$jT, the superscript (a) stands for stress intensity factor and the 
subscript IZZT indicates an antiplane traction loading only. This distinction is necess- 
ary, since it will be shown later that under mixed type of external loading, there is a 
stress concentration induced by the electric charge distribution along the crack surface. 
We could (as in Part I) also extract the intensity factor for the square-root singular 
electric displacement field, Kig:)T. 

3.2. Transonic case cb, < v < c 

When the crack moving speed is in a range between surface wave velocity and bulk 
SH wave velocity, the crack is in a transonic speed range (Brock, 1977). After crack 
speed reaches the surface wave speed, the stress field as well as the electric displacement 
field undergo drastic change, which is reflected by the fact that all the roots of the 
Bleustein-Gulyaev function reside on the right half c-plane, i.e. [,, c2 E P, (5) 
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Hence, the product factorization will take a different route. Equation (49) may be 
rewritten in the form 

K(i) = - CU (a(i) -C/W) 

= c44y(i)(i(s-k,;))Sc”(i), (67) 

where 

(68) 

and 

y(i) ’ [l/(~-~b,)-il[l/(u+cb,)-il~ (69) 

Before the product decomposition 

S(‘)(i) = Sc:(&P(i) (70) 

is carried out, it is advantageous to find the change in argument of the complex 
function S(‘)(i) along the branch cut. From Fig. 3, one can find that in the upper half 
plane P-(i) 

-l/(c-U) < Re(<) < -6, 

-cc < Re([) < - I/(c--u), 

where 

W $3 >>O 

Re (4) b-0 - 

W tiC)>>O 

-& E wc:+v > l/(cbg -v > 

-I/( c-v ) l/(cbg +v) R&S 1 
Re( P(C) b-0 

P(C) 
b( 5 ) 

(71) 

Fig. 3. Branch cuts and branch points of b”(i) (cba < u < C) 
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Fig. 4. Integration contours used for product decomposition of S”‘([)(c,, < u < c) 

(72) 

Likewise, along the branch cut in upper half P, ([) plane 

arctan [EC0 (c)l ; E -c Re(i) < l/(c+v), 

0; ll(c+u) < Re(5) < ~/(c,,~+u), 

ll(cb,+4 < WC) < l/(u-cbg), 

l/(0- cbg) < Re(i) -c + CO. 

(73) 

Based on this information, the inversion contours may be chosen as shown in Fig. 4. 
The final product decomposition results in 

$1(C) = exp 1; 6”(C-0’ arc~an~J8GG)~]$!_} (74) 

and 

(75) 

where 

By utilizing the product factorization results and following through the additive 
decomposition procedure, the Wiener-Hopf equation can be rearranged 
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PO 
ic44(~-~,2)[*l(~-cbg)-~l~~(I)~-(i)- v(r_l,u)s(f)(llv) 

+ 

PO 1 1 ~_ 
= G-l/u) SO([) ( SY(l/v) 1 

+ c+(r) 
~ (77) 
SC: (0 * 

It is not difficult to show that as i -+ cc 

Then the entire function to which both sides of the Wiener-Hopf equation (77) must 
be equal can only be the constant zero, which immediately leads to 

: 

c+(r) = v(l”;;u)($$ -1) (a) 
(78) 

U_(i) = - 
iPo D:(l/u) 9: (0 

Cd4(S_-k,Z) u(i-l/v) (ll(v-cl&i)’ (b) 

where 

D’:(l/u) = 
1 

S’:‘(l/v) ’ 

Clearly, as [ + cc 

c+ (0 + (V-‘), u- (0 + @(i-*)> 

which implies that all singular fields disappear. In particular 

J~l+(N1’*6XJ4 = ,“$J0”2(~+(i)/P) 

(79) 

(80) 

3.3. Supersonic case v > c 

In a purely elastic medium, crack face tractions cannot drive a crack to propagate 
at supersonic speed (above the bulk shear wave speed in this case) unless there is a 
load acting at the crack tip, moving at supersonic speed to force the crack to move 
with it. In this case, the crack advances without warning, because the shear wave 
front is always behind the running crack tip [see Aki and Richards (1980) Freund 
(1990) for details]. 

Intuitively, some changes might be expected if the antiplane crack is travelling in 
a piezoelectric medium, since one of the governing equations-the electric charge 
equation-is elliptic, in fact being derived from a wave equation with its wave speed 
taken as infinity, as we have remarked in Part I. This means that field propagation is 
not limited to sonic velocities, as will be seen. 
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Fig. 5. Branch cuts and branch points of s’“‘(c) (u > c). 

For ZI > c, in place of s, a parameter 

V2 
KC --I 

\i c2 

is introduced, so that a(5) can be rewritten as 

u(r) p \/IT= K r - 7 + 2 = J(l/(v-c)-i)(l/(u+c)+i). 

(82) 

(83) 

The product decomposition for this case is of quite different character from those 
considered in the preceding sections. The branch cuts and the distribution of the 
branch points necessitate a different approach. Comparing Fig. 5 with Figs 2 and 3, 
note in particular the absence of any finite integration contours available to evaluate 
sectionally analytic functions. To construct an appropriate product decomposition, 
the inversion integral has to be evaluated along the whole branch cut in both P_(c) 
and P+(c) plane. _ 

Let 

where 

WI) = a(i) -k:fl(i) 

= r([)(~-iik,2)S@)([) 9 

s(s)(5) = (40 -ktB(O) 
((~-ikM)) . 

The argument of S’“‘([) along the branch cut in the upper half space P_(i) is 

O(c) = arctan [Z’“‘(i)] ; ---co < Re(i) < -E, 

where 

(84) 

(85) 

(86) 
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@‘(() 4 
(~kU’)(J(l/(v-c)-r)(l/(c+v)-i)-~’-E”) 

K2J(l/(L’--)--S)(l/(C+tr)--)+k;‘~~ 
(87) 

and arg S(‘)(5) along the branch cut in the upper half space P+(i) is given by 

r 
arctan [P([)] ; 

- arctan K [1 k,Z ; 
O(i) = < - arctan $ [I ; 

; 

arctan [EC”‘([)] ; 

The corresponding decomposition is 

E < Re(i) -c l/(c+v>, 

ll(o+c) < Re(i) < ~/(u+G~), 

l/(u+c,,) < ReK) < ll(u-G,), 

l/(u-cbg) < Re(i) < l/O-c), 

1/(0-c) < Re([) < co. 

(88) 

1 CC 
S$)(i) = exp - - 

i s arctan [S”)( - ?)l$ , 
= .E I 

(89) 

S”,(i) = (l/(Y+c)-~)(l/(u-ccbg)-~) 

where 
I/CCCL’) 

and 
1 

k, (u, k,.) 4 ~ arctan E. 
n k,2 

(91) 

(92) 

The Wiener-Hopf equation can now be rearranged as 

C+(i) PO 1 

s$‘(:)+u(i-1iu)s’:)o= 

Additive decomposition further separates sectionally analytic functions to their own 
analytic plane 
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Consideration of asymptotic behavior and the requirement of an integrable energy 
density, followed by an application of the extended Liouville’s theorem offers the final 
solutions 

1 X+(5> = v(&u)(~ -1) 
P&2+?([) @(l/v) l/(u+c)-{ kl (l/(V-Cbg)-1)2kl+ 

(95) 

u-(i) = - u(i-l/v) &(K-&;) l/(U-c)-i ( 1 (l/(a+Cbg)-i)2k1 . 

The asymptotic behavior of the above as lil + co makes it clear that no singular fields 
exist, just as in the transonic case, since 

Nevertheless, active fields exist ahead of the moving crack tip for both mechanical as 
well as electrical variables, which is a rather curious phenomenon. One of the direct 
consequences of this “ghost image” is that one may be able to detect a moving crack 
travelling at a high Mach number speed before it arrives. This may be illustrated 
through the following example. At y = 0, x > 0, by using Cagniardde Hoop scheme, 
one can set 

(, = -t/x. (97) 

Based on solution (95), the longitudinal shear strain ahead of the crack can then be 
measured by the following closed form expression 

$(x,0, t) = - :Irn 
[ 

a(i+)K(i+)% 1 
= p k,2@!(-t/x) D’s’(l/v) v-c 

[ 1 kl 9?( - t/x) 
0 

7c (x+tv) (x+vt) v+c (v-cCbg)2k’(v+Cbg)2k’ 

. (x+(v+cM ‘/2+k,(X+(v_c)t)‘~2~kl 

(X+(V+Cbg)t)*k~(X+(v-c&)2k2 

It is worth noting that in (98) as x + co or t -+ cc 

(98) 

the strain field ahead of crack tip is ephemeral. However, a nonzero strain field is 
measurable as a crack begins to propagate, even if an observer is far away from the 
crack tip. This phenomenon is obviously a direct result of piezoelectric behavior. 
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So far in this paper, and in Part I, the focus has been on one facet of the coupling 
between mechanical and electrical fields intrinsic to piezoelectricity : the generation 
of electric effects by stress loading. In this section another facet is investigated: the 
effect of electrical loading. In fact, it turns out to be convenient to examine propagation 
under general mixed applied load conditions. 

As hinted in the discussion at the end of the preceding section, there are reasons to 
expect some interesting effects, because of the instantaneous (in our model) propa- 
gation of electrostatic effects. Indeed, as will be seen, the character of the near-tip 
fields changes in all three speed regimes under mixed loadings. 

4.1. Integral equation formulation 

The boundary conditions for the mixed loading fundamental problem combine the 
mechanical conditions from before 

c7JX,Of, t) = -P(gqx+ut)H(t) x < 0, (100) 

W(X,O+,t)=O x>o, (101) 

with the electrical conditions 

D,,(x,O+, t)-DJx,O+, t) = -Q&(x+ut)H(t) x < 0, (102) 

&(x,0+, t)-~y(x,O+,t) = 0 x < 0, (103) 

qqX,O+,t)=O x>o. (104) 

Note that conditions (104) and (101) are deduced from overall antisymmetry. 
Although the general solutions given by (30)-(32) still hold, the unknown functions 

A([), B(i) and C(c) have to be determined under a different set of boundary conditions 
into which (102)-(101) may be transformed as follows 

I pll 
o,*,(x,O+,p) = - yexp ‘: 

0 
x < 0, 

(105) 

[w*(x, o+ ,p) = 0 x> 0, 

D,*(x,O+,p)-D;(x,O+,p) = -$exp ‘+ 
0 

x < 0, 

E,*(x,Of,p)-E;(x,O+,p) = 0 3c < 0, 
(106) 

6*(x, 0+ ,P) = 0 x > 0. 

Because the electrostatic potential in the vacuum area, 3, is not defined in x > 0, 
there is an ambiguity in extending the electric boundary condition into the full x 
range. Consequently, the standard Wiener-Hopf procedure can not be applied to 
the multiple domain problem directly. Although this can be dealt with by further 
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manipulations, an alternative approach using integral equations provides a convenient 
way of reducing the problem. 

Substituting the unknown functions A([), B(5) and C(c) back into (105) and (106) 
yields a quintuple integral equations, i.e. 

40 exptib> 4 = 0, x > 0, (b) 

where 

--E < Re(Q < E. 

From (107d), one can deduce that 

C(l) = ~N)+W). 

Inserting (109) back into (107~) yields 

Let 

x > 0, (e) 

(107) 

(108) 

(109) 

QO yexp ‘: 
0 

, x < 0. 

(110) 

(111) 

The original quintuple system can then be broken into two dual integral equations 
with only two unknown functions, A([) and R(c), 

Mi) -kfBG’)MO expW4 di = 
W’o, Qd PX 

V 
exp - , 

0 
V 

x < 0, (a) 

(112) 
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exp(pb) di = - %~XP y 
0 

, x < 0, (a) 

(113) 

R(i) exp(pix) di = 0, x > 0. (b) 

In (112), the mixed load factor L(P,,, QO) is defined by 

. (114) 

The dual integral equation (112) has the same structure as the Wiener-Hopf equation 
encountered in the preceding section. The solution can then be written down immedi- 
ately for each crack speed regime. 

For u < cbg: 

For cbg < u < c: 

Forc,,<u<c: 

9?(i) 
‘(1/(L’--Cb~)-i)l~2kl(l/(Z)+Cbg)-5)2kl 

(116) 

(117) 

On the other hand, the dual integral equation (113) needs extra care. The solution 
procedure outlined here is followed from Sih and Chen (1977). 

By Cauchy’s integral formula 

H+ (0 
H+(l/v)(~-l/v)exp(p5x)di~ 

(118) 

where H+(c) is an unknown, sectionally analytic function in the half P, (0 plane. 
Thus (113a) can be written as 

BW- (0 - Q” f-f+ (0 ~ 
VU- l/u) H+ (l/u) 

exp (pix) d[ = 0, x < 0. (119) 

Consequently 
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QoH+ 03 
R-(i) = - vH+(llv)(r-llv)P+(i)B-(i)’ 

where 

P+(i) = JX> and p_(i) = m. 

Then the unknown function H+(i) must have the form 

H+ (0 = B+ (We 

(121) 

(122) 

where P(c) is an entire function. 
Considering asymptotic behaviors of R_(i) shows that this entire function can only 

be unity. It follows that 

(123) 

It is important to note that the form of the sectionally analytic function R_(c) does 
not change with crack speed regime, in contrast to the function A_([). Using the 
definition of R_, we finally obtain 

Qo 1 1 1 
~ - ‘hl’kZA_ (i). B-(r) = (hl +d Jz;(i_ e15 

(124) 

From (124), it is clear that the sectionally analytic function B_(i) has two parts: 
the first represents the instantaneous response to electric loading (unaffected by 
electroacoustic wave speed) ; the second is the contribution from mechanical effects 
(sensitive to electroacoustic wave speed). The implication of this solution under mixed 
loading conditions is that the stress field and the electric displacement field (but 
not strain field!) remain singular after the crack extension velocity enters the post- 
Bleustein-Gulyaev speed region, because the electrostatic effects are instantaneous, 
and they always outrun the acoustic waves. 

4.2. Closedform solutions 

The development of the preceding subsections provides the basis for more detailed 
results. Since crack propagation at sub-Bleustein-Galyaev speed is of primary interest, 
only the subcritical case u < cbg is considered here. 

The integral representations of the relevant physical quantities are 

iA - (0 exp [ -P(V - ix>1 di 

-k,Z 
ip+i30 s iA ~ (0 exp [-PUG - 4’41 di 
<a-‘” 

Qoe15 1 C,+im 

+ (E,, +Eo) $ s i 1 
i,_im ([-- l/v) mexp ‘-p(EJJ-lx)l dc ’ (125) 
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1 
dOA ~ (0 exp [ -p(crv - 5.41 di 

Qoe15 1 s :,+‘m JE+r 
-exp [-P(Q-ix)1 di 

+ (El1 +Eo) & (,-is (i- l/u) 
, (126) 

“+‘~;A-(i)ex~[-p(~~-ix)ld~ 

Qos,, i~+ia s < 1 
-~ 

El I +co 
pexp [-p(h4x)l di 

ig_ia (i-lb) JE-i 
(127) 

Di(x y p) = _ L 
I ” 

2711 
KIM (0 exp [ -P(PY - ix)1 di 

QOQ I 
&II +co s iii+‘” &+I 

~ ew I -P@Y - i-41 di 
ip-_ia (i- ‘/‘I 

. (128) 

For the anti-plane displacement and the in-plane electric fields, we have 

w*(&Y,P) = 1 
s 

i,+1n 

27cP 
A ~ (0 exp [ -p(cl.v - ix>1 dL 

[%-ix 
(129) 

$*(x,y,p) =& 

1 

([- l/21)- 
ew I-P(PY-ix)1 di (130) 

1 c44 
;,+1CX 

$*(x,y,p) = 7 - kj 
i (s 2x1~ cl5 

A ~ (0 exp [ -P(V - ix>1 di 
ix-im 

-k,? s $+I” 

A~(i)exp[-~(~~--_x)ldi 
$-I” 

Q. i G+130 1 

+ (&I 1 +‘O) J s ip-ir ([- l/tr)JF2j 
exp [-~(B.~-ix)l di , (131) 

~%x,Y,P) =& 
Q. i b+‘= 

s 

1 

+ (&II +Eo) 4 
exp [P@Y - 541 di . (132) 

q-m ([- l/u)Jq 
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The above are the general solutions for the moving piezoelectric crack under mixed 
loading conditions, valid for the whole range of crack propagation velocity. The 
Cagniardde Hoop inversion scheme can be used to find closed form solutions by 
employing the following inversion paths 

r,+cG 0 = x2 +ls2,2 (- (xt+ ~)+i~/X$IZJ:), (133) 

(134) 

For v < cbg, it fOllOWS that 

al,+ 
iI+A-(il+)dr 

I 
H(t-t,) 

-k,2 Im 
al,+ 

L+A--(L+),, 1 1 H(t-tJ 

cl33 
al,+ di,+W(iI+)~ 1 W-t,) 

-k,2 Im ai,+ B(L+)A--(i2+)~ 1 ) fW-td 
(136) 

D,(x,y, t> = k{FkZ Im[(,+a-(I,+)~]H(t-t2) 

(137) 

D&y, t> = - ir*kZ Im[B(il+)a-(12+)~]H(t-t2) 

Qo El1 &= ay2+ -- 
& @I I +&o) 

Irn 
[ (t2+ -lid at 1 I H(t_t > 

2 5 (138) 

where 
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(139) 

In particular, ahead of the crack tip (y = 0, x > 0), when t > t, and x < (c-v) t, the 
electro-mechanical fields can be expressed in elementary forms 

(140) 

where 

1 (s+k*) L”((P,,Qo> &%=i 9+(1/d +(-t/x) Wt-t,) 
Av(x,t) A -2 

n (1 -k,4) ,,I’- (t+xl(%+u)) (1+&g) (t+&) ,,& ’ 

(142) 

and 

(143) 

As x + Of, the near field solutions can be directly obtained from (140) and (141) as 

c7yz(X,0+,t) = 

D,(x,O+, t) = 
(s+k:) 1 1 E,, k: P, 
~ _____~ 
(1 +k,Z) ,,/a (1+4~,) 71 e15 (1 -kZ) fi 1 

+ 

k,f (s+k:) k,Z 9+(1/u) 

(1-k:) (l+k,Z)J~(l++d +’ 

For u > cbg, a closed form solution under the mixed type of boundary condition could 
be derived in a similar fashion. Here we restrict attention to the intensity factors, 
which can in this case be derived without inversion by applying the Abel theorem 
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lim (7~~)‘~*c-ry*~((x, 0,p) = ,Jiym(pLJ 
x+0+ 

Q 1 0e15 

= - (&0+&l,) Jvp’ 

(146) 

Slightly anticipating the following section, it follows that the stress intensity factor 
under mixed loading is 

Likewise, the electric displacement intensity factor is 

(147) 

(148) 

These singular fields exist as a result of instantaneous electrostatic response cor- 
responding to the current crack extension vt-note the lack of explicit u dependence. 
Though the point is not pursued here, it may also be shown that the fields ahead of 
the crack do not decay with time as they do in the traction loading case. 

5. RESULTS AND DISCUSSION 

The results of the preceding sections demonstrate the richness of dynamic pie- 
zoelectric crack problems. Even in the simple antiplane case, the analysis unearths a 
variety of phenomena never encountered in the purely mechanical world. In this paper, 
we restrict attention to a few direct consequences, considering only the subcritical case. 
Of primary interest are the quantities of traditional interest in dynamic fracture 
mechanics: intensity factors and energy release rate. In addition, we examine the 
crack face electrostatic potential distribution. 

5.1. Intensity factors and universal functions 

As shown in the preceding section, the subcritical case is fully coupled, in the sense 
that applied traction loading and applied electric charge loading each produce singular 
near-tip fields for both stress and electric displacement. We introduce some ter- 
minology and notation to carefully characterize the various interactions. In particular, 
we distinguish a self-induced intensity factor (generated by a loading of the same type) 
from a cross-over intensity factor (generated by a loading of the other type). 

More precisely, separating the mixed loading solution into parts corresponding to 
the different types of loading, we may define 

0$)(x, y, t) A CJX, y, t) PO = 1, (149) 
Pa=0 
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Q,=l 
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(150) 

Djp’(x, y, t) A I&(x, y, t) PO= I , (151) 
Q,=‘J 

Djf’(x,y,t) A D,.(X,Y> 4 po=o. 
PO=' 

(152) 

Taking the opportunity to generalize the results in the manner of Freund (1972) let 
p(x) describe a traction distribution that appears on the newly formed crack faces. 
The self-induced stress intensity factor [denoted by superscript (a) and subscript r] 
may then be expressed as 

where 

P(Z) = 1 
Js 

/ 

7.c 0 
qP”*p(f-q)dv. (154) 

Similarly, let q(X) describe a charge distribution that appears on the newly formed 
crack faces. The cross-over stress intensity factor [denoted by superscript (a) and 
subscript D] is then given by 

K&(vt,v) 4 $I/% s "nl"-'(x,0+,1-X/v)q(X3dX 
0 

= ( 0 -v’cbg) 2 (llv) _ 1 

JFFi’ 1 (8, :)YEo) QW)~ 
(155) 

where 

The self-induced and cross-over electric displacement factors may be similarly defined 
[denoted by superscript (D) and respective subscripts D and r] and expressed as 

=( (s+k:) k: 

(1 
9+(1/v) +1 

-k:) Jm (l +dcb,) 
&Q(‘:” (157) 
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=( 

(s+k,2) 1 

(1 +G) Jm (1 +uIcbg) 
(158) 

A similar cross-over electric displacement intensity factor was defined for the “elec- 
trode” solution in Part I. For that case, the nonvanishing cross-over electric dis- 
placement intensity factor was unimportant as far as energy release rate was 
concerned ; as we shall see, this is not the case in general. 

It is important to note that the structure of the asymptotic fields is not as straight- 
forward as the electrode case, thanks to the existence of two different terms (though 
both are square root singular). Rather than pursue this parameterization here, uni- 
versal crack speed factors are expressed in terms of the loadings P and Q. The four 
such functions necessary for this case may be chosen to satisfy 

mMU& u> = gsw (E, ::l;Eo) Qm 

k2 
Kjfg(ut, u) = g,(u)E” v 

e15 (1 -k,Z) 
P(ut). 

(159) 

(160) 

These functions may be expressed in terms of the universal functionsfand g derived 
for the electrode case in Part It as 

L(a) =f(u), (161) 

L(a) =f(a)- 1, (162) 

ssw = &Y(u)+ 1, (163) 
P 

SC(U) = g(n)> (164) 

where 

f(u) P (1-u’cbg) 9 (l/u) 

&iqF)’ ’ 

g(u) p (s+kZ) l g+ (l/a) 

(1 +k,2) Jm (l +dcbg). 

(165) 

(166) 

t With the understanding that the electrode values for Bleustein-Gulyaev speed and electromechanical 
coupling are replaced by the corresponding vacuum values. 
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Fig. 6. Variation of cross-over dynamic stress intensity factor&(v) with nondimensional crack velocities : 
(4 f; (4 vs u/c ; (b) .I34 vs 4~~. 

In Part I,f(v) and g(u) were plotted for various electro-mechanical coefficients. In 
Fig. 6, the cross-over dynamic stress intensity factorL,(y) is similarly plotted against 
two nondimensional crack speeds ; the results of course only differ by a constant from 
those forf. Note thatf, is zero at v = 0. Figure 7 displays the profile of self-induced 
electric displacement intensity factor, gS(u). In the acoustic speed range, this factor is 
always greater than one. 

An important practical observation is that typical values of k,. are much smaller 
than those for k,. The variations in intensity factor with velocity, the reduction in 
Bleustein-Gulyaev wave speed and the cross-over factors are thus substantially smal- 
ler for realistic material parameters than in the electrode case. 

5.1.1. New static solution. A slight digression is in order to examine further the 
limiting case v = 0. Most published static analyses of piezoelectric crack problems 
adopt the assumption that the crack contains a dielectrically impermeable medium. 
This assumption is analytically useful in that the field equations no longer couple via 
the interfacial conditions at the crack faces, allowing significant simplification. An 
immediate corollary, however, is the lack of any cross-over terms. 

In contrast, the quasi-static (v + 0) limit of the present results, which may be 
interpreted as the intensity factors for a static semi-infinite crack with mixed loading 
on the crack faces in the region -I< x < 0, yields 
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Fig. 7. Variation of self-induced dynamic electric displacement intensity factors with nondimensional crack 
velocities : (a) g,(u) vs u/c ; (b) g,(u) vs u/cg. 

(169) 

(170) 

Thus, for the permeable case, a cross-over electric displacement intensity factor exists. 
The impermeable case is recovered in the limit s0 + 0, when k, + 0 and this term 
vanishes. 

These results allow the validity of the a priori assumption of impermeability to be 
assessed for the static antiplane case. In particular, it is clear that both the perturbation 
in the self-induced electric displacement intensity factor and the magnitude of the 
cross-over intensity factor are first order in .s,J.q,. 

5.2. Energy release rate 

Energy release rate and the associated path-independent integrals in an elastic 
dielectric have received significant attention in recent years (Pak and Herrmann, 
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Fig. 8. Integration contour used to evaluate J-integral and energy release rate. 

1986a, b ; McMeeking, 1990 ; Maugin and Epstein, 1991; Vukobrat, 1994). Maugin 
(1994) gives a comprehensive review of the subject. In the static case, some specific 
calculations have been carried out (Pak, 1992 ; Zhang and Hack 1992). For dynamic 
piezoelectric fracture, general treatments of the energy balance have been given 
(Parton and Kudryatvsev, 1988 ; Maugin, 1994). 

Here it is possible to carry out the detailed calculation of the energy release rate 
for the antiplane dynamic problem. The starting point is the family of invariant 
integrals, which for a linear dielectric medium under the quasi-static approximation 
take the form (Pak, 1990,1992) 

Fk = 
s 

[Hdjk -CijUi,k + DjEk]nj dS, (171) 
s 

where H is the enthalpy density. When k = 1, (171) is the generalized J-integral for 
an elastic dielectric medium, which includes the linear piezoelectric material as a 
special case. 

By choosing the integration contour S shown in Fig. 8, and allowing the area 
encircled by S to shrink in the usual way (h + 0, then e -+ 0), the only contribution 
to the energy release rate is 

C=J=2hm 
8 aw ad 4 . d,Tdr +Dyz dx. 
-_) 

(172) 

The results of the previous section may be employed to express the energy release rate 
in terms of the load pair as 

where 

(173) 
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(174) 
1 

‘&) ’ (1 _k,2) 
[ 

k,2 
AW4+&M4(l_k,2) (&s&,) 1 3 

g(uMv) k2E2 ” 11 d’h I 

(1-k:) so(&+si,) -(s,+s,,) 1 ’ (175) 

(176) 

For traction loading only, this reduces to 

G(vt, u) = &(u)P(vt)P(vt). (177) 
44 

Examination of the two terms in the expression for hTT reveals that as v + cbg, the first 
term vanishes, but the second does not. Normalizing by 

G,,,, g Zc4,(;_kj)(’ + ~)p(vt)p(““’ (178) 

where Y p E,,/(E,,+E,,), it follows that 

GW, 4 
Goo(vt> = (1+ (1”:r;:,)’ (+)g(u)+s(W($$j). (179) 

This expression is plotted for a realistic value of Y in Fig. 9. Clearly, there is a 
“residual” energy release rate left when crack speed is up to surface wave speed, 
unlike the elastodynamic and the electrode case previously examined. For the case of 
the vacuum condition, the surface wave speed does not appear to be a barrier to crack 
propagation. 

The origin of this residual energy release rate needs further investigation. There 
are several reasons to anticipate novel behavior for the coupled electromechanical 
problem, but we are only able to speculate as to the detailed mechanisms at this point. 

The first observation is that the propagation of electric effects is not limited by 
acoustic velocities. At the surface wave speed limit, therefore, it is conceivable that 
there are boundary effects that provide a mechanism for energy flux that does not 
exist in the purely mechanical cases. Second, unlike either the elastodynamic or the 
electrode case, the vacuum cavity inside the crack is energetically active, due to the 
electric field supported within. This field is, in addition, singular as the tip is 
approached; it is not clear what the consequences of this are for energy exchange 
between the piezoelectric body and the cavity. It is significant that both of these effects 
are suppressed by the electrode boundary condition choice. 

Here is a possible explanation which offers the authors’ viewpoint. As pointed out 
by Freund (1990) for a crack expanding in purely elastic materials, the energy rate G 
is called elastic energy release rate only if the crack advances under equilibrium 
conditions and the fixed grip boundary condition. This so called “jixedgrip” boundary 
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Fig. 9. Normalized energy release versus u/chg. 

condition excludes any exchange of energy between the elastic body and its surround- 
ings. 

Obviously, in our case, this “jixed grip” condition is violated. As shown in the 
previous sections there is a continuous energy exchange between the piezoelectric 
body and its surrounding vacuum space. It can be shown that the electric field in the 
vacuum region is also singular near the crack tip area as its counterpart in the 
piezoelectric body. As shown above, the electric displacement intensity factor will not 
go to zero as the crack speed approaches the Bleustein-Gulyaev speed. In other 
words, the electrostatic field remains singular when crack speed approaches the surface 
wave speed whereas the singularity of mechanical fields disappears. Therefore, when 
crack speed reaches the surface wave speed, there is still electrical energy exchange 
between the piezoelectric body and its surrounding vacuum space. It is this fact, we 
believe, that is responsible for the existence of the “residuaP’ energy release rate. 

On the other hand, in electrode-type boundary problems, we mathematically 
enforce the “fixed grip” condition, i.e. we shut off the energy exchange gate between 
piezoelectric body and its environment. Thus, the energy release rate always goes to 
zero when crack propagation speed approaches the Bleustein-Gulyaev speed. 
Whereas on the contrary, in vacuum boundary problems, we open the energy exchange 
channel ; this is why there is a “residual” energy release rate left. The physical meaning 
of this residual energy release rate is an energy rate supply that piezoelectric body 
outputs to its vacuum surroundings. 
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For pure charge loading, there is another interesting effect. 
release rate G(vt, v) can be regrouped into the following form 

G(ut, u) = 
1 k,’ 

260 +s,,) 
- l)(l _k,Z) 

+ (E, ;l;Ea)gs(U) 
k2 

g@)(l (E, ;yEO) - 1 
1) 

li 
Q<uOQW. (180) 

If p(x) = 0, the energy 

Since for u > 0, 
f(u) - 1 < 0 

and in most practically used piezoelectric materials 

(181) 

k2 

g(“)($,,)(I-l <O. (184 

Thus, the energy release rate may be negative. In fact, in the impermeable limit, this 
term is guaranteed to be negative. This result agrees with the results found in static 
analysis (Deeg, 1980; Pak, 1990; Maugin, 1994). Maugin notes, “It is found that in 
some cases the energy release rate can have negative values,. . . . In addition, in 
the absence of mechanical loads, it is noted that crack extension force is always 
negative, . . .“. The same observation was reported by Pak: “it is found that the 
presence of an electric field always decreases J thus inducing retardation in the crack 
growth.” 

5.3. Electrostatic potential distributions 

Measurement of electrical quantities such as resistance have been occasionally used 
to monitor fracture. For piezoelectric materials, it would seem reasonable to expect 
that electrostatic measurements would be particularly useful. As an example, the 
potential drop across the crack surfaces may be calculated. 

Allowing the thickness of the vacuum region to approach zero, the potential jump 
across the crack is 

A&x,O*,t) = [&x,O,t)] p $(x,O+,t)-&x,0-,& 
or 

IA$(x,O,t)l = 2l?+,O+,0l. 

For simplicity, let Q0 = 0. Then at y = 0, from (132), one can obtain 

(183) 

(184) 

A&x, 0, t) = A& 
s 

tc”X’ L%- (tJ/c) J_clo 
~ 

C,(D+L.) (5 -c/u) (5 -C/(&g + 0)) d5Y 

where 

_ a 2 c (s+k:) 

J 

P,, 9+(1/u) &II k: 

A” =G ~(1-k,4)J~(1+u/cbg) e. e15 

(185) 

(186) 
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Fig. IO. Normalized potential drop along the crack surfaces. 

Figure 10 displays the distribution of the electric potential drop along the crack 
surface in the range 1x1 > (c+u)t. The normalized electric potential drop is plotted 
against the nondimensional variable tc/lxl. 

6. CLOSURE 

The closed form solutions obtained here for the anti-plane dynamic piezoelectric 
crack problem demonstrate some fascinating phenomena, of which the present paper 
has only scratched the surface. In addition to behavior reminiscent of the in-plane 
elastic case, we have discovered a variety of truly coupled behavior resulting from the 
electromechanical properties. 

As expected, surface wave phenomena have a critical effect on dynamic piezoelectric 
fracture. Because of the difference in propagation of electromagnetic (quasi-static) 
and acoustic disturbances, these effects are not particularly straightforward. Our 
results for this much simplified problem suggest that the problem taking into account 
the acceleration effect should be an intriguing one. 
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