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Abstract In this work, a meshfree method is used to sim-
ulate thermo-mechanical ductile fracture under finite defor-
mation. A Galerkin meshfree formulation incorporating the
Johnson-Cook damage model is implemented in numerical
computations. We are interested in the simulation of thermo-
mechanical effects on ductile fracture under large scale yield-
ing. A rate form adiabatic split is proposed in the constitutive
update. Meshfree techniques, such as the visibility criterion,
are used to modify the particle connectivity based on evolv-
ing crack surface morphology. The numerical results have
shown that the proposed meshfree algorithm works well, the
meshfree crack adaptivity and re-interpolation procedure is
versatile in numerical simulations, and it enables us to predict
thermo-mechanical effects on ductile fracture.

Keywords Damage · Ductile Fracture · Johnson-Cook
model · Meshfree method · Thermo-mechanical coupling

1 Introduction

A main application of meshfree methods is computational
fracture mechanics, or computational failure mechanics. In
the early 1990s, Belytschko and his co-workers [4,5,19]
showed that meshfree discretization and interpolation have
the flexibility to adapt to the change of the geometrical or
topological structure of a solid due to fracture, and therefore
it is advantageous to employ meshfree methods when simu-
lating crack growth and crack propagation, which can other-
wise be a painful process when using a finite element adaptive
process, such as remeshing, in crack simulations e.g., [27].
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Recently, there have been quite a few works using mesh-
free or meshfree related methods simulating fracture prob-
lems, such as Krysl and Belytschko [16,17], Daux et al. [11],
Dolbow et al. [12], Stolarska et al. [25], and Ventura et al.
[26]. Another alternative is the so-called cohesive finite ele-
ment method (FEM) e.g., [21,31]. The cohesive FEM may
avoid remeshing, but it has severe limitations: such as mesh
dependence and limitations on embedding complex constitu-
tive relations. For instance, cohesive FEM has great difficul-
ties in modeling ductile fracture at large scale yielding, and
ductile fracture under combined thermo-mechanical loading,
because a realistic interfacial cohesive thermal-mechanical
constitutive relation is still lacking.

One of the main features of ductile fracture is its dis-
sipative character, because a large amount of heat gener-
ated by plastic work around the crack tip area will cause
additional thermal softening and thermal damage, which in
turn will affect ductile crack growth. To the best of the au-
thors’ knowledge, we haven’t seen any interfacial cohesive
model in the open literature that is capable to deal with
thermo-mechanical effects in the ductile fracture. It is the
main purpose and motivation of this paper to demonstrate the
ability of meshfree methods to deal with thermo-mechanical
ductile fracture.

The main technical difficulties in simulating thermo-
mechanical effects in ductile fracture are:
(1) how to implement a stable constitutive update to handle

the thermo-mechanical coupling during crack propaga-
tion, and

(2) how to simulate crack growth without impairing the orig-
inal interpolation field.
The first difficulty emerges when thermal softening is

coupled with heat conduction. This will create a nonlinear
coupled system with complex stability behavior. The situa-
tion becomes even more complicated when it is associated
with large scale yielding, finite deformation, and evolving
configuration (crack growth).

The second difficulty is more serious. Because ductile
fracture is an irreversible process, the history of state variables,
such as temperature, damage, plastic strain and yield stress,
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at each material point, e.g., a Gauss point in a computation
domain, have to be preserved in a bookkeeping process at
each time step.

If the original mesh can not automatically adapt to arbi-
trary crack paths, any remeshing process will need to map
or convert state variables from the old interpolation field to
the new interpolation field, which is not only a time consum-
ing process but also a major source of accumulated numerical
error that eventually prohibits any possible realistic long term
simulation.

The objective of this study is to provide a simple but rel-
atively accurate and yet cost effective solution that may lead
to the final solution of this outstanding problem in computa-
tional fracture mechanics.

To achieve this objective, we use meshfree interpolation
to approximate the discretized fields. We adopt the Johnson-
Cook model in constitutive modeling and in damage assess-
ment. To model surface separation, we use a newly designed
parametric visibility condition and its related particle split-
ting algorithm to modify the previous interpolation and con-
nectivity map among meshfree particles.

The paper is organized into five sections. In Sect. 2, we
discuss the basic meshfree formulation, in which a rate form
operator splitting algorithm is proposed for the constitutive
update. In Sect. 3, we shall briefly outline a parametric
visibility condition and its related particle splitting algorithm,
and how to use them in ductile crack surface modeling. Numer-
ical examples are presented in Sect. 4. A few remarks are
made in the last section.

2 Meshfree Formulations

2.1 Thermo-mechanical couplings

In this work, we are mainly interested in ductile fracture
induced by damage during a thermo-mechanical process.
The ensuing meshfree simulation considers a fully coupled
thermo-mechanical system.

By the dynamic principle of virtual power, we have the
following weak formulation,∫

V

τ : δd dV =
∫

�t

t · δv dS −
∫

V

ρ
∂2u
∂t2

· δv dV , (2.1)

where V is the volume of the solid, �t is the part of the
surface ∂V upon which the traction, t, is prescribed, τ is
the Kirchhoff stress, u is the displacement, v is the velocity,
d := 1

2 (gradv+gradTv) is the rate of deformation, and ρ is
the material density.

The variational weak form of the energy equation in the
context of large deformation is,∫

V

ρCp

∂T

∂t
δT dV =

∫
V

χτ : dpδT dV

+
∫

∂V

(
F−1 · K · F−T · ∇T

) · NδT dS

−
∫

V

(
F−1 · K · F−T · ∇T

) · ∇δT dV , (2.2)

where F is the deformation gradient, T is the temperature
(Ko), N is the outward-normal of the surface ∂V , t is time,
χ denotes the fraction of plastic work converted to heat, dp

is the plastic rate of deformation, Cp is the specific heat.
For isotropic is heat conduction, the heat conductivity tensor
K = κ1(2), where κ is the heat condutivity coefficient, 1(2)

is the second order unit tensor, ∇ is the gradient operator in
the reference configuration, superscripts −1 and T denote the
inverse and transpose of a tensor, and δT , δd and δv denote
admissible variations in temperature, rate of deformation, and
velocity, respectively.

The strong form of the linear momentum balance is,

∇ · P = ρ0
∂2u
∂t2

(2.3)

and the strong form of energy balance is

ρ0Cp

∂T

∂t
= χτ : dp + ∇

(
JF−1 · K · F−T · ∇T

)
(2.4)

These two equations are coupled intrinsically through the
constitutive equations. Consider the rate form constitutive
model. We decompose the rate-of-deformation tensor d addi-
tively into elastic, plastic, and thermal parts,

d = de + dp + dT (2.5)

where the superscripts, e, p, and T , denote the elastic, plastic
(or inelastic), and thermal rate of deformation respectively.

The Jaumann rate of the Kirchhoff stress is used in the
rate form hypo-elastic formulation, i.e.,

τ∇J = C : de = C : (d − dp − dT) (2.6)

where the Jaumann rate of the Kirchhoff stress is defined as

τ∇J := τ̇ − W · τ + τ · W, (2.7)

with {·} = d

dt
{ }. The elastic tensor is isotropic,

Cijk� =
(
K − 2

3
G

)
δij δk� + G(δikδj� + δi�δjk) (2.8)

and the bulk and shear moduli can be linked toYoung’s mod-
ulus and Poisson’s ratio by

G = E

2(1 + ν)
(2.9)

K = E

3(1 − 2ν)
(2.10)

The rate of deformation due to thermal stress and plasticity
are

dT = αṪ 1(2)

dp = ˙̄εn̂. (2.11)

The rate form constitutive relation is

τ∇J = C :

(
d − ˙̄εn̂ − αṪ 1(2)

)
. (2.12)

In general, the numerical simulation of such coupled
thermo-mechanical systems is complex and difficult, for
example, Zhou et al. [33]. This is because a coupled
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thermo-mechanical system usually involves different time
scales associated with the thermal and mechanical fields. An
effective numerical integration scheme to solve the fully-
coupled energy equation is the so-called operator splitting
technique, which was proposed by Armero and Simo in the
early 1990s [1,2] in the context of hyperelastic/multiplicative
decomposition based thermoplastic solids. In Armero and
Simo [1,2], they decoupled the thermo-mechanical system
into two sub-systems: an adiabatic mechanical system and
heat conduction based thermal system. By doing this, one
can obtain a stable and effective integration algorithm based
on operator splitting.

Following the same philosophy, in this work, we extend
this strategy to the thermo-mechanical solid that obeys a rate
form constitutive law under finite deformation and irrevers-
ible damage.

The energy balance may be split into two parts:

(a) heat generation due to plastic deformation, and
(b) heat conduction. Thus, the energy balance may be

divided into two steps:




Adiabatic heating : ρ0Cp

∂T

∂t
=χτ : dp;

Heat conduction : ρ0Cp

∂T

∂t
=∇

(
JF−1 · K · F−T · ∇T

)

(2.13)

The integration of the energy equation consists of two
steps:

(1) we proceed with the temperature update due to adiabatic
heating in the constitutive update loop, and

(2) we update the temperature change due to heat conduc-
tion in the main integration loop by only considering the
following weak form,

∫
V

ρ0Cp

∂T

∂t
δT dV =

∫
∂V

(
F−1 · K · F−T · ∇T

) · NδT dS

−
∫

V

κ
(
F−1 · K · F−T · ∇T

) · ∇δT dV. (2.14)

Introducing a meshfree discretization, the primary fields
can be approximated as

uh(X, t) =
np∑
i=1

Ni(X)Ui (t),

with Ui (t) = {Ui1, Ui2, Ui3}T (2.15)

δvh(X, t) =
np∑
i=1

Ni(X)δVi (t),

with δVi (t) = {Vi1, Vi2, Vi3}T (2.16)

T h(X, t) =
np∑
i=1

Ni(X)Ti(t),

and δT h(X, t) =
np∑
i=1

Ni(X)δTi(t), (2.17)

Let

U(t) = {U1, U2, . . . . . . , Unp}T (2.18)

T(t) = {T1, T2, . . . . . . , Tnp}T . (2.19)

Then the weak formulations (2.1) and (2.14) can be reduced
to the following algebraic equations,

M · d2U
dt2

= fext − fint , (2.20)

C · dT
dt

= −H · T , (2.21)

where the mass matrix, M = {Mij } is defined as

Mij =
∫

V

ρ0Ni(X)Nj (X) dV, (2.22)

and the thermal capacitance and conductivity matrices, C and
H, are defined as

C = [Cij ], Cij :=
∫

�X

ρ0CpNi(X)Nj (X) d�X (2.23)

H = [Hij ],

Hij : =
∫

�X

κF−1
I� (X)F−T

�J (X)Ni,J (X)Nj,I (X) d�X (2.24)

The internal and external force vectors in (2.20) are defined
as

f int = {f int
1 , f int

2 , . . . . . . , f int
np }T ,

and f int
i =

∫
�X

P�J

∂Ni

∂XJ

e� d�X (2.25)

fext = {fext
1 , fext

2 , . . . . . . , fext
np }T,

and fext
i =

∫
�t

T 0
� (X, t)Ni(X)e� dS (2.26)

where e� are the basis vectors of the Cartesian coordinate.
The inelastic solid is assumed to undergo finite deforma-

tions, with the total deformation gradient denoted as F. The
rate of deformation tensor, d, and the spin tensor, W, are the
symmetric and anti-symmetric parts of the spatial velocity
gradient l = Ḟ · F−1, i.e.,

d + W = Ḟ · F−1 (2.27)

and

d := dij ei ⊗ ej , dij := 1

2

( ∂vi

∂xj

+ ∂vj

∂xi

)
(2.28)

W := Wij ei ⊗ ej , Wij := 1

2

( ∂vi

∂xj

− ∂vj

∂xi

)
(2.29)

where vi are the velocity components.
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2.2 The Johnson-Cook model

To model the thermo-mechanical effects of ductile fracture,
we choose a well calibrated constitutive model—the
Johnson-Cook model, which has been extensively used in
ductile failure analysis, e.g., Johnson & Cook [14,15], Batra
& Chen [3], among others.

Define the hydrostatic, deviatoric, and equivalent stresses
as

τm = 1

3
τ : 1(2) (2.30)

s = τ − τm1(2) (2.31)

τeq =
(3

2
s : s

)1/2
(2.32)

The plastic rate of deformation is obtained from the fol-
lowing flow rule,

dp = ˙̄εn̂ (2.33)

where

n̂ := 3

2τeq
s (2.34)

and

˙̄ε = ε̇0 exp

{
1

C

( τ̄Y

g(ε̄, T )
− 1

)}
. (2.35)

In Eq. (2.35), the parameter τ̄Y is the initial yield stress, and
the non-dimensional function,

g(ε̄, T ) = [
A + Bε̄n][1 − T m],

with, T = T − Troom

Tmelt − Troom
. (2.36)

where Troom is the room temperature, Tmelt is the melting
temperature.

Fracture of Johnson-Cook solids occurs when a damage
measure reaches one, i.e., D = 1, which is calculated accord-
ing to the following cumulative damage law:

D =
∑ ε

εf

(2.37)

where

εf =
[
D1 + D2 exp(D3

τm

τ̄Y

)
][

1 + D4 ln ε̇][1 + D5T ].

(2.38)

where τm = 1
3 (τ11 + τ22 + τ33).

2.3 Constitutive update

In this section, we discuss how to update the Kirchhoff stress
and temperature due to adiabatic heating.

The Kirchhoff stress update is based on the following
improved Euler scheme [22],

τ n+1 = τ n + τ

= τ n + τ̇ θt , (2.39)

and

τ̇ θ ≈ τ∇J
θ + Wn · τ n − τ n · WT

n , (2.40)

where τ θ ∈ [τ t , τ t+t ] and τ̇ θ ∈ [τ̇ t , τ̇ t+t ].
The first step is to find τ∇J

θ via,

τ∇J
θ = C :

(
dθ − ˙̄εθ n̂θ − αṪθ I ⊗ I

)
. (2.41)

The crucial step is how to determine ˙̄εθ . By definition

ε̄ = t[(1 − θ) ˙̄εn + θ ˙̄εn+1] = ˙̄εθt, → ˙̄εθ = ε̄

t
.

(2.42)

By Taylor expansion

ε̄ = ˙̄εtt + θ(t)2

[
∂ ˙̄ε
∂ε̄

∣∣∣
t

˙̄εθ + ∂ ˙̄ε
∂τ̄Y

∣∣∣
t

˙̄τYθ + ∂ ˙̄ε
∂T

∣∣∣
t
Ṫθ

]

+O
(
t3

)
, (2.43)

where
∂ ˙̄ε
∂ε̄

= ε̇0 exp

{
1

C

( τ̄Y

g(ε̄, T )
− 1

)}{
− 1

C

τ̄Y

g2(ε̄, T )

}(∂g

∂ε̄

)

(2.44)

∂g

∂ε̄
= Bnε̄−(n−1)

(
1 − T m

)
, (2.45)

∂ ˙̄ε
∂τ̄Y

= ˙̄ε
Cg(ε̄, T )

, (2.46)

∂ ˙̄ε
∂T

=
(

− ˙̄ε τ̄Y

Cg2(ε̄, T )

)( ∂g

∂T

)
, (2.47)

∂g

∂T
= − mT m−1

(1 − T m)(Tmelt − Troom)
g(ε̄, T ) (2.48)

The next step is to evaluate τ̇eqθ at tθ ∈ [t, t + t] or
[tn, tn+1].

By definition,

τeqθ =
(

3

2
sθ : sθ

)1/2

.

In large deformation,

τ̇eqθ = 3

2τ̄Y θ

sθ : τ∇J (2.49)

Considering

nθ = 3

2τ̄Y θ

sθ (2.50)

and adiabatic heating,

Ṫθ = χ

ρCp

τeqθ ˙̄εθ , (2.51)

we have

τ̇eqθ = nθ :
{
C :

(
dθ − dp

θ − dT
)}

= nθ :

{
C : dθ − ˙̄εθ C : nθ − αχ

ρCρ

(
C : 1(2)

) (
τ θ : dP

θ

)}
.

(2.52)
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Noting

C : 1(2) = 3K1(2), and τ θ : dp

θ = ˙̄εθτeqθ (2.53)

and denoting

Nθ = C : nθ , and Aθ = nθ : C : nθ , (2.54)

one has

τ̇eqθ = Nθ : dθ − ˙̄εθAθ − αχ

ρCp

τeqθ ˙̄εθ tr(Nθ ) . (2.55)

and

ε̄ = ˙̄εtt + (θt)
∂ ˙̄ε
∂ε̄

ε̄ + ∂ ˙̄ε
∂τ̄Y

(θt2)

·
{

Nθ : dθ − ˙̄εθAθ − αχ

ρ0Cp

τeqθ ˙̄εθ tr
(
Nθ

)}

+(θt)
( ∂ ˙̄ε
∂T

)(χτeqθ

ρ0Cp

)
ε̄ (2.56)

Finally, one can solve this equation to find

˙̄εθ = ε̄

t

=
˙̄εt + (θt) ∂ ˙̄ε

∂τ̄Y
Nθ : dθ(

1 − (θt) ∂ ˙̄ε
∂τ̄Yθ

+ ∂ ˙̄ε
∂τ̄Yθ

(
Aθ + αχ

ρCp
τeqθ tr(Nθ )

)
− (θ) ∂ ˙̄ε

∂T

χτeqθ

ρ0Cp

)

(2.57)

Define

Hθ = Aθ + αχ

ρ0Cp

τeqθ tr(Nθ )

−
(

∂ ˙̄ε/∂ε̄

∂ ˙̄ε/∂τeqθ

+ χτeqθ

ρ0Cp

(∂ ˙̄ε/∂T

∂ ˙̄ε/∂ε̄

))
, (2.58)

and

ξ = (θt)
∂ ˙̄ε

∂τeqθ

Hθ . (2.59)

One can write

˙̄εθ = ˙̄εt

1 + ξ
+ ξ

(1 + ξ)Hθ

Nθ : dθ . (2.60)

The Jaumann rate of the Kirchhoff stress becomes,

τ∇J
θ = C : dθ − ˙̄εθNθ − 3KαṪθ1(2)

= C : dθ −
( ˙̄εt

1 + ξ
+ ξ

(1 + ξ)Hθ

Nθ : dθ

)

×
(

Nθ + 3Kαχτeqθ

ρ0Cp

1(2)
)

. (2.61)

Temperature is updated by the following operator split
scheme. At time t ∈ [tn, tn+1] we have the following:

• adiabatic update of rate of temperature at every quadra-
ture point:

Ṫ gi
n = χ

ρCp

τ̄Yθ ˙̄ε

• extrapolate the rate of temperature at each particle point
�:

Ṫ �a
n =

∑
gi

Ṫ
gi
n N�(Xgi)∑

gi

N�(Xgi)

where the summation is running through all the quadra-
ture points in the support of the particle �;

• calculate the rate of temperature due to the heat conduc-
tion:

[Ṫ �h
n ] = −[C]−1[H ][T �

n ]

where the heat capacitance and heat conduction matrices,
[C], [H ] are defined in Eqs. 2.23 and 2.24;

• update the total temperature:

T �
n+1 = T �

n + (Ṫ �a
n + Ṫ �h

n )t

• update (interpolate) the temperature at each quadrature
point:

T
gi

n+1 =
np∑
i=1

Ni(X�)T
i
n+1 , gi = 1, 2, . . . ., gnp ,

where gnp is the total number of quadrature points.

3 Crack surface approximation and visibility condition

A crucial step in modeling crack propagation in a numerical
simulation is how to represent the evolving crack surface and
automatically adjust the interpolation field around a growing
crack tip. This process is not only a re-interpolation scheme,
but also a process to model the material re-configuration.

Belytschko and his co-workers [8,9] have developed a
so-called visibility condition that can serve as a criterion to
automatically adapt the topological connectivity map among
meshfree particles.

There are two shortcomings in the previous meshfree
crack surface representation/visibility condition procedure:

(1) crack surface re-construction and representation schemes
are complicated.The complexity comes from two sources:
the searching algorithm and the re-interpolation algorithm.
Because of the technical complexity, any generalization
of meshfree crack surface modeling of three-dimensional
fracture or ductile fracture becomes a formidable task;

(2) it has been observed that the meshfree shape functions of
a re-interpolated field produced by the visibility condi-
tion may contain strong discontinuities in meshfree shape
functions at certain regions near a crack tip, although we
do not know for certain this is indeed a shortcoming.

To simplify the crack surface modeling procedure, we
introduce the following crack surface representation and par-
ticle splitting algorithm to model crack surface separation.
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Fig. 1 Illustration of numerical scheme for crack growth

3.1 Crack surface representation and particle splitting
algorithm

The two-dimensional crack surface is represented by pairs
of piece-wise straight lines as shown in Fig. 1. In Fig. 1, the
particles on the crack surface are marked as square black
boxes, except at the crack tip, whereas the other meshfree
particles are represented as hollow circles. In previous mesh-
free approaches, when a crack grows, the crack surface is
reconstructed by adding new particles. This is not suitable
for ductile crack surface modeling, because one has to re-
create state variables and re-distribute mass and volume for
any newly added particles.

In our approach, a crack tip is always attached to an exist-
ing material/interpolation particle. It only moves from one
particle to another as shown in Fig. 1.

Assume that the physical criterion to select a new crack tip
is available. To find the new crack tip, we first choose a radius
R and draw a circle centered at the current crack tip. Then we
apply the crack growth criterion to every point inside the cir-
cle to decide which point should be the next crack tip, except
those points (square boxes) on the crack surfaces, because
we do not allow the crack surface become the crack tip again
(this may happen in some unusual situations).

Once we select a new crack tip, we split the old crack tip
into two points that have the same value of state variables at
that particular time. The mass and volume of the two parti-
cles are re-assigned according to the following rules, which
is called the particle splitting algorithm,

Massnew1 = φ1

2π
Massold, (3.1)

Massnew2 = φ2

2π
Massold; (3.2)

and

Volumenew1 = φ1

2π
Volumeold (3.3)

Volumenew2 = φ2

2π
Volumeold (3.4)

The kinematic field variables, such as displacement, velocity,
and acceleration of the new particles are assigned as

Dispnew1 = Dispold + δ (3.5)

Dispnew2 = Dispold − δ (3.6)

Velnew1 = Velold (3.7)

Velnew2 = Velold (3.8)

Accnew1 = 0.0d0

Accnew2 = 0.0d0 (3.9)

where δ is a vector whose length |δ| << 1. It serves the pur-
pose of making a physical distinction between the two new
particles once they are separated.

The state variables are re-assigned as

Tempnew1 = Tempold (3.10)

Tempnew2 = Tempold (3.11)

Damagenew1 = Damageold (3.12)

Damagenew2 = Damageold (3.13)

This process is illustrated in Fig. 2, in which the point
(Xtip, Ytip) is the new crack tip, and the old crack tip is split
into two particles, (Xnew1, Ynew1) and (Xnew2, Ynew2). A pair
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Fig. 2 Meshfree particle splitting algorithm

Fig. 3 Visibility condition in 2D

of straight lines connect (Xnew1, Ynew1) and (Xnew2, Ynew2)
with the new crack tip, (Xtip, Ytip).

3.2 Parametric visibility condition

Meshfree interpolation relies on a local connectivity map to
associate one particle with its neighboring particles.

To model crack propagation, one has to develop a
numerical algorithm that can automatically modify the lo-
cal connectivity map and simulate a running crack without
user interference.

The parametric visibility condition used in this study is
developed by Li & Simonsen [34], which can be used to mod-
ify the local meshfree connectivity map to reflect geometric
change of domain due to crack growth.

The visibility condition used in this study is illustrated in
Fig. 3. Figuratively speaking, a crack may be viewed as an

opaque wall. A material point on one side of the wall can not
“see” the material points on the other side of the wall. This
principle is called the “visibility condition”. To determine

Fig. 4 Parametric visibility conditions
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Fig. 5 Meshfree shape function along crack surfaces (I)

whether or not two material points are separated by a crack
segment, one can check whether or not the line segment
connecting two material points intercept the crack path seg-
ment. This crack path segment is shown as a dashed line
in Fig. 3.

Since crack growth is incremental, one only needs to
check and to modify a limited number of particles in the
current crack tip area, which is defined as the union of two
circles centered at the current crack tip and next crack tip (see
Fig. 3). To modify the meshfree connectivity map, one only
needs to check the visibility condition inside the union of two
circles, C = C1

⋃
C2. This process is named the “parametric

visibility condition”.
Suppose that we want to modify the connectivity rela-

tion between particle (X11, Y11) ∈ C and the rest of the

particles inside C. We denote an arbitrary point inside C as
(X12, Y12) and two crack tips (old and new) as (X21, Y21) and
(X22, Y22).

The parametric equations of the straight line that connects
points (X11, Y11) and (X12, Y12) are

{
X = X11 + λ1X1
Y = Y11 + λ1Y1

(3.14)

where λ1 is the parametric variable and

X1 := X12 − X11 (3.15)

Y1 := Y12 − Y11 (3.16)
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Fig. 6 Strong discontinuity of a meshfree shape function at a crack tip

On the other hand, the parametric equations for the straight
line that connects two crack tips are,{

X = X21 + λ2X2
Y = Y21 + λ2Y2

(3.17)

where λ2 is the parametric variable and

X2 := X22 − X21 (3.18)

Y2 := Y22 − Y21 (3.19)

If the two line segments intersect each other, one can
equate Eqs. (3.14) and (3.17), and solve for λ1 and λ2,[

λ1
λ2

]
= 1

(X1Y2 − X2Y1)

×
[

Y2(X21 − X11) − X2(Y21 − Y11)
Y1(X21 − X11) − X1(Y21 − Y11)

]
(3.20)

If the two line segments intersect each other, the following
parametric visibility conditions have to be satisfied,

0 < λ1 < 1, and 0 < λ2 < 1 . (3.21)

These parametric visibility conditions are illustrated in
Fig. 4. If both parametric visibility conditions are met, then
the line segment between two arbitrary points inside C will
intersect the newly formed crack surfaces and hence one
should disconnect the connection between these two points.
This case is depicted by the dashed line between particles in
Fig. 4. In other words, either point should be removed from
the other point’s connectivity map, and it then ensures that
there is no non-physical cross-crack interpolation.

In the following, a few artificial examples are shown to
display the meshfree shape functions that are constructed at
the crack surface via the particle splitting algorithm, connec-
tivity modification, and parametric visibility condition.

Figure 5 a, b, show a meshfree shape function whose sup-
port has been reduced up to 3/4 by two orthogonally running
cracks. Figure 5 c, d, show a meshfree function that has been
cut by a crack into two parts and another meshfree shape
function right at the crack tip.

It should be mentioned that the shape function at the
crack tip generated using the visibility condition may have

Fig. 7 Dimensions of the tension test specimen
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a singular value at certain points close to the crack tip, see
Fig. 6. However, as shown by Krysl and Belytshko [16], as
the average particle spacing, h, approaches zero, such dis-
continuities will disappear and the erroneous energy due to
the artifical discontinuity will disappear as well.

4 Numerical examples

Instead of using the weak formulation (2.1), the actual
meshfree simulation is based on the following total Lagrang-
ian variational (weak) formulation,∫

�X

ρ0üiδui d�X +
∫

�X

PiJ δF T
iJ d�X

−
∫

�X

ρ0Biδui d�X −
∫

�T
X

T 0
i δui d� = 0 . (4.1)

where the T 0
i are the components of a prescribed traction

force on the traction boundary, �T
X, and P denote the nom-

inal stress tensor, which is the transpose of the first Piola-
Kirchhoff stress, and it can be related to the Kirchhoff stress
tensor by the expression, τ = PFT, ρ0 is the density in the
reference configuration, and B = Biei is the body force per
unit mass.

The general boundary conditions in the reference config-
uration are stated as

n · P = T0, ∀X ∈ �T
X (4.2)

u = ū, ∀ X ∈ �u
X (4.3)

It should be noted that the meshfree interpolant used is
not able to represent boundary data via boundary value inter-
polation. Therefore, an extra term appears in the weak form
(4.1)∫

�u
X

T · δu d�X (4.4)

because δu �= 0, ∀ X ∈ �u
X. For further details on how to

estimate this term and enforce the essential conditions, the
readers are referred to Li and Liu [18].

To test the meshfree algorithm, we have conducted the
following numerical experiment simulating ductile fracture
of a plate (see Fig. 7). We further assume that the specimen is
under a plane strain condition. As shown in Fig. 7, a rectan-
gular specimen has a center crack embedded in the middle of
the plate, which has initial length 5.0 mm. Velocity bound-
ary conditions are prescribed at both ends of the plate, so it
renders the plate under uniaxial tension loading.

The following material parameters are used in the
Johnson-Cook model:

E = 211 GPa

ρ = 7800 kg/m3

ν = 0.3

A = 455.0 × 106, B = 237.0 × 106,

C = 6.0 × 10−3, N = 0.370,

m = 1.00, Tmelt = 1500.0, Troom = T0 = 300.0, (4.5)

The fracture criteria that we used is a damage based cri-
terion. Initially, we set up a critical damage value as the frac-
ture threshold. In this example, that threshold is chosen as
damagecr = 0.80. At each time step, we evaluate the dam-
age value of each particle in the neighborhood of the crack
tip (the circle in Fig. 1). Once the damage value of a particle
exceeds damagecr , we declare the particle as the new crack
tip. If the damage value of two or more particles exceeds
damagecr at the same time step, this may signal crack bifur-
cation.

In the current simulation, we simply choose the particle
that has the largest damage value among all the other particles
whose damage value exceed damagecr as the new crack tip.
Once the linear equation of the line segment connecting the
old and the new crack tips is established, one can apply the
proposed parametric visibility condition to modify the con-
nectivity map and hence to construct the new traction-free
crack surface. The numerical results presented in Figs. 7, 8,
and 9 are obtained based on the material parameters listed in
Table 1. In the actual meshfree discretization, there are 5,164
particles used in interpolation, and 20, 000 quadrature points
used in numerical integration.

In Fig. 8, the normal stress component σ22 and the shear
stress component σ12 are displayed at various time instances
during the fast crack propagation process. One may find that
there are zero or low stress regions along the growing crack
surfaces, i.e., the blue colour regions. This indicates that the
crack surfaces are traction free surfaces, which indirectly ver-
ifies the fact that the crack surfaces constructed by the vis-
ibility condition and meshfree crack surface re-construction
process are successful. Moreover, it is interesting to note that
in Fig. 8 e, f, g and h, one can find that across the growing
crack surfaces the shear stress, σ12, changes its sign and its
distribution is anti-symmetric about the x2 axis. These facts
are shown by the fact that when x < 0 there is a blue region
(lower shear stress value) below the crack surface, and there

Table 1 Material parameters used in the computer simulations

Parameter Value Definition

ε̇0 1 × 104 s−1 Reference strain rate
m 70 Rate sensitivity parameter
σ0 200 MPa Yield stress
ε0 σ0/E
N 0.01 Strain hardening exponent
T0 293 K Reference temperature
κ 500 K Thermal softening parameter
E 200 GPa Young’s modulus
ν 0.3 Poisson’s ratio
ρ0 7830 kg m−3 Mass density
Cp 448 J (kg · K)−1 Specific heat
α 11.2 × 10−6 K−1 Coefficient of thermal expansion
χ 0.9 The fraction of plastic work

converted to heat
D1 0.005 Damage parameter
D2 30.500 Damage parameter
D3 −2.120 Damage parameter
D4 0.002 Damage parameter
D5 1.600 Damage parameter
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Fig. 8 Contours of normal stress σ22 (a), (b), (c), (d) and the contours of shear stress σ12 (e), (f), (g), and (h)
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Fig. 9 Effective strain contours: (a), (b), (c), (d) and damage contours: (e), (f), (g), (h)
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Fig. 10 Temperature contours (a), (b), (c), and (d)

is a red region (higher shear stress value) above the crack sur-
face; and when x > 0 there is a red region (high shear stress
value) below the crack surface, and there is a blue region (low
shear stress value) above the crack surface.

Temperature profiles are displayed in Fig. 10. One may
observe that the temperature profile is very similar to the
effective strain profiles. This is because the temperature rise
is driven by heat generation during plastic yielding and plastic
deformation. The plastic deformations are mainly confined
to regions that form a 45◦ angle from the initial crack orienta-
tion. On the other hand, heat induced thermal-softening leads
to strain localization. Therefore, high temperature regions are
also strain localization regions or shear-band regions. Adia-
batic shear-bands can be observed both in the temperature
profile as well as the effective strain rate profile, and as time
goes by, when the heat conduction effect activates, the width
of the shear band increases.

By carefully observing the temperature profiles, one may
find that the heat generated has caused a large temperature
rise. The initial room temperature is fixed at T0 = 300 K.
At the end of the simulation, the maximum temperature in

a specimen can increase to as high as 500 K, which is an
increase of two thirds of the initial room temperature.

Zooming in to the crack region, we can observe the crack
surface morphology. Figure 11 shows the normal stress
distribution, σ22, and effective strain distribution around a
crack region.

A careful observation of Fig. 11 reveals some important
features of ductile fracture. As noted earlier, there is a grow-
ing blue region that surrounds the the crack surface, which
indicates that there is a growing region with zero or very low
normal stress value around crack surfaces. This demonstrates
that the automatically adjusted meshfree surface interpola-
tion works, and the newly formed crack surface is indeed a
traction-free surface, or almost traction-free. This indirectly
proves that the crack growth algorithm implemented is work-
ing, and it is validated by the manifestation of correct phys-
ical responses around the propagating crack tip. Second, for
certain damage model parameters, the ductile crack surface
shows irregular features. The strain and stress contours shown
in Fig. 11 are obtained with the following damage parame-
ters:
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Fig. 11 Crack surface morphology (a) σ22 contour, (b) effective strain contour

D1 = 0.005, D2 = 3.00, D3 = −2.120, D4 = 0.002,

and D5 = 0.610 .

Note that the black circle dots in Fig. 11 represent the
particles on the crack surfaces, or the evolving crack surfaces
are constructed by those particles.

Rough crack surfaces are a trademark of ductile fracture
[28–30]. To the best of the authors’ knowledge, this unique
feature of ductile fracture has been difficult to capture in
numerical simulations. Third, visible necking due to strain
softening and material instability can be found Figs. 7, 8, 9
and 10.

5 Discussions

There are a few important technical issues worth discussing.
First, by accounting for thermo-mechanical effects, in partic-
ular, heat conduction, the Johnson-Cook model based con-
stitutive relations are well regularized, and are numerically
stable. By comparing to the previous simulations by the same
group of authors [24], which adopted the Gurson-Tvergarrd-
Needleman (GTN) damage model, the Johnson-Cook model
provides an intrinsic length scale, and it leads to finite shear
band width and stable numerical computations.

Second, by using a meshfree simulation alone, one can
not eliminate mesh sensitivity, in this case, the particle dis-
tribution dependency. To a certain extent, we believe that the
numerical result presented in this paper may alter to a certain
degree when different particle distributions are employed.
Nevertheless, we also believe that the main feature captured
in this study will remain, such as large crack opening and
rough crack surface morphology, which is due to the physics
of the problem. In fact, the initial particle distribution used
in the simulation is almost uniform throughout the domain.

Particles are placed in a square pattern and they are sym-
metrically located relative to the mesh generator’s numerical
precision, and there may be a small random error distribution
due to round-off in floating point arithmetic.
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