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On Scattering in a Piezoelectric
Medium by a Conducting Crack
The work is concerned with the characterization of a Kirchhoff diffraction field in a
piezoelectric material. An exact solution is obtained for the full scattering fields around
the tip of a semi-infinite crack, which is electrically conducting and is loaded with both
SH acoustic incident waves and in-plane electrical incident waves. First, it is found that
a conducting crack in a piezoelectric solid is not completely opaque to the electro-
acoustic wave, i.e., the electro-acoustic wave can penetrate and transmit to the other side
of the crack surface. Second, the analysis has confirmed that the interaction between
electrical wave and acoustic wave will provide multiple electrical and electro-acoustic
head waves. Third, by solving the problem, we have established a rigorous electro-
acoustic scattering theory in piezoelectric/ferroelectric media, which is different from the
scattering theory in purely elastic media. The characterization of the scattering fields in
piezoelectric media provides a unique signature database for electro-acoustic waves in
piezoelectric materials. �DOI: 10.1115/1.2047627�
1 Introduction
Wave scattering theory in piezoelectric/ferroelectric materials

has been an important research area for many years �e.g., �1��, and
it is the very foundation of sensor technology because piezo-
electric/ferroelectric ceramics and thin films are extensively used
in the design of various sensors, transducers, and actuators �e.g.,
�2–6� and many others�.

These devices are widely used in various micro-electro-
mechanical systems, which include acoustic devices, optical wave
devices and surface wave devices �SAW�, integrated circuits, and
random access memories. Nevertheless, traditional scattering
theory has been mainly focused on electric wave scattering with-
out considering electro-acoustic coupling effects. Recently, there
are interests in studies on scattering of electro-acoustic waves by
defects in piezoelectric/ferroelectric media, e.g., �7,8�.

In fact, electro-acoustic wave scattering phenomena in sensors
and thin films may be more important than purely electric wave
scattering, because it is not only pertinent to the performance of
the devices but also nondestructive evaluation of such devices
�e.g., �9��. Surprisingly, the scattering theory of electro-acoustic
waves in piezoelectric materials has rarely been studied, and it
remains an open research subject. A lesser-known reason attrib-
uted to the fact is that the initial boundary value problem of the
fully coupled Maxwell-Christoffel equations in piezoelectric ma-
terials are too complicated to solve, and the simplified wave equa-
tions under quasi-static approximation are not mathematically
well-posed �see �10,11��. This theoretical inadequacy has, at least
partly, attributed to the lack of understanding in electro-acoustic
wave scattering theory.

To regularize wave equations in piezoelectric media while still
retaining the simplicity of the quasi-static approximation, a few
regularization procedures have been proposed recently. We would
like to mention the contribution made by Li �12,13� and Daros
�14�. Recent developments intend to provide a theoretical ground
to establish a rigorous electro-acoustic wave scattering theory for
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piezoelectric materials. The first systematic effort of establishing
an electro-acoustic scattering wave theory in piezoelectric materi-
als has been performed in �15�. However, the solution obtained in
�15� is limited by a special assumption that the electric potential in
front of the crack tip is zero, which may not be valid in general
cases. Moreover, the scattering fields due to an electric source
have not been discussed �15�.

The objective of this work is to establish a rigorous theory for
electro-acoustic wave scattering in piezoelectric materials. In this
work, we revisit the electro-acoustic wave scattering theory of
piezoelectric materials. In specific, we shall seek to characterize
the scattering fields generated by a conducting anti-plane crack
�mode III� in a piezoelectric material, which is subjected to both
plane SH incident acoustic waves and plane electrical incident
waves. Using the standard terminology in wave mechanics, we are
seeking the solution for a benchmark problem of wave mechanics
in a piezoelectric medium, i.e., Kirchhoff diffraction in a piezo-
electric medium. It should be noted that although the analysis of
electro-acoustic scatterings by a mode III crack may be simpler
than that of in-plane crack, it does provide the essential charac-
ters for the in-plane crack scattering phenomena as well.

The motivation for doing so is twofold: �1� the Kirchhoff dif-
fraction is often used to describe a �scalar� wave scattering field
due to a monochromatic line or point source in the presence of an
“opaque” �e.g., electrically conducting� screen. Despite skepticism
that the model lacks “physical ground,” the solution of a Kirch-
hoff field in a piezoelectric medium is an exact solution to the
coupled wave equations, which exactly obeys definite, though un-
usual, boundary conditions [16,17], and hence it will become an
essential part of the theoretical foundation for other scattering
problems from screens that have general impedance properties;
�2� For many sensors and transducers, electric loading is applied
by using thin electrode layers attached on a surface or embedded
in an interface of a piezoelectric block or between ferroelectric
thin films. Thus, discontinuous electrode layers are widely used in
various layered devices in order to fulfill the designed purposes.
Recently, interfacial fracture between embedded electrode layers
and ceramic layers has been identified as a major failure mode in
sensors (e.g., by Suo [18,19] and Ru [20]). For more background
information, readers may consult works by Ru et al. �21,20�, Win-
zer et al. �22�, Furuta and Uchino �23� Aburatani et al. �24�,
Freiman and White �25�, Hao et al. �26�, and Uchino �6�.

It may be more practical to find a scattering field by a perme-
able or an impermeable crack �e.g., �27–29��. Nonetheless, it is

the opinion of the authors that a sensible and an appropriate de-
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parture point for establishing a rigorous electro-acoustic wave
scattering theory in piezoelectric media is to first study the Kirch-
hoff diffraction of electro-acoustic waves.

The presentation of the paper is organized in six sections: The
initial boundary value problem of the scattering problem is set in
Sec. 2. In Sec. 3, the main procedure solution is discussed; Sec. 4
provides a full characterization of the scattering fields in front of
the crack tip, and in Sec. 5, the features of the scattering fields are
discussed in details. At last, a few concluding remarks are made in
Sec. 6.

2 The Scattering Problem

2.1 Formulation. Consider a transversely isotropic piezoelec-
tric space that contains a semi-infinite slit, which lies at y=0 and
x�0 with respect to a Cartesian coordinate system �x ,y ,z� shown
in Fig. 1. It is assumed that the interface slit is mechanically stress
free and short circuited and has a vanishingly small thickness.

For the diffraction problem considered in this paper, the rel-
evant electromechanical coupling on the transverse plane is be-
tween anti-plane displacement and in-plane electric field,

u = „0,0,w�x,y,t�… �1�

E = �−
��

�x
,−

��

�y
,0� . �2�

Following �12�, we introduce a pseudo-electric wave potential
function

� = � −
e15

�11
Cfw �3�

where Cfªc�
2 / �c�

2−ca
2�, e15 is the piezoelectric stress constant, and

�11 is the specific dielectric constant. c�ª ��11�0�−1/2 is the speed

of light and caª
�c̄44/� is the acoustic speed, where c̄44ªc44

E

+e15
2 /�11, �0 is the magnetic permeability constant in vacuum, and

c44
E is the purely elastic shear modulus in the transverse direction.

Based on the “quasi-hyperbolic approximation” introduced by
Li �15�, we can then derive a set of decoupled wave equations,

� �2

�x2 +
�2

�y2 −
1

ca
2

�2

�t2�w = 0 �4�

� �2

�x2 +
�2

�y2 −
1

c�
2

�2

�t2�� = 0. �5�

Under the quasi-hyperbolic approximation, the relevant consti-

Fig. 1 Schematic illustration of a system of plane waves due
to an incident acoustic wave approaching a semi-infinite crack
tutive equations are
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�xz = c̃44
�w

�x
+ e15

��

�x
�6�

�yz = c̃44
�w

�y
+ e15

��

�y
�7�

Dx = e15�1 − Cf�
�w

�x
− �11

��

�x
. �8�

Dy = e15�1 − Cf�
�w

�y
− �11

��

�y
�9�

where c̃44ª c̄44�1− �1−Cf��e15
2 / c̄44�11��.

2.2 The Scattering Problem. For time t�0, an incident SH
acoustic plane wave or an incident pseudo-electric wave propa-
gates from afar toward the semi-infinite slit. The incident plane
waves are assumed to have the following form:

w�i��x,y,t� = w0
�i�G„t − sa�cos�	a�x − sin�	a�y�… �10�

��i��x,y,t� = �0
�i�G„t − s��cos�	��x − sin�	��y�… �11�

where the subscripts “a” and “�” correspond to the acoustic and
pseudo-electric waves. w0

�i� and �0
�i� are the respective plane wave

amplitudes and saª1/ca and s�ª1/c� are the respective slow-
nesses. 0
	a ,	�
� /2 are angles of incident waves. The shape
function G�·� is a real-valued function defined to be

G�t� ª H�t��
0

t

g���d� �12�

where g�·� is a given real value function, and H�t� is the Heaviside
function. For simplicity, it is assumed that both the incident acous-
tic and pseudo-electric waves have the same shape functions. In
the case that they are different, superposition can be used to obtain
the solution due to linearity of the problem.

Although the material properties in the upper and lower half
spaces are identical, it may be more convenient to treat them
separately for the time being. The field variables in the upper half
space �y
0� and in the lower half space �y0� are labeled by the
superscripts u and l, respectively. At time t=0, the incident plane
wave arrives at the crack tip and is being scattered. The total
solutions of the scattering problem are

w�x,y,t� = w�i��x,y,t� + w�s��x,y,t� , �13�

��x,y,t� = ��i��x,y,t� + ��s��x,y,t� . �14�

The superscript “�i�” indicates the incident field and “�s�” indi-
cates the scattering field.

For a conducting crack, the crack surface is traction-free and
electrically grounded,

�yz
u �x,0,t� = �yz

l �x,0,t� = 0, x � 0 �15�

�u�x,0,t� = �l�x,0,t� = 0, x � 0 �16�

and ahead of the crack tip both mechanical and electrical displace-
ments are continuous,

wu�x,0,t� = wl�x,0,t�, x � 0 �17�

Dy
u�x,0,t� = Dy

l �x,0,t�, x � 0. �18�
Consideration of Eqs. �13�–�18� leads to the following set of

boundary conditions for the scattered waves:

�yz
u�s��x,0,t� = �yz

l�s��x,0,t� = − �yz
�i��x,0,t�, x � 0 �19�

�u�s��x,0,t� = �l�s��x,0,t� = − ��i��x,0,t�, − x  0 �20�

u�s� l�s�
w �x,0,t� = w �x,0,t�, x � 0 �21�
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Dy
u�x,0,t� = Dy

l �x,0,t�, x � 0. �22�
For scattering fields, the following initial conditions and radia-

tion conditions are imposed as

w�s��x,y,t� = w�s�˙ �x,y,t� = 0, t � 0 �23�

��s��x,y,t� = ��s�˙ �x,y,t� = 0, t � 0 �24�

and

lim
r→�

�w�s�,��s�,w�s�˙ ,��s�˙ � = 0, t  0 �25�

Since the incident and total displacement fields and pseudo-
electric potential obey the wave equations �4� and �5�, by virtue of
�13� and �14�, the scattered displacement field w�s� and the scat-
tered pseudo-electric potential ��s� must also obey the same equa-
tions. For simplicity, the superscript “�s�” denoting the scattering
fields is dropped in the rest of the paper if no confusion may
occur.

3 Solution Procedures

3.1 Transform Methods. In this section, the standard proce-
dure of multiple Laplace transforms is employed to seek the so-
lution of the above mixed initial boundary value problem. The
multiple transforms are introduced for the variable pair �x , t�. To
suppress the time variable t, the usual, one-sided Laplace trans-
form is applied:

f*�x,y,p� =�
0

�

f�x,y,t�exp�− pt�dt , �26�

f�x,y,t� =
1

2�i�
Br1

f*�x,y,p�exp�pt�dp , �27�

where the inversion integration is taken over the usual Bromwich
path.

To suppress the spatial variable x, the two-sided Laplace trans-
form is used:

f̂*��,y,p� =�
−�

�

f*�x,y,p�exp�− p�x�dx �28�

f*�x,y,p� =
p

2�i�
Br2

f̂*��,y,p�exp�p�x�d� �29�

After transformation, the governing equations �4� and �5� for
the scattered waves become

� d2

dy2 − p2�2����ŵ*��,y,p� = 0 �30�

� d2

dy2 − p2�2��2���̂*��,y,p� = 0 �31�

where ����ª�sa
2−�2 and ����ª�s�

2−�2.
To satisfy the boundary conditions at infinity, we choose the

solution of the following form:

	ŵl���,y,p� =
1

p2Al���exp�− p�y�

�̂l���,y,p� =
1
2Bl���exp�− p�y� 
y  0, �32�
p
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	ŵu���,y,p� = −
1

p2Au���exp�p�y�

�̂u���,y,p� = −
1

p2Bu���exp�p�y� 
y � 0. �33�

In Eqs. �32� and �33�, Re(���� ,����)�0 in the plane with
branch cuts:

�: Im��� = 0, Re��� � − sa, and Re���  sa, �34�

�: Im��� = 0, Re��� � − s�, and Re���  s�. �35�

3.2 The Wiener-Hopf Decomposition. A powerful technique
to find the solution in transformed space is the Wiener-Hopf de-
composition. To apply the Wiener-Hopf technique, it is expedient
to expand the mechanical and electrical boundary conditions over
the full range of the x axis. This can be done by introducing two
unknown functions:

�−�x,t� ª ��yz
l �x,0,t� = �yz

u �x,0,t� x � 0,

0 x � 0,
� �36�

�−�x,t� ª ��l�x,0,t� = �u�x,0,t� x � 0,

0 x � 0,
� �37�

�w+�x,t� ª �0 x � 0,

wl�x,0,t� − wu�x,0,t� x � 0,
� �38�

�D+�x,t� ª �0 x � 0,

Dy
l �x,0,t� − Dy

u�x,0,t� x � 0.
� �39�

so that

�yz
l �x,0,t� = �yz

u �x,0,t� = �−�x,t� − �yz
�i��x,0,t�, − � � x � �

�40�

�l�x,0,t� = �u�x,0,t� = �−�x,t� − ��i��x,0,t�, − � � x � �

�41�

wl�x,0,t� − wu�x,0,t� = 0 + �w+�x,t�, − � � x � � �42�

Dy
l �x,0,t� − Dy

u�x,0,t� = 0 + �D+�x,t�, − � � x � � . �43�

After suppressing both x and t,

�̂yz
l���,0,p� = �̂yz

u���,0,p� =
�−���

p
− �̂yz

��i���,0,p� �44�

�̂l���,0,p� = �̂u���,0,p� =
�−���

p2 − �̂��i���,0,p� �45�

ŵl���,0,p� − ŵu���,0,p�
2

=
�U+���

p2 �46�

D̂y
l���,0,p� − D̂y

u���,0,p�
2

=
�D+���

p
�47�

where

�−��� ª p�
−�

0

�−
*�x,p�exp�− p�x�dx �48�

�−��� ª p2�
−�

0

�−
*�x,p�exp�− p�x�dx �49�

�U+��� ª p2��
�w+

*�x,p�
2

exp�− p�x�dx �50�

0
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˜

�D+��� ª p�
0

�
�D+

*�x,p�
2

exp�− p�x�dx �51�

On the other hand, employing the constitutive equations �6�–�9�
and substituting the general solutions and �32� and �33� into Eqs.
�48�–�51�, one may obtain the following sets of equations:

�̂yz
l� + �̂yz

u� ⇒ − ĉ44����Asy��� − e15����Bsy��� = �−��� − p�̂yz
��i�

�52�

�̂l� − �̂u� ⇒
e15

�11
CfAsy��� + Bsy��� = 0 �53�

ŵl� − ŵu� ⇒ Asy = �U+��� �54�

�̂l� + �̂u� ⇒
e15

�11
CfAan��� + Ban��� = �−��� − p2�̂��i� �55�

�̂yz
l� − �̂yz

u� ⇒ − c̃44����Aan��� − e15����Ban��� = 0 �56�

D̂y
l� − D̂y

u� ⇒ − e15�1 − Cf�����Aan��� + �11�Ban��� = �D+���
�57�

where Asy���= �Al���+Au���� /2, Aan���= �Al���−Au���� /2, Bsy���
= �Bl���+Bu���� /2, and Ban���= �Bl���−Bu���� /2. Now, from these
equations, it becomes obvious that two decoupled Wiener-Hopf
equations can be obtained:

− BG����U+��� = �−��� − p�̂yz
��i���,0,p� �58�

BG����D+���
���������e15

2 �1 − Cf� + �11c̃44�
= �−��� − p2�̂��i���,0,p� �59�

where

BG��� = c̃44„���� − k̃e
2����… �60�

is recognized as the Bleustein-Gulyaev wave function �30,31�, and

ke
2 is the electro-mechanical coupling coefficient:

k̃e
2
ª

e15
2

�11c̃44

Cf . �61�

The terms �̂yz
��i��� ,0 , p� and �̂��i��� ,0 , p� in Eqs. �58� and �59�

are dependent on the type of incident waves. Employing the inci-
dent acoustic wave field and pseudo-electric wave field in Eqs.
�10� and �11� and the constitutive equations for stress and electric
potential in �7� and �9�, one may obtain the stress and electric
potential for an incident wave:

�̂yz
��i���,0,p� = −

�0g*�p�
p�� + sh�

�62�

�̂��i���,0,p� = −
�0g*�p�

p2�� + sh�
�63�

where

�0 = − c̄44sa sin�	a�w0
�i� �64�

�0 = −
e15

�11
Cfw0

�i� �65�

sh = sa cos�	a� �66�

for an incident acoustic wave w�i�, whereas for an incident pseudo-
electric wave ��i�,

�0 = − e15s� sin�	���0
�i� �67�

�0 = − ��i� �68�
0
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sh = s� cos�	�� . �69�
For convenience, define the Bleustein-Gulyaev wave velocity

and slowness:

cbg ª ca
�C̃f�1 − ke

4� and sbg ª 1/cbg, �70�

where

C̃f ª
c�

2

c�
2 − k̃e

4ca
2

. �71�

The detailed solutions to the two Wiener-Hopf equations �58� and
�59� are presented in the Appendix, and the main results are

Asy��� = −
�0g*�p��sa + �R−�− sh�
�� + sh��sbg + ��DsT+���

, �72�

Bsy��� =
e15Cf�0g*�p��sa + �R−�− sh�
�11�� + sh��sbg + ��DsT+���

, �73�

Aan��� = −
�0g*�p��sa + ��s� + �S−�− sh�e15

�sa − ��sbg + ��T+���Ds

, �74�

Ban��� =
�0g*�p��sa + ��S−�− sh�c̃44

�s� − ��sbg + ��T+���Ds

, �75�

where R−��� and T+��� are sectionally analytic functions given in
the Appendix.

To this end, from Eqs. �72�–�75�, the coefficients of Al���, Bl���,
Au���, and Bu��� can be found:

Al��� = Asy��� + Aan���

= − ��0 +
e15

�s� + ��sa + sh
�s� + sh

�sa − �
�0�K��� , �76�

Bl��� = Bsy��� + Ban���

= � e15

�11
Cf�0 +

c̃44
�sa + ��sa + sh

�s� + sh

�s� − �
�0�K��� , �77�

Au��� = Asy��� − Aan���

= − ��0 −
e15

�s� + ��sa + sh
�s� + sh

�sa − �
�0�K��� , �78�

Bu��� = Bsy��� − Ban���

= � e15

�11
Cf�0 −

c̃44
�sa + ��sa + sh

�s� − sh

�s� − �
�0�K��� ,

�79�

where

K��� ª � g*�p��sbg − ���sa + shT−���

�� + sh��sa − ��sbg + sh�T−�− sh�BG���
� . �80�

Substituting Eqs. �76�–�79� into Eqs. �32� and �33� and per-
forming an inverse transform, one obtains the scattered displace-
ment and pseudo-electric wave fields:

w*�x,y,p� = −
1

2�ip�
��−i�

��+i� ���0

+ sgn�y�
e15

�s� + ��sa + sh
�s� + sh

�sa − �
�0� · K����
�exp�− p„����sgn�y�y − �x…�d� , �81�
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�*�x,y,p� =
1

2�ip�
��−i�

��+i� � e15

�11
Cf�0

+ sgn�y�
c̃44

�sa + ��sa + sh
�s� + sh

�s� − �
�0� · K����

�exp�− p„����sgn�y�y − �x…�d� . �82�

4 Scattering Fields

4.1 Cagniard-deHoop Inversion. Having carried out the
Wiener-Hopf decomposition, we are now in a position to invert
the integrals in Eqs. �81� and �82� to obtain explicit solutions in
the physical domain. The exact inversion can be achieved by the
Cagniard-de Hoop scheme �32,33�. First, the scattered displace-
ment and the pseudo-electric potential fields for an incident acous-
tic wave are considered so that sh=sa cos�	a� in the integrals. We
proceed by replacing the original Bromwich path by a deformed
Cagniard contour such that the one-sided Laplace transform can
be obtained by inspection. In the following, the inversion proce-
dure is presented only for y0; the inversion procedure for y
�0 is identical and is omitted.

Shown in Fig. 2, the following inversion paths are chosen: ��,
���, and ��, in which

����y − �x = t, � � ��,���

�83�
����y − �x = t, � � � .

Fig. 2 The Cagniard-deHoop inversion paths ��, ��, and ���

for acoustic excitation
�

·H�t − s

Journal of Applied Mechanics
Let x=r cos 	 and y=r sin 	. One then has

��± =
1

r
�− t cos 	 ± i sin 	�t2 − sa

2r2�, sar 
 t � � �84�

���± =
1

r
�− t cos 	 ± sin 	�sa

2r2 − t2� ± i�, t�0 
 t � sar

�85�

��± =
1

r
�− t cos 	 ± i sin 	�t2 − s�

2r2�, s�r 
 t 
 � �86�

where t�0=�sa
2−s�

2y+s�x.
It should be noted that at �=−sa cos 	, the path �� intercepts

the real axis Re���. Thus, a supplement path ��� is needed to

circumvent the branch cut of multivalued function ����=�s�
2−�2.

This leads to the occurrence of the electroacoustic head wave �see
discussions in �13� as well as �15��. Along path ���, the parameter
	 varies in the range

0 � 	 � 	cr
a� �87�

where 	cr
a�
ª �cos−1�s� /sa��.

Following de Hoop �33�, one may show that

���±

�t
=

±i����±�
�t2 − sa

2r2
; ����±� =

sin 	

r
t ± i

cos 	

r
�t2 − sa

2r2; �88�

����±

�t
=

������±�
�sa

2r2 − t2
; �����±� =

sin 	

r
t ±

cos 	

r
�sa

2r2 − t2;

�89�

���±

�t
=

±i����±�
�t2 − s�

2r2
; ����±� =

sin 	

r
t ± i

cos 	

r
�t2 − s�

2r2; �90�

and subsequently exact inversions are found:

w�s��x,y,t� =�
0

t

G�t − ��w�
�s��x,y,��d� + wr

�s��x,y,t�

�91�

��s��x,y,t� =�
0

t

G�t − ����
�s��x,y,��d� + �r

�s��x,y,t�

where the subscript “�” represents the scattering fields due to the
impulsive incident wave, and wr

�s�, �r
�s� are reflected/refracted dis-

placement and pseudo-electric fields.
w�
�s��x,y,t� = −

1

��R��0 + sgn�y�
e15

�s� + ��+
�sa + sh

�s� + sh

�sa − ��+

�0� · � �sbg − ��+��sa + shT−���+�

���+ + sh��sa − ��+�sbg + sh�T−�− sh�BG���+�
� ����+�

�t2 − sa
2r2�

· H�t − sar� − J��0 + sgn�y�
e15

�s� + ���+
�sa + sh

�s� + sh

�sa − ���+

�0� · � �sbg − ���+��sa + shT−����+�

����+ + sh��sa − ���+�sbg + sh�T−�− sh�BG����+�
�

�
�����+�

�t2 − sa
2r2� · �H�t − t�0� − H�t − sar��� , �92�

��
�s��x,y,t� =

1

�
� e15

�11
Cf�0 + sgn�y�

c̃44
�sa + ��+

�sa + sh
�s� + sh

�s� − ��+

�0�� �sbg − ��+��sa + shT−���+�

���+ + sh��sa − ��+�sbg + sh�T−�− sh�BG���+�
� ����+�

�t2 − s�
2r2�

�93�

�r� .
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4.2 Scattering Fields in Front of the Crack Tip. Scattering fields due to different incident waves in front of the crack tip are
discussed as follows:

4.2.1 Incident Acoustic Plane Wave. In diffraction theory, both the acoustic and the electromagnetic, the simple pole that represents
the incident source determines the geometrical reflection/refraction patterns. These geometrical scattering patterns induced by acoustic
excitation depend on the incident angle of the acoustic wave, because the position of simple pole relies on the angle of incident acoustic
wave. Figure 2 shows that there are two different positions of the simple pole, �=−sh=−sa cos�	a�, and the positions of −sh in the �
plane will directly affect the outcome of the reflection and refraction fields. There are basically two cases:

�1� sa cos�	a�s�

In this case, the pole always lies to the right of �� but to the left of �� and ���. This means that there are pole contributions to the
paths ��, but no contributions to the paths ��. After evaluating the residues of the poles for the corresponding integral in �81� and �82�,
we have

wr
�s��x,y,t� =	

R� sa sin�	a� + k̃e
2�s�

2 − �sa cos�	a��2

sa sin�	a� − k̃e
2�s�

2 − �sa cos�	a��2
�·wo

�i�G�t − sa�cos�	a�x + sin�	a�y��

− J� sa sin�	a� + k̃e
2�s�

2 − �sa cos�	a��2

sa sin�	a� − k̃e
2�s�

2 − �sa cos�	a��2
�·wo

�i�H�G„t − sa�cos�	a�x + sin�	a�y�…� , 0 
 	 � 	a;

0, 	a 
 	 � �;

0, � 
 	 � 2� − 	a;

− wo
�i�G�t − sa�cos�	a�x − sin�	a�y�� , 2� − 	a 
 	 � 2� ,


 �94�

�r
�s��x,y,t� = �0, 0 
 	 � �;

0, � 
 	 � 2�;
� �95�

where the Hilbert transform H�·� is defined as

H�f�t�� =
1

�
PV�

−�

�
f���
� − t

d� , �96�

where PV denotes the Cauchy principal value.
The complete scattering pattern is shown in Fig. 3. Note that the refracted acoustic wave �dashed line in the figure� completely

cancels the incident acoustic wave.
�2� s��sa cos�	a�
In this case, the pole lies to the right of all the paths, and, therefore, after evaluating the residues of the poles for all the corresponding

integrals, we have

wr
�s��x,y,t� =	�

sa sin�	a� + k̃e
2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

�·wo
�i�G„t − sa�cos�	a�x + sin�	a�y�… , 0 
 	 � 	a;

0, 	a 
 	 � �;

0, � 
 	 � 2� − 	a;

− w�i�G„t − sa�cos�	a�x − sin�	a�y�… , 2� − 	a 
 	 � 2� ,


 �97�

Fig. 3 The scattering patterns excited by an acoustic source: case „1…
o
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�r
�s��x,y,t� =	�

− 2e15Cfsa sin�	a�

�11�sa sin�	a� − k̃e
2s� sin�	���

�·wo
�i�G�t − �sa cos�	a�x + s� sin�	��y�� , 0 
 	 � 	�;

0, 	� 
 	 � �;

0, � 
 	 � 2� − 	�;

0, 2� − 	� 
 	 � 2� .

 �98�

The complete scattering pattern is shown in Fig. 4. Again, the refracted acoustic wave �dashed line in the figure� completely cancels
the incident acoustic wave.

In both cases, one can observe that a refracted acoustic wave is passing through the slit, which will not happen in purely elastic
media.

4.2.2 Incident Electric Plane Wave. As shown in Fig. 5, the simple pole �=−sh=−s� cos�	�� always lies to the right of all the
integration paths, and thus the residue of the pole due to the corresponding integral needs to be evaluated. Therefore, the reflection and
refraction fields due to an incident pseudo-electric source are

wr
�s��x,y,t� =	�

2e15s� sin�	��

c̃44„sa sin�	a� − k̃e
2s� sin�	��…

� ·�o
�i�G�t − �s� cos�	��x + sa sin�	a�y�� , 0 
 	 � 	a;

0, 	a 
 	 � �;

0, � 
 	 � 2� − 	a;

0, 2� − 	a 
 	 � 2� ,

 �99�

�r
�s��x,y,t� =	− � sa sin�	a� + k̃e

2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

� ·�o
�i�G�t − s��cos�	��x + sin�	��y�� , 0 
 	 � 	�;

0, 	� 
 	 � �;

0, � 
 	 � 2� − 	�;

− �o
�i�G�t − s��cos�	��x − sin�	��y�� , 2� − 	� 
 	 � 2� .


 �100�
The complete scattering pattern is shown in Fig. 6. Note that
the refracted electric wave �dashed line in the figure� completely
cancels the incident electric wave.

5 Discussions

5.1 Displacement Time History. With the analytical expres-
sions of the diffracted waves, the displacement time history at a
fixed point can be traced and calculated during the electroacoustic
scattering so that we may be able to compare them with the mea-
surements obtained in the nondestructive testing. Figures 7 and 8
show the displacement time histories at various 	 with fixed y in

Fig. 4 The scattering patterns excited by an acoustic source:

case „2…

Journal of Applied Mechanics
the upper half space due to an impulsive incident acoustic source
and an electric source, respectively, with Fig. 7 corresponding to
acoustic source case �1� in the previous section. Recall that 	 is
measured clockwise beginning from the x axis, so that with y
fixed, 	=−90 deg in both figures is closest to the crack tip while
	=−10 deg is the farthest. A distinctive feature of scattering by a
conducting crack is the ability of the head wave to tunnel through
the crack, a phenomenon which is not observed in the purely
elastic case in �34�. Note that in Figs. 7 and 8 the head wave
arrives at almost identical times at each 	 in both figures. Since
the speed of light is much larger than the acoustic wave speed, the
head wave wavefront is almost parallel to the crack. �Imagine the

Fig. 5 The Cagniard-deHoop inversion paths for pseudo-

electric excitation
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arc next to “V” in Figs. 3–6 is much larger. Then the electroa-
coustic head wave line connecting the arc would be more parallel
to the crack.�. This electromagnetic acoustic head wave has also
been observed in experiments, e.g., �35�. Another distinctive fea-
ture of the scattering field is the cancellation of the refracted
acoustic wave by the incident acoustic wave as seen in equations
�95� and �98� and, thus, no diffracted acoustic wave or incident
acoustic wave exists in the displacement time histories for �	�
� �	a�. Also, the scattered acoustic wave originating from the
crack tip can be observed in both time histories as decreasing in
magnitude as the observation point is moving farther away from
the crack tip.

5.2 Mode Conversion and Reflection/Refraction Coeffici-
ents. As shown above, in a piezoelectric medium an acoustic in-
cident wave can trigger both acoustic and electric scattering fields,
and vice versa an electric incident wave can generate both acous-

Fig. 6 The scattering patterns excited by an electric source

Fig. 8 Displacement time histories at
sive electric source incident at ��=45°

and s=scattered wave.

950 / Vol. 72, NOVEMBER 2005
tic and electric scattering fields as well. It would be interesting to
examine the possible mode conversion between these geometrical
reflection/refraction waves. To do so, similar convention used by
Aki and Richards �36� for purely elastic wave reflection conver-
sion is adopted here. The ratios of all possible mode conversions
are defined and calculated as follows,

ÁÁ ª

wr
�s�

w�i� = − 1, � 
 	 � 2� �101�

ÁÉ ª

�r
�s�

w�i� = 0, � 
 	 � 2� �102�

ÉÁ ª

wr
�s�

��i� = 0, � 
 	 � 2� �103�

Fig. 7 Displacement-time histories at various � with fixed y
due to an impulsive acoustic source incident at �a=45°. Labels:
i=incident wave, h=head wave, and s=scattered wave.

rious � with fixed y due to an impul-
bels: i=incident wave, h=head wave,
va
. La
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ÉÉ ª

�r
�s�

��i� = − 1, � 
 	 � 2� �104�

ÁÀ ª

�r
�s�

w�i� =
sa sin�	a� + k̃e

2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

, 0 
 	 � � �105�

ÁÈ ª

�r
�s�

w�i� =
− 2e15Cfsa sin�	a�

�11„sa sin�	a� − k̃e
2s� sin�	��…

, 0 
 	 � �

�106�

ÉÀ ª

wr
�s�

��i� =
2e15s� sin�	��

c̃44�sa sin�	a� − k̃e
2s� sin�	���

, 0 
 	 � �

�107�

ÉÈ ª

�r
�s�

��i� = −
sa sin�	a� + k̃e

2s� sin�	��

sa sin�	a� − k̃e
2s� sin�	��

, 0 
 	 � � �108�

5.3 Dynamic Intensity Factors. At the tip of the screen or
the crack, scattering fields will become singular, which is of great
importance for material strength. In what follows, the intensity
factors of the singular fields generated by the antisymmetry solu-
tions are calculated. Define

K��t� ª lim
x→0−

�2��x��yz
�s��x,0,t� , �109�

KD�t� ª lim
x→0−

�2��x�Dy
�s��x,0,t� , �110�

KE�t� ª lim
x→0−

�2��x�Ey
�s��x,0,t� . �111�

Considering the asymptotic relations �37�,

lim
x→0−

���x��1/2�yz
* �x,0,p� = lim

�→−�
�p��1/2�−��,p�

p
�112�

lim
x→0−

���x��1/2Dy
*�x,0,p� = lim

�→−�
�p��1/2D̂y

*��,p� �113�

lim
x→0−

���x��1/2Ey
*�x,0,p� = lim

�→−�
�p��1/2Êy

*��,p� , �114�

one can derive that

K�
*�p� = �2

�0
�sa + sh

T−�− sh��sbg + sh��− g*�p�
�p

� �115�

After performing inverse Laplace transform, one may obtain

K��t� = −
�0

�sa + sh

T−�− sh��sbg + sh�
��t� �116�

where

��t� ª� 2

�
�

+0

t
1
��

g�t − ��d� �117�

Similarly, based on the definition

D̂y
*��,p� = �− e15�1 − Cf�����A��� + �11����B����/p , �118�

Êy
*��,p� = �����A��� +

e15

�11
Cf����B����/p , �119�
one can then show that
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KD�t� = − �e15�0��t� + �e15
2 �1 − Cf�

+ c̃44�11��sa + sh
�s� + sh�0H���t���

·
�sa + sh

c̃44�1 − k̃e
2�T−�− sh��sbg + sh�

, �120�

KE�t� = − �1 +
e15

2

�11
2 Cf

2��0��t� + �e15 +
e15

�11
Cfc̃44�

��sa + sh
�s� + sh�0H���t���

·
�sa + sh

c̃44�1 − k̃c
2�T−�− sh��sbg + sh�

. �121�

Define the following stress, electric displacement, and electric
field phase functions in the Laplace transform domain as

G��sh� ª
K�

*�p�
�*�p�

= −
�0

�sa + sh

T−�− sh��sbg + sh�
�122�

GD�sh� ª
KD

* �p�
�*�p�

= − �e15�0 + i sgn�p��e15
2 �1 − Cf� + c̃44�11�

· �sa + sh
�s� + sh�0�

�sa + sh

c̃44�1 − k̃e
2�T−�− sh��sbg + sh�

�123�

GE�sh� ª
KE

*�p�
�*�p�

= − �1 +
e15

2

�11
2 Cf

2��0 + i sgn�p��e15 +
e15

�11
Cfc̃44�

· �sa + sh
�s� + sh�0� �sa + sh

c̃44�1 − k̃e
2�T−�− sh��sbg + sh�

�124�

Apparently, the electric displacement and electric field are func-
tions of the frequency of the incident shape function.

Figures 9–11 display the phase functions G�, GD, and GE,
which are normalized by the incident acoustic wave amplitude w0
or the incident electric wave amplitude �0 at its respective inci-
dent angle for a broad range of electromechanical coupling coef-

ficients �k̃e�. In general, the amplitude of the normalized phase
function increases with increasing electromechanical coupling co-
efficient. Examining the normalized stress phase functions G� in
Figs. 9�a� and 9�b�, the amplitude increases with the increase of
incident angle, because more work is done on the crack tip by
incident waves at large angles. Also, the amplitude of the normal-
ized stress phase function due to an incident acoustic source is
much larger than that due to an electric source. The amplitude of
the electric displacement and electric field phase functions GD and
GE due to an incident acoustic wave and an incident electric wave
are plotted in Figs. 10 and 11, respectively. In general, the ampli-
tudes of both functions decrease with the increase of incident
angles. There are two competing effects here: as incident angle
increases, the incident wave is more focused on opening the
crack; on the other hand, when the horizontal slowness of the
wave decreases, the wave has less time to do work on the crack.
The former effect is much more significant in mechanical stress
analysis, but the latter effect is more pronounced for the electric
displacement and electric field. The most striking fact is that the
amplitudes for both phase functions are significantly larger for an
incident acoustic source than for that of an electric source, and
thus the large electromechanical coupling plays an important role
in the increase of electric displacement and electric field intensi-

ties.
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ers
6 Conclusions
In this work, a complete solution of a Kirchhoff diffraction

problem in a piezoelectric medium is obtained. It is not possible to
obtain such solution by employing the quasi-static approximation
that has been used traditionally in the design of ferroelectric sen-
sors. Under the quasi-static approximation, the initial boundary
value problem becomes ill-posed, because the corresponding
wave equations are not hyperbolic anymore.

As shown in �15�, the characteristics of the scattering patterns
in piezoelectric media have major differences from that in elastic
media. For instance, considering the scattering field generated by
an SH acoustic incident wave, there is no “shadow zone” behind
the half-plane slit in a piezoelectric media, which is in contrast
with the similar case in a purely elastic media �38�. In other
words, the crack is somewhat “transparent” to incident waves.
This is because in a piezoelectric medium the incident acoustic/
electric wave interacts with the crack to produce the electro-
acoustic head wave that can penetrate the crack surface as shown
in Figs. 3, 4, and 6.

Fig. 9 Amplitude of the normalized stress phase function for
incident angle for an incident acoustic source G� /w0 and „b… v

Fig. 10 Amplitude of the normalized electric displacement ph
˜

„ke… „a… versus an incident acoustic source GD /w0 and „b… versus

952 / Vol. 72, NOVEMBER 2005
Another interesting feature of the scattering fields is that the
different head waves exist in many different scenarios, which is a
much richer physical phenomenon than the scattering field in a
purely elastic medium.

Moreover, it may be observed that the critical angle 	cr
a� dictates

the reflection pattern. For example, when the incident acoustic
angle is smaller than the critical angle, there will be no reflected
electric wave as shown in Fig. 3.

To the best of the authors’ knowledge, up to this date, there is
no systematic experimental study on the Kirchhoff diffraction in
piezoelectric/ferroelectric materials. We have not found any ex-
perimental data of the Kirchhoff diffraction in piezoelectric mate-
rials in open literature. Nevertheless, some of the scattered wave
modes and head wave modes predicted in this paper are in good
agreement with the experimental data obtained from an experi-
ment of the transient surface excitation of a piezoelectric material
�see �35,39��, which cannot be predicted by the commonly used
quasi-static approximation theory at all.

rious electro-mechanical coupling coefficients „k̃e… „a… versus
us incident angle for an incident electric source G� /�0

function for various electro-mechanical coupling coefficients
va
ase

an incident electric source GD /�0
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Appendix: Solution of the Wiener-Hopf Equations
The key to solving the two Wiener-Hopf equations �58� and

�59� is how to factorize the Bleustein-Gulyaev function BG���
into sectionally analytic functions in the left and right half
complex-� planes, respectively. This has been done by Li and
Mataga �40� and by Li �13�,

BG��� =
�sbg + ���sbg − ��
��sa + ���sa − ��

T+���T−���Ds �A1�

where

Ds ª c̄44�1 − k̃e
2� , �A2�

and

T±��� ª exp−
1

�
�

s�

sa

arctan�− k̃e
2�̄���

����
� d�

� ± �� , �A3�

where �̄���ª��2−s�
2.

We first proceed to solve the stress-displacement Wiener-Hopf
equation �44�. Substituting Eq. �A1� into the Wiener-Hopf equa-
tion �58� yields

− Ds

sbg + �

�sa + �
�U+���T+��� = �−���R−��� +

�0g*�p�R−���
� + sh

�A4�
where

R−��� ª
�sa − �

�sbg − ��T−���
�A5�

In order to separate the second term on the right side of Eq.
�A4� into two sectionally analytic functions, additive factorization

Fig. 11 Amplitude of the normalized electric field phase func
versus an incident acoustic source GE /w0 and „b… versus an in
is performed. By inspection, a possible additive decomposition is
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R−���
� + sh

= �R−��� − R−�− sh�
� + sh

�
−

+ �R−�− sh�
� + sh

�
+

, �A6�

where the constant R−�−sh� is evaluated as

R−�− sh� =
�sa + sh

�sbg + sh�T−�− sh�
. �A7�

The Wiener-Hopf equation can then be rearranged into the de-
sired form

− Ds

sbg + �

�sa + �
�U+���T+��� −

�0g*�p�R−�− sh�
� + sh

= �−���R−��� +
�0g*�p��R−��� − R−�− sh��

� + sh
. �A8�

Equating both left- and right-hand sides of �A8� to an entire
function, say ET���,

ET��� = �−���R−��� +
�0g*�p��R−��� − R−�− sh��

� + sh
�A9�

− ET��� = Ds

sbg + �

�sa + �
�U+���T+��� +

�0g*�p�R−�− sh�
� + sh

.

�A10�

By the Abel theorem �41� and the extended Liouville’s theorem
�42�, the entire function ET��� must be identically zero. Hence,

�−��� =
�0g*�p�
� + sh

�R−�− sh�
R−���

− 1� �A11�

�U+��� = −
�0g*�p��sa + �R−�− sh�
�� + sh��sbg + ��DsT+���

. �A12�

By substituting �A12� into Eqs. �53� and �54�, one can obtain
both Asy��� and Bsy���,

Asy��� = −
�0g*�p��sa + �R−�− sh�
�� + sh��sbg + ��DsT+���

, �A13�

Bsy��� =
e15Cf�0g*�p��sa + �R−�− sh�

. �A14�

for various electro-mechanical coupling coefficients „k̃e… „a…
ent electric source GE /�0
tion
�11�� + sh��sbg + ��DsT+���
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The procedure of solving the electric potential-displacement
Wiener-Hopf equation �59� is almost identical. Substituting Eq.
�A1� into �59� yields

Ds�sbg + ��
e15

2 �1 − Cf� + �11c̃44

�D+���T+���

�sa + ���s� + �
= �−���S−��� +

�0g*�p�S−���
� + sh

�A15�
where

S−��� ª
�sa + ���s� + �

�sbg + ��T−���
�A16�

By using the additive decomposition mentioned above, the
Wiener-Hopf equation can then be rearranged into the desired
form

Ds�sbg + ��
e15

2 �1 − Cf� + �11c̃44

�D+���T+���

�sa + ���s� + �
−

�0g*�p�S−�− sh�
� + sh

= �−���S−��� +
�0g*�p��S−��� − S−�− sh��

� + sh
�A17�

where the constant S−�−sh� is evaluated as

S−�− sh� =
�sa + sh��s� + sh

�sbg + sh�T−�− sh�
. �A18�

Equating both the left- and right-hand sides of �A17� to an
entire function, say ET���,

ET��� = �−���S−��� +
�0g*�p��S−��� − S−�− sh��

� + sh
�A19�

ET��� =
Ds�sbg + ���D+���T+���

�e15
2 �1 − Cf� + �11c̃44��sa + ���s� + �

−
�0g*�p�S−�− sh�

� + sh
.

�A20�
Application of the Abel theorem �41� and the extended Liouville’s
theorem �42� reveals that the entire function ET��� must be iden-
tically zero. Hence,

�−��� =
�0g*�p�
� + sh

�S−�− sh�
S−���

− 1� �A21�

�D+��� = −
�0g*�p��sa + ���s� + �S−�− sh��e15

2 �1 − Cf� + �11c̃44�
�� + sh��sbg + ��T+���Ds

�A22�

The antisymmetry solution, Aan��� and Ban���, can then be ob-
tained by substituting �A22� into Eqs. �56� and �57�,

Aan��� = −
�0g*�p��sa + ��s� + �S−�− sh�e15

�sa − ��sbg + ��T+���Ds

, �A23�

Ban��� =
�0g*�p��sa + ��S−�− sh�c̃44

�s� − ��sbg + ��T+���Ds

. �A24�
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