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Summary

This work is concerned with the diffraction and scattering of plane electro-acoustic waves by an
interfacial crack between two dissimilar piezoelectric half-spaces. An exact solution is obtained
for the full scattering field around the tip of the interfacial crack that is loaded with both
acoustic SH and electric incident waves. First, it has been found that the interfacial crack is
not completely opaque to the electro-acoustic wave: the electro-acoustic wave can penetrate
and transmit to the other side of the interfacial slit. Secondly, the analysis has confirmed
that the interaction between electric waves and acoustic waves will provide multiple electro-
acoustic head waves. Thirdly, the effects of the electro-acoustic surface wave on the scattering
field have been examined. The scattering patterns obtained are fundamentally different from
the prediction of the scattering theory for purely elastic media. They provide unique electro-
acoustic signatures for layered piezoelectric materials.

1. Introduction

The electro-acoustic wave diffraction problem in piezoelectric and ferroelectric materials has some
important applications in electronic material science, sensor technology, inverse methods, and non-
destructive inspection. There has been some exploratory research on the subject, mainly from
the perspective of the maintenance of smart structures (1,2). Establishing a scattering theory for
interfacial defects of dissimilar piezoelectric materials will provide a solid theoretical foundation
for defect inspection and probing at various length scales for structural reliability analysis.

The physics theory of electro-acoustic wave scattering in piezoelectric materials is still an open
subject. This is because the fully coupled Christoffel–Maxwell equations of piezoelectric media
are analytically intractable, and the simplified wave equations under the quasi-static approximation
are not mathematically well-posed. In an attempt to regularize wave equations for piezoelectric
media while still retaining the simplicity of the quasi-static approximation, a few regularization
procedures have been proposed (3to 6). These developments provide a foundation on which to
establish a much needed electro-acoustic wave scattering theory for piezoelectric materials. The
first systematic effort at establishing such a theory was carried out by Li (4). Here, we extend the
electro-acoustic wave scattering theory to a medium which contains dissimilar piezoelectric phases.

We study both electric and electro-acoustic wave scattering by an interfacial crack between two
dissimilar piezoelectric half-spaces subjected to both incident plane SH acoustic waves and incident
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Fig. 1 Schematic illustration of a system of plane waves due to an incident acoustic wave approaching a
semi-infinite crack

plane electrical waves. Conducting interfacial cracks often exist along the electrodes in multilayer
piezoelectric sensors and are critical to the reliability of these devices (7to 9). We are interested in
the characterization of the field scattered by an interfacial crack. It may provide vital information
for non-destructive inspection of these piezoelectric devices.

2. The scattering problem

2.1 Formulation

Consider two transversely isotropic dissimilar piezoelectric half-spaces in a Cartesian coordinate
system(x, y, z), which are poled in thez-direction and share an interface located at the planey = 0
(Fig. 1). Forx < 0, the half spaces are bonded together mechanically, while no bond exists for
x � 0. It is assumed that the interface slit is conductive, grounded, and has a vanishingly small
thickness.

The material properties and the field variables in the upper half-space (y � 0) are labelled with a
prime (′) while those in the lower half-space (y > 0) are unprimed. For the scattering problem, the
relevant electromechanical coupling on the transverse plane between anti-plane displacement and
in-plane electric field are

u = (
0,0, w(x, y, t)

)
, E =

(
−∂φ

∂x
, −∂φ

∂y
, 0

)
. (2.1)

Introduce a pseudo-electric potential function

ψ = φ − (e15/ε11)C f w, (2.2)

whereC f = c2
�/(c

2
� − c2

a), c� = (ε11µ0)
−1/2, ca = √

c̄44/ρ andc̄44 = cE
44 + e15

2/ε11.
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Following Li (10), we then have a system of decoupled wave equations,(
∂2

∂x2
+ ∂2

∂y2
− 1

c2
a

∂2

∂t2

)
w = 0,

(
∂2

∂x2
+ ∂2

∂y2
− 1

c2
�

∂2

∂t2

)
ψ = 0. (2.3)

Under the quasi-hyperbolic approximation, the relevant constitutive equations are

σxz = c̃44
∂w

∂x
+ e15

∂ψ

∂x
, σyz = c̃44

∂w

∂y
+ e15

∂ψ

∂y
, (2.4)

Dx = e15(1 − C f )
∂w

∂x
− ε11

∂ψ

∂x1
, Dy = e15(1 − C f )

∂w

∂y
− ε11

∂ψ

∂x2
, (2.5)

wherec̃44 = c̄44[1 − (1 − C f )(e15
2/c̄44ε11)].

The ‘quasi-hyperbolic’ assumption has been applied to solve anti-plane transient wave
propagation and scattering problems by Li (3,4); these are difficult to solve by Voigt’s ‘quasi-static’
approximation. The quasi-static approximation assumes the speed of light to be infinite and leads
to the loss of hyperbolicity of the pseudo-electric potential wave equation. The quasi-hyperbolic
assumption was developed to maintain the hyperbolicity of the wave equations while simplifying the
solutions: it discards the rotational electric field of the constitutive equations, but retains the finite
speed of light. Recently, a similar approach called the ‘electrically irrotational’ approximation has
been proposed: it neglects the rotational field but retains the hyperbolicity of the electro-mechanical
waveequations (5).

A set of equations analogous to (2.1) to (2.5) holds in the upper half-space. To facilitate the
presentation, we assume that the light and acoustic wave speeds are in the following order:c� >

c′
� > ca > c′

a. Note that if the wave speeds are in a different order, the result may be different, but
the qualitative characteristics and the procedure taken to arrive at the solution are the same.

2.2 The scattering problem

For time t < 0, an incident SH acoustic plane wave or an incident pseudo-electric wave impinges
on the bonded interface and creates a system of reflected and transmitted plane waves. The incident
plane waves are of the following general form:

w(i )(x, y, t) = w
(i )
0 G

(
t − sa[x cosθa − y sinθa]

)
,

ψ(i )(x, y, t) = ψ
(i )
0 G

(
t − s�[x cosθ� − y sinθ�]

)
,

where the subscripts ‘a’ and ‘�’ correspond to the acoustic and pseudo-electric waves,w
(i )
0 and

ψ
(i )
0 are the respective plane wave amplitudes andsa = 1/ca ands� = 1/c� are the respective

slownesses. The angles of the incident waves are in the range 0� θa, θ� � π/2. The shape
functionG(·) is a real-valued function defined to be

G(t) = H(t)
∫ t

0
g(τ ) dτ,

whereg(·) is a given real-valued function andH(t) is the Heaviside function. For simplicity, we
have assumed that the incident acoustic and pseudo-electric waves have identical shape functions.

 by guest on A
ugust 11, 2015

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 

http://qjmam.oxfordjournals.org/


312 A. C. TO et al.

In the case that they are different, superposition can be used to obtain the solution due to the linearity
of the problem.

The incident acoustic wave impinges on the bonded interface and gives rise to the following
system of reflected and transmitted plane waves:

w(r )(x, y, t) = w
(i )
0

(
Re{RaaG

(
t − sa[x cosθa + y sinθa]

)}
−H

{
Im{RaaG

(
t − sa[x cosθa + y sinθa]

)}})
, (2.6)

w′(t)(x, y, t) = w
(i )
0

(
Re{TaaG

(
t − s′

a[x cosθ ′
a + y sinθ ′

a]
)}

−H
{
Im{TaaG

(
t − s′

a[x cosθ ′
a + y sinθ ′

a]
)}})

, (2.7)

ψ(r )(x, y, t) = w
(i )
0

(
Re{Ra�G

(
t − s�[x cosθ� + y sinθ�]

)}
−H

{
Im{Ra�G

(
t − s�[x cosθ� + y sinθ�]

)}})
, (2.8)

ψ ′(t)(x, y, t) = w
(i )
0

(
Re{Ta�G

(
t − s′

�[x cosθ ′
� + y sinθ ′

�]
)}

−H
{
Im{Ta�G

(
t − s′

�[x cosθ ′
� + y sinθ ′

�]
)}})

. (2.9)

HereH{·} is defined as the Hilbert transform,

H{ f (t)} = 1

π
PV

∫ ∞

−∞
f (τ )

τ − t
dτ,

where the Cauchy principal value of the integral is taken.
On the other hand, the incident electric wave gives rise to the following system of reflected and

transmitted plane waves:

w(r )(x, y, t) = ψ
(i )
0 R�aG

(
t − sa[x cosθa + y sinθa]

)
, (2.10)

w′(t)(x, y, t) = ψ
(i )
0 T�aG

(
t − s′

a[x cosθ ′
a + y sinθ ′

a]
)
, (2.11)

ψ(r )(x, y, t) = ψ
(i )
0 R��G

(
t − s�[x cosθ� + y sinθ�]

)
, (2.12)

ψ ′(t)(x, y, t) = ψ
(i )
0 T��G

(
t − s′

�[x cosθ ′
� + y sinθ ′

�]
)
, (2.13)

where theRs andTs in (2.6) to (2.13) are the reflection and transmission coefficients with the first
subscript denoting the type of incident wave and the second subscript denoting the type of reflected
or transmitted wave. They are given in the Appendix.

Based on Snell’s law, all the plane waves have identical horizontal slowness,sa cosθa =
s′
a cosθ ′

a = s� cosθ� = s′
� cosθ ′

�, from which the reflection and transmission angles are determined
for the corresponding plane waves. For a transmitted or a reflected pseudo-electric wave generated
from an incident acoustic wave, whensa cosθa > s�, cosθ� becomes greater than unity, the

term sinθ� becomes imaginary and it may be denoted as±i
√

s2
a cos2 θa − s2

� . In this case, the
corresponding reflection coefficient (Ra�) becomes complex, and the reflected wave undergoes a
phase shift and propagates along the bonded interface. The Hilbert transformed part of the reflected
pseudo-electric wave in (2.8) describes the inhomogeneous part of the wave (11, pp. 149–157). The
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Hilbert transform part vanishes when cosθ� � 1, and the resulting reflected wave is homogeneous,
and thus has the same shape function as the incident acoustic wave. Likewise, whensa cosθa > s′

�,
sinθ ′

� becomes imaginary and the transmission coefficient (Ta�) becomes complex. The transmitted
pseudo-electric wave becomes inhomogeneous and propagates along the bonded interface. On the
other hand, for transmitted or reflected pesudo-electric waves generated from an incident pseudo-
electric wave, they are homogeneous since it is always true thats� cosθ� < s′

� < sa < s′
a because

we have assumed the pseudo-electric wave velocityc� the largest. As will be seen, the incident
angle has an important effect on both the scattering patterns and the dynamic intensity factors.

At time t = 0, a system of plane waves propagating along the bonded interface arrives at the
crack tip and is scattered. The total solution of the scattering problem consists of

w = w(i ) + w(r ) + w(s)

ψ = ψ(i ) + ψ(r ) + ψ(s)

}
for y > 0 and

w′ = w′(t) + w′(s)
ψ ′ = ψ ′(t) + ψ ′(s)

}
for y < 0.

The superscripts(i ), (r ) and(s) indicate the incident, reflected and scattered fields, respectively.
For scattered fields, the following initial conditions and radiation conditions are imposed:

w(s)(x, y, t) = w′(s)(x, y, t) = ẇ(s)(x, y, t) = ẇ′(s)(x, y, t) = 0, t < 0,

ψ(s)(x, y, t) = ψ ′(s)(x, y, t) = ψ̇(s)(x, y, t) = ψ̇ ′(s)(x, y, t) = 0, t < 0,

where the overdot denotes∂/∂t , and

lim
r →∞

[
w(s), w′(s), ψ(s), ψ ′(s), ẇ(s), ẇ′(s), ψ̇(s), ψ̇ ′(s)] = 0, t > 0.

The mechanical and electrical boundary conditions areσyz(x, 0, t) = σ ′
yz(x, 0, t) = 0 for x �

0, w(x, 0, t) = w′(x, 0, t) for x < 0, andφ(x, 0, t) = φ′(x, 0, t) = 0 for −∞ < x < ∞.
Consideration of these leads to the following boundary conditions for the scattered waves:

σ (s)
yz (x, 0, t) = σ ′(s)

yz (x, 0, t) = −σ ′(t)
yz (x, 0, t), x � 0, (2.14)

w(s)(x, 0, t) = w′(s)(x, 0, t), x < 0, (2.15)

φ(s)(x, 0, t) = φ′(s)(x, 0, t) = 0, −∞ < x < ∞. (2.16)

In the rest of the paper, the supersript(s) is dropped for brevity.

3. Integral equation solutions

3.1 Transform methods

In this section, the standard procedure of multiple Laplace transforms is employed to find the
solution of the above mixed initial boundary value problem (IBVP). The multiple transforms are
introduced for the variable pair(x, t). To suppress the time variablet , the usual one-sided Laplace
transform is applied,

f ∗(x, y, p) =
∫ ∞

0
f (x, y, t) e−pt dt, f (x, y, t) = 1

2πi

∫
Br1

f ∗(x, y, p) ept dp,

where the inversion integration is taken over the usual Bromwich path.
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To suppress the spatial variablex, the two-sided Laplace transform is used:

f̂ ∗(ζ, y, p) =
∫ ∞

−∞
f ∗(x, y, p) e−pζ x dx, f ∗(x, y, p) = p

2πi

∫
Br2

f̂ ∗(ζ, y, p) epζ x dζ .

After transformation, the governing equations (2.3) for the scattered waves become[
d2

dy2
− p2α2(ζ )

]
ŵ∗(ζ, y, p) = 0,

[
d2

dy2
− p2β2(ζ 2)

]
ψ̂∗(ζ, y, p) = 0, y > 0,

[
d2

dy2
− p2α′2(ζ )

]
ŵ′∗(ζ, y, p) = 0,

[
d2

dy2
− p2β ′2(ζ )

]
ψ̂ ′∗(ζ, y, p) = 0, y < 0,

whereα(ζ ) = √
s2
a − ζ 2, β(ζ ) =

√
s2
� − ζ 2, α′(ζ ) = √

s′2
a − ζ 2 andβ ′(ζ ) =

√
s′2
� − ζ 2.

To satisfy the boundary conditions at infinity, we choose the solution as follows:

ŵ∗(ζ, y, p) = p−2A(ζ ) e−pαy, ψ̂∗(ζ, y, p) = p−2B(ζ ) e−pβy, y > 0, (3.1)

ŵ′∗(ζ, y, p) = −p−2A′(ζ ) epα′y, ψ̂ ′∗(ζ, y, p) = −p−2B′(ζ ) epβ ′y, y < 0· (3.2)

The transformed electrical boundary condition (2.16) is

φ̂∗(ζ, 0, p) = (e15/ε11)C f ŵ
∗(ζ, 0, p) + ψ̂∗(ζ, 0, p) = 0, (3.3)

φ̂′∗(ζ, 0, p) = (e′
15/ε

′
11)C

′
f ŵ

′∗(ζ, 0, p) + ψ̂ ′∗(ζ, 0, p) = 0. (3.4)

Substituting the solutions (3.1) and (3.2) into (3.3) and (3.4), one finds that

B(ζ ) = −(e15/ε11)C f A(ζ ) and B′(ζ ) = −(e′
15/ε

′
11)C

′
f A′(ζ ). (3.5)

Therefore, the displacement and the pseudo-electric potential can be expressed in terms of two
unknown functions,A(ζ ) andA′(ζ ).

3.2 The Wiener–Hopf decomposition

A powerful technique to find the solution of the above IBVP in transformed space is the Wiener–
Hopf decomposition. In order to apply this technique, it is expedient to first expand the mechanical
boundary conditions over the full range of thex-axis. This can be done by introducing two unknown
functions:

σ−(x, t) =
{

σyz(x, 0, t) = σ ′
yz(x, 0, t), x < 0,

0, x � 0,
(3.6)

�w+(x, t) =
{

0, x < 0,

w(x, 0, t) − w′(x, 0, t), x � 0,
(3.7)

such that

σyz(x, 0, t) = σ ′
yz(x, 0, t) = σ−(x, t) − σ ′(t)

yz (x, 0, t), −∞ < x < ∞,

w(x, 0, t) − w′(x, 0, t) = �w+(x, t), −∞ < x < ∞.
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After suppressing bothx andt ,

σ̂ ∗
yz(ζ, 0, p) = σ̂ ′∗

yz(ζ, 0, p) = p−1�−(ζ ) − σ̂ ′∗(t)
yz (ζ, 0, p), (3.8)

ŵ∗(ζ, 0, p) − ŵ′∗(ζ, 0, p) = p−2�U+(ζ ), (3.9)

where

�−(ζ ) = p
∫ 0

−∞
σ ∗−(x, p) e−pζ x dx, �U+(ζ ) = p2

∫ ∞

0
�w∗+(x, p) e−pζ x dx.

On the other hand, substituting (3.1), (3.2) and (3.5) into the transformed constitutive equations for
the stressesσyz andσ ′

yz in (2.4), one obtains

A(ζ ) = − p

D(ζ )
σ̂ ∗

yz(ζ, 0, p) and A′(ζ ) = − p

D′(ζ )
σ̂ ′∗

yz(ζ, 0, p), (3.10)

where D(ζ ) = c̃44(α(ζ ) − k̃2
eβ(ζ )) and D′(ζ ) = c̃′

44(α
′(ζ ) − k̃′2

e β ′(ζ )) are recognized as the
Bleustein–Gulyaev wave functions (12to 14) for the lower and upper piezoelectric half spaces
respectively;̃k2

e andk̃′2
e are the electro-mechanical coupling coefficients,

k̃2
e = e2

15

ε11c̃44
C f and k̃′2

e = e′
15

2

ε′
11c̃

′
44

C′
f .

Substituting (3.1), (3.2) and (3.10) into (3.9) leads to the standard Wiener–Hopf equation,

�−(ζ ) − pσ̂ ′∗(t)
yz (ζ, 0, p) = K (ζ )�U+(ζ ) (3.11)

with

K (ζ ) = − D(ζ )D′(ζ )

M(ζ )
, (3.12)

whereM(ζ ) = D(ζ ) + D′(ζ ) is recognized as the Maerfeld–Tournois wave function (15).
The termσ̂

′∗(t)
yz (ζ, 0, p) in (3.11) is dependent on the type of incident wave. Substituting the

transmitted acoustic wave field and pseudo-electric wave field in (2.7) to (2.13) into the constitutive
equation for stress in (2.4) and transforming, one may obtain the transmitted stress for an incident
acoustic wave,

σ̂ ′∗(t)
yz (ζ, 0, p) = − σ0g∗(p)

p(ζ + sh)
, (3.13)

where

σ0 = −(c̃′
44Taas′

a sinθ ′
a + e′

15Ta�s
′
� sinθ ′

�)w
(i )
0 and sh = sa cosθa

for an incident acoustic wavew(i ), whereas

σ0 = −(c̃′
44T�as′

a sinθ ′
a + e′

15T��s
′
� sinθ ′

�)ψ
(i )
0 and sh = s� cosθ�
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for an incident pseudo-electric waveψ(i ). The term in (3.13) can be reduced to the transmitted
stress for the purely elastic case derived in (16).

The key to solving the Wiener–Hopf equation (3.11) is to factorizeK (ζ ) into sectionally analytic
functions in the left and right half complex-ζplanes respectively. It is easier to factorizeD(ζ ),
D′(ζ ) andM(ζ ) in K (ζ ) separately instead of factorizingK (ζ ) altogether in one step.

Define the Bleustein–Gulyaev wave speeds for the lower and upper half-spaces by

cbg = ca

√
C̃ f (1 − k̃4

e) and c′
bg = c′

a

√
C̃′

f (1 − k̃′4
e ),

respectively, where

C̃ f = c2
�/(c

2
� − k̃4

ec2
a) and C̃′

f = c′2
� /(c′2

� − k̃′4
e c′2

a );
the corresponding slownesses aresbg = 1/cbg ands′

bg = 1/c′
bg.

The product decomposition ofD is given in (3,14):

D(ζ ) = (sbg + ζ )(sbg − ζ )√
(sa + ζ )(sa − ζ )

T+(ζ )T−(ζ )Ds, (3.14)

D′(ζ ) = (s′
bg + ζ )(s′

bg − ζ )√
(s′

a + ζ )(s′
a − ζ )

T ′+(ζ )T ′−(ζ )D′
s, (3.15)

whereDs = c̃44(1 − k̃2
e), D′

s = c̃′
44(1 − k̃′2

e ),

T±(ζ ) = exp

{
− 1

π

∫ sa

s�

arctan(�(η))

η ± ζ
dη

}
, T ′±(ζ ) = exp

{
− 1

π

∫ s′
a

s′
�

arctan
(
�′(η)

)
η ± ζ

dη

}
,

�(η) = − k̃2
eβ̄(η)

α(η)
, �′(η) = − k̃′2

e β̄ ′(η)

α′(η)
,

β̄(η) =
√

η2 − s2
� andβ̄ ′(η) =

√
η2 − s′2

� .
The functionM(ζ ) can be factorized as products of sectionally analytic functions,

M(ζ ) = (s + ζ )(s − ζ )√
(s′

a + ζ )(s′
a − ζ )

(Ds + D′
s)S+(ζ )S−(ζ ), (3.16)

where

s =
{

smt if the Maerfeld–Tournois wave exists,

s′
a otherwise,

S±(ζ ) = exp

{
− 1

π

[∫ s′
�

s�

arctan[�1(η)]
η ± ζ

dη +
∫ sa

s′
�

arctan[�2(η)]
η ± ζ

dη +
∫ s′

a

sa

arctan[�3(η)]
η ± ζ

dη

]}
,

�1(ζ ) = −k̃2
ec̃44β̄(ζ )

c̃44α(ζ ) + c̃′
44α

′(ζ ) − k̃′2
e c̃′

44β
′(ζ )

, �2(ζ ) = −k̃2
ec̃44β̄(ζ ) − k̃′2

e c̃′
44β̄

′(ζ )

c̃44α(ζ ) + c̃′
44α

′(ζ )
,

�3(ζ ) = −k̃2
ec̃44β̄(ζ ) − k̃′2

e c̃′
44β̄

′(ζ ) + c̃44ᾱ(ζ )

c̃′
44α

′(ζ )
, ᾱ(ζ ) =

√
ζ 2 − s2

a, β̄(ζ ) =
√

ζ 2 − s2
�

and β̄ ′(ζ ) =
√

ζ 2 − s′2
� .
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After obtaining the product decomposition above, the Wiener–Hopf equation (3.11) is solved
following the procedure in (17). The results are

�−(ζ ) = σ0g∗(p)

ζ + sh

(
R−(−sh)

R−(ζ )
− 1

)
, (3.17)

�U+(ζ ) = − σ0g∗(p)(s + ζ )
√

sa + ζ R−(−sh)

(ζ + sh)(sbg + ζ )(s′
bg + ζ )QsF+(ζ )

, (3.18)

where

R−(ζ ) = 1

F−(ζ )

(s − ζ )
√

sa − ζ

(sbg − ζ )(s′
bg − ζ )

and F−(ζ ) = T−(ζ )T ′−(ζ )

S−(ζ )
. (3.19)

Substituting (3.9), (3.10), (3.17) and (3.18) into (3.1) and (3.2), one obtains the scattered
displacement and pseudo-electric wave fields:

w∗(x, y, p) = −σ0g∗(p)

2πi p

∫ ζα+i ∞

ζα−i ∞
(s + sh)

√
sa + sh

c̃44(α(ζ ) − k̃2
eβ(ζ ))(ζ + sh)(sbg + sh)

× (sbg − ζ )(s′
bg − ζ )

(s − ζ )
√

(s′
bg + sh)(sa − ζ )

F−(ζ )

F−(−sh)
e−p(αy−ζ x) dζ, (3.20)

ψ∗(x, y, p) = σ0g∗(p)

2πi p

e15C f

ε11

∫ ζβ+i ∞

ζβ−i ∞
(s + sh)

√
sa + sh

c̃44(α(ζ ) − k̃2
eβ(ζ ))(ζ + sh)(sbg + sh)

× (sbg − ζ )(s′
bg − ζ )

(s′
bg + sh)(s − ζ )

√
sa − ζ

F−(ζ )

F−(−sh)
e−p(βy−ζ x) dζ, (3.21)

w′∗(x, y, p) = σ0g∗(p)

2πi p

∫ ζα′+i ∞

ζα′−i ∞
(s + sh)

√
sa + sh

c̃44(α′(ζ ) − k̃2
eβ ′(ζ ))(ζ + sh)(sbg + sh)

× (sbg − ζ )(s′
bg − ζ )

(s′
bg + sh)(s − ζ )

√
sa − ζ

F−(ζ )

F−(−sh)
e−p(−α′y−ζ x) dζ, (3.22)

ψ ′∗(x, y, p) = −σ0g∗(p)

2πi p

e′
15C

′
f

ε′
11

∫ ζβ′+i ∞

ζβ′−i ∞
(s + sh)

√
sa + sh

c̃44(α′(ζ ) − k̃2
eβ ′(ζ ))(ζ + sh)(s′

bg + sh)

× (sbg − ζ )(s′
bg − ζ )

(sbg + sh)(s − ζ )
√

sa − ζ

F−(ζ )

F−(−sh)
e−p(−β ′y−ζ x) dζ . (3.23)

4. The Cagniard–de Hoop inversion

Having carried out the Wiener–Hopf decomposition, we are now in a position to invert the integrals
in (3.20) to (3.23) to obtain explicit solutions in the physical domain. Exact inversion can be
achieved by the Cagniard–de Hoop scheme (18,19). First, the scattered displacement and the
pseudo-electric potential fields for an incident acoustic wave are considered so thatsh = sa cosθa in
the integrals. We proceed by replacing the original Bromwich path by a deformed Cagniard contour
such that the one-sided Laplace transform can be obtained by inspection.
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Fig. 2 Cagniard–de Hoop inversion paths�α , �β and�αβ for acoustic excitation

Fig. 3 Cagniard–de Hoop inversion paths�α′ , �β ′ and�α′β ′ for acoustic excitation

Shown in Figs 2 and 3, the following inversion paths are chosen:�α, �αβ , �β , �α′ , �α′β ′ and�β ′
in which

α(ζ )y − ζ x = t, ζ ∈ �α, �αβ; β(ζ )y − ζ x = t, ζ ∈ �β;
−α′(ζ )y − ζ x = t, ζ ∈ �α′ , �α′β ′ ; −β ′(ζ )y − ζ x = t, ζ ∈ �β ′ .
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It is more convenient to work in polar coordinates by lettingx = r cosθ andy = r sinθ . Note
that atζ = −sa cosθ , the path�α intercepts the real axis Re(ζ ). Thus, a supplemental path�αβ is

needed to circumvent the branch cut of multivalued functionβ(ζ ) =
√

s2
� − ζ 2. This leads to the

occurrence of the electro-acoustic head wave (see discussions in (3,20)). Along the path�αβ , the
parameterθ varies in the range

0 � θ � −θa�
cr with θa�

cr = | cos−1(s�/sa)|.

Similarly, the supplemental path�α′β ′ is added to circumvent the branch cut ofβ ′(ζ ). Along path
�α′β ′ , the parameterθ varies in the range

0 � θ � θ ′a�
cr with θ ′a�

cr = | cos−1(s′
�/s′

a)|.

Following de Hoop (19), exact inversions are found,

w(x, y, t) =
∫ t

0
[Re(σ0)G(t − τ) − Im(σ0)H{G(t − τ)}]wδ(x, y, τ ) dτ + wr (x, y, t),

ψ(x, y, t) =
∫ t

0
[Re(σ0)G(t − τ) − Im(σ0)H{G(t − τ)}]ψδ(x, y, τ ) dτ + ψr (x, y, t),

w′(x, y, t) =
∫ t

0
[Re(σ0)G(t − τ) − Im(σ0)H{G(t − τ)}]w′

δ(x, y, τ ) dτ + w′
r (x, y, t),

ψ ′(x, y, t) =
∫ t

0
[Re(σ0)G(t − τ) − Im(σ0)H{G(t − τ)}]ψ ′

δ(x, y, τ ) dτ + ψ ′
r (x, y, t),

where the subscriptδ represents the scattering fields due to the impulsive incident wave, andwr , ψr

are reflected displacement and pseudo-electric fields whilew′
r , ψ ′

r are the refracted displacement
and pseudo-electric fields. We obtain

wδ(x, y, t) = − 1

π

{
Re

[
(s + sh)

√
sa + sh

c̃44(α(ζα+) − k̃2
eβ(ζα+))(ζα+ + sh)(sbg + sh)(s′

bg + sh)

× (sbg − ζα+)(s′
bg − ζα+)

(s − ζα+)
√

sa − ζα+
F−(ζα+)

F−(−sh)

α(ζα+)√
t2 − s2

ar 2

]
H(t − sar )

− Im

[
(s + sh)

√
sa + sh

c̃44(α(ζαβ+) − k̃2
eβ(ζαβ+))(ζαβ+ + sh)(sbg + sh)(s′

bg + sh)

× (sbg − ζαβ+)(s′
bg − ζαβ+)

(s − ζαβ+)
√

sa − ζαβ+
F−(ζαβ+)

F−(−sh)

α(ζαβ+)√
t2 − s2

ar 2

]

× [H(t − tα0) − H(t − sar )]
}
,
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ψδ(x, y, t) = e15C f

πε11

{
Re

[
(s + sh)

√
sa + sh

c̃44(α(ζβ+) − k̃2
eβ(ζβ+))(ζβ+ + sh)(sbg + sh)(s′

bg + sh)

× (sbg − ζβ+)(s′
bg − ζβ+)

(s − ζβ+)
√

sa − ζβ+
F−(ζβ+)

F−(−sh)

β(ζβ+)√
t2 − s2

� r 2

]
H(t − s�r )

}
,

w′
δ(x, y, t) = 1

π

{
Re

[
(s + sh)

√
sa + sh

c̃′
44(α

′(ζα′+) − k̃′2
e β ′(ζα′+))(ζα′+ + sh)(sbg + sh)(s′

bg + sh)

× (sbg − ζα′+)(s′
bg − ζα′+)

(s − ζα′+)
√

sa − ζα′+
F−(ζα′+)

F−(−sh)

α′(ζα′+)√
t2 − s′2

a r 2

]
H(t − s′

ar )

− Im

[
(s + sh)

√
sa + sh

c̃′
44(α

′(ζα′β ′+) − k̃′2
e β ′(ζα′β ′+))(ζα′β ′+ + sh)(sbg + sh)(s′

bg + sh)

× (sbg − ζα′β ′+)(s′
bg − ζα′β ′+)

(s − ζα′β ′+)
√

sa − ζα′β ′+
F−(ζα′β ′+)

F−(−sh)

α′(ζα′β ′+)√
t2 − s′2

a r 2

]

× [H(t − tα′0) − H(t − s′
ar )]

}
,

ψ ′
δ(x, y, t) = e′

15C
′
f

πε′
11

{
Re

[
(s + sh)

√
sa + sh

c̃44(α′(ζβ ′+) − k̃′2
e β ′(ζβ ′+))(ζβ ′+ + sh)(sbg + sh)

× (sbg − ζβ ′+)(s′
bg − ζβ ′+)

(s′
bg + sh)(s − ζβ ′+)

√
sa − ζβ ′+

F−(ζβ ′+)

F−(−sh)

β ′(ζβ ′+)√
t2 − s

′2
� r 2

]
H(t − s′

�r )

}
,

wheretα0 =
√

s2
a − s2

� y + s�x andtα′0 = −
√

s′2
a − s2

� y + s�x.
In acoustic and electromagnetic diffraction theories, the simple pole that represents the incident

source determines the geometrical reflection/refraction fields. These geometrical scattering patterns
induced by acoustic excitation depend on the incident angle of the acoustic wave, because the
position of the simple pole depends on this angle. Figures 2 and 3 show that there are two different
positions of the simple pole,ζ = −sh = −sa cosθa; and the positions of−sh in the ζ -plane will
directly affect the outcome of reflection/refraction fields. There are three cases, as follows.

Case(1): sa cosθa > s′
�. In this case, the pole always lies to the right of�α and�α′ but to the

left of �β and�β ′ . Thus, there are pole contributions to�α and�α′ , but not to�β and�β ′ . After
evaluating the residues of the poles for the corresponding integrals, we have

wr (x, y, t) =




−Re

(
σ0

c̃44[sa sinθa − k̃2
e

√
s2
� − s2

a cos2 θa]

)

× G(t − sa[x cosθa + y sinθa])
+ Im

(
σ0

c̃44[sa sinθa − k̃2
e

√
s2
� − s2

a cos2 θa]

)

× H{G(t − sa[x cosθa + y sinθa])}, 0 � θ < θa;
0, θa � θ < π;

(4.1)
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Fig. 4 The scattering patterns excited by an acoustic source: case (1). I: Incident acoustic wave; II: Reflected
acoustic wave; III: Scattered acoustic wave; IV: Scattered electric wave; V: Electro-acoustic head wave; A:
Refracted acoustic wave; B: Scattered acoustic wave; C: Scattered electric wave; D: Electro-acoustic head

wave

w′
r (x, y, t) =

{ −w
′(t)
r (x, y, t), 0 > θ � −θ ′

a;
0, −θ ′

a > θ � −π; (4.2)

ψr (x, y, t) = 0, 0 � θ < π; (4.3)

ψ ′
r (x, y, t) = 0, 0 > θ � −π . (4.4)

The complete scattering pattern is shown in Fig. 4.

Case(2): s′
� � sa cosθa > s�. In this case, the pole always lies to the right of�α, �α′ and�β ′ but

to the left of�β . This means that there are pole contributions to the paths�α, �α′ and�β ′ , butnot
to �β . After evaluating the residues of the poles for the corresponding integrals, we find thatwr is
given by (4.1),w′

r is given by (4.2),ψr is given by (4.3) and

ψ ′
r (x, y, t) =

{ −ψ
′(t)
r (x, y, t), 0 > θ � −θ ′

�;
0, −θ ′

� > θ � −π .
(4.5)

The complete scattering pattern is shown in Fig. 5.

Case(3): s� � sa cosθa. In this case, the pole lies to the right of all the paths, and so, after
evaluating the residues of the poles for all the corresponding integrals, we have

wr (x, y, t) =

 −σ0G(t − sa[x cosθa + y sinθa])

c̃44[sa sinθa − k̃2
es� sinθ�]

, 0 � θ < θa;
0, θa � θ < π;

(4.6)
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Fig. 5 The scattering patterns excited by an acoustic source: case (2). I: Incident acoustic wave; II: Reflected
acoustic wave; III: Scattered acoustic wave; IV: Scattered electric wave; V: Electro-acoustic head wave; A:
Refracted acoustic wave; B: Scattered acoustic wave; C: Scattered electric wave; D: Electro-acoustic head

wave; E: Refracted electric wave

ψr (x, y, t) =



k2
eσ0G(t − s�[x cosθ� + y sinθ�])

e15[sa sinθa − k̃2
es� sinθ�]

, 0 � θ < θ�;
0, θ� � θ < π;

(4.7)

w′
r is given by (4.2) andψ ′

r is given by (4.5). The scattering pattern is shown in Fig. 6.
Next, consider the relection/refraction fields due to an incident pseudo-electric source. As shown

in Fig. 7, the simple pole atζ = −sh = −s� cosθ� always lies to the right of all the integration
paths, and thus the residue of the pole due to the corresponding integral needs to be evaluated. We
find thatwr is given by (4.6),w′

r is given by (4.2),ψr is given by (4.7) andψ ′
r is given by (4.5).

The complete scattering pattern is shown in Fig. 8.

5. Discussions

With the analytical expressions of the diffracted waves, the displacement time history at a fixed
point can be traced and calculated during the electro-acoustic scattering due to the presence of a
conducting crack so that we may be able to compare them with the measurements obtained in the
non-destructive testing. Figures 9 and 10 show the displacement time histories at variousθ with
fixed y in the upper half-space due to an impulsive incident acoustic source and an electric source,
respectively, with Fig. 9 corresponding to an acoustic source (case (1)). Recall thatθ is measured
clockwise beginning from thex-axis, so that withy fixed,θ = −90◦ in both figures is closest to the
crack tip whileθ = −10◦ is the farthest. A distinctive feature of scattering by a conducting crack
is the ability of the head wave to tunnel through the crack, a phenomenon which is not observed in
the purely elastic case (16). Note in Figs 9 and 10 that the head wave arrives at almost identical
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Fig. 6 The scattering patterns excited by an acoustic source: case (3). I: Incident acoustic wave; II: Reflected
acoustic wave; III: Scattered acoustic wave; IV: Scattered electric wave; V: Electro-acoustic head wave; VI:
Reflected electric wave; A: Refracted acoustic wave; B: Scattered acoustic wave; C: Scattered electric wave;

D: Electro-acoustic head wave; E: Refracted electric wave

Fig. 7 Cagniard–de Hoop inversion paths for pseudo-electric excitation

times at eachθ in both figures. Since the speed of light is much larger than the acoustic wave speed,
the head-wave front is almost parallel to the crack. (Imagine the arc next to C in Figs 4 to 8 is
much larger than the electro-acoustic head-wave line connecting the arc would be more parallel to
the crack.) This electromagnetic acoustic head wave has also been observed in experiments (20).
Another distinctive feature, which is identical to the purely elastic case, is the cancellation of the
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Fig. 8 The scattering patterns excited by an electric source. I: Incident acoustic wave; II: Reflected acoustic
wave; III: Scattered acoustic wave; IV: Scattered electric wave; V: Electro-acoustic head wave; VI: Reflected

electric wave; A: Refracted acoustic wave; B: Scattered acoustic wave; C: Scattered electric wave; D:
Electro-acoustic head wave; E: Refracted electric wave

refracted acoustic wave by the transmitted acoustic wave as seen in equations (4.2), and thus, no
diffracted acoustic wave or transmitted acoustic wave exists in the displacement time histories for
|θ | < |θ ′

a|. Also, the scattered acoustic wave originating from the crack tip can be observed in both
time histories as decreasing in magnitude as the observation point is moving further away from the
crack tip.

At the tail of the screen or crack, the scattered fields will become singular. In what follows, the
intensity factors of the singular fields generated by the antisymmetric solutions are derived. Define

Kσ (t) = lim
x→0−

√
2π|x|σ (s)

yz (x, 0, t), Kσ ′(t) = lim
x→0−

√
2π|x|σ ′(s)

yz (x, 0, t),

KD(t) = lim
x→0−

√
2π|x|D(s)

y (x, 0, t), KD′(t) = lim
x→0−

√
2π|x|D′(s)

y (x, 0, t),

where the subscriptsσ , σ ′, D and D′ indicate stress and electric displacements for the respective
lower and upper piezoelectric half-spaces.

Considering the asymptotic relations (21),

lim
x→0−

(
π |x|)1/2

σ ∗
yz(x, 0, p) = lim

ζ→−∞ |pζ |1/2p−1�−(ζ, p),

lim
x→0−

(
π |x|)1/2

D∗
y(x, 0, p) = lim

ζ→−∞ |pζ |1/2D̂∗
y(ζ, p),

one can derive that

K ∗
σ (p) = K ∗

σ ′(p) = −√
2

g∗(p)√
p

σ0(s + sh)
√

sa + sh

F−(−sh)(sbg + sh)(s′
bg + sh)

.
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Fig. 9 Displacement time histories at variousθ with fixed y due to an impulsive acoustic source incident at
θa = 45◦. Labels: t = transmitted wave, h = head wave and s = scattered wave

After performing the inverse Laplace transform, one obtains

Kσ (t) = Kσ ′(t) = − (s + sh)
√

sa + sh

F−(−sh)(sbg + sh)(s′
bg + sh)

[Re(σ0)χ(t) − Im(σ0)H{χ(t)}],

where

χ(t) =
√

2

π

∫ t

0

1√
τ

g(t − τ) dτ .

Similarly, based on the definition,

D∗
y(ζ, p) = [−e15(1 − C f )α(ζ )A(ζ ) + ε11β(ζ )B(ζ )]/p,

D′∗
y (ζ, p) = [−e′

15(1 − C′
f )α

′(ζ )A′(ζ ) + ε′
11β

′(ζ )B′(ζ )]/p.
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Fig. 10 Displacement time histories at variousθ with fixed y due to an impulsive electric source incident at
θ� = 45◦. Labels: t = transmitted wave, h = head wave and s = scattered wave

One can then show that

KD(t) = −e15(s + sh)
√

sa + sh [Re(σ0)χ(t) − Im(σ0)H{χ(t)}]
c̃44(1 − k̃2

e)F−(−sh)(sbg + sh)(s′
bg + sh)

,

KD′(t) = −e′
15(s + sh)

√
sa + sh [Re(σ0)χ(t) − Im(σ0)H{χ(t)}]

c̃44(1 − k̃′2
e )F−(−sh)(sbg + sh)(s′

bg + sh)
.

The above formulae can be put into the compact forms

Kσ (t) = Kσ ′(t) = −Gw(sh)[Re(σ0)χ(t) − Im(σ0)H{χ(t)}], (5.1)

KD(t) = − e15Gw(sh)

c̃44(1 − k̃2
e)

[Re(σ0)χ(t) − Im(σ0)H{χ(t)}], (5.2)

KD′(t) = − e′
15Gw(sh)

c̃′
44(1 − k̃′2

e )
[Re(σ0)χ(t) − Im(σ0)H{χ(t)}], (5.3)
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Fig. 11 Phase functionGw versus incident angle for (a) an acoustic source and (b) an electric source for
various electromechanical coupling coefficients (k̃e)

where

Gw(sh) = (s + sh)
√

sa + sh

F−(−sh)(sbg + sh)(s′
bg + sh)

. (5.4)

Forthe first example, we consider an interface welded together by a piezoelectric lower half-space
and an elastic upper half-space. The electro-mechanical coupling coefficient of the piezoelectric
half-space (̃ke) is allowed to increase from zero to unity while the material properties of the elastic
half-space are held constant. Figure 11 displays the phase functionGw for the respective acoustic
and electric excitation versus its respective incident angle for a broad range of electromechanical
coefficients. Note that wheñke = 0, the problem degenerates to the case of two dissimilar purely
elastic half-spaces welded together as considered in (16). For the acoustic incident wave case in
Fig. 11(a), it is obvious that the phase function increases with increasing incident angle, where the
shearing motion is more intense. The effect of the electromechanical coupling coefficient is more

complicated. At small incident angle (cosθa ≈ 1), Gw ≈ [√2]/[√sa(1/

√
1 − k̃4

e + 1)F−(sa)]
while at large incident angle (cosθa ≈ 0), Gw ≈

√
(1 − k̃4

e)/[saF−(0)]. Usually,F−(θa) is quite

close to unity for any value ofθa so thatGw decreases with increasingk̃e, but this is only true for
large incident angles as shown in the figure, and thus the functionF−(θa) is also important in the
behaviour ofGw for the incident acoustic wave. On the other hand, for an incident electric wave, the
horizontal slownesssh is always close to zero for any given incident angle so thatGw is flat for each

k̃e as in Fig. 11(b). AlsoGw ≈ (s
√

sa)/(sbgs′
bg) ≈ (s

√
1 − k̃4

e)/(
√

sas′
bg) decreases with increasing

k̃e as in Fig. 11(b). These results indicate that the competition between the Bleustein–Gulyaev wave
and the shear wave dictates the behaviour of the phase function for different electromechanical
coefficients.

For the second example, we consider a piezoelectric half-space withk̃′
e = 0 overlying another
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Fig. 12 Phase functionGw versus incident angle for (a) an acoustic source and (b) an electric source for
various electromechanical coupling ratios (k̃′

e/k̃e)

Fig. 13 Variations of slowness ratio (s′
bg/s) versus electromechanical coupling ratio (k̃′

e/k̃e)

with k̃e = 0·7; the electromechanical coupling coefficientk̃′
e of the upper purely elastic half-space

is allowed to increase while the material properties of the lower piezoelectric half-space are held
constant. Figure 12 displays the phase functionGw for the respective acoustic and electric excitation
versus its respective incident angle for a broad range of electromechanical ratios. Like the previous
example,Gw increases with increasing incident angle of the acoustic incident wave (Fig. 12(a))
while it is flat for the electric incident wave (Fig. 12(b)). Note that when the ratiok̃′

e/k̃e = 0, the
Maerfeld–Tournois (MT) wave does not exist, but as the ratiok̃′

e/k̃e increases to 0·62, the MT wave
begins to appear. Figure 13 shows the variation ofs′

bg/s versusk̃′
e/k̃e, wheres = smt if the MT
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Fig. 14 Phase functionGw versus incident angle for (a) an acoustic source and (b) an electric source when
Maerfeld–Tournois wave exists (solid line) and when it does not exist (dashed line)

wave exists ands = s′
a otherwise. Note that in Fig. 13,s � s′

bg. Since the horizontal slowness
sh does not depend on the electromechanical coupling ratio,Gw ≈ (s + sh)/(s′

bg + sh) assuming
that F−(−sh) ≈ 1, the effect ofs dominates, and the overall effect is for the phase functionGw to
decrease for both the incident acoustic and the electric waves.

To examine the effect of the existence of the MT wave on the phase functionGw, weconsider an
interfacial crack between two identically and oppositely poled piezoelectric half-spaces. When the
upper and lower half-spaces have opposite polarity (e′

15 = −e15), the MT wave always exists, but
when they have the same polarity, the MT wave does not exist while the electromechanical coupling
coefficients are identical for the two cases. Figure 14 plots these two situations for an incident
acoustic and electric wave, and the phase functions are larger when the MT wave exists. This can be
explained from the fact that the MT wave slowness is always higher than the shear wave slowness,
and thusGw is always higher.
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APPENDIX

Reflection and transmission coefficients

The reflection and transmission coefficients for an incident acoustic plane wave are

Raa = c̃44(sa sin(θa) + k̃2
es� sin(θ�)) − c̃′

44(s
′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

c̃44(sa sin(θa) − k̃2
es� sin(θ�)) + c̃′

44(s
′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

,

Taa = 2c̃44sa sin(θa)

c̃44(sa sin(θa) − k̃2
es� sin(θ�)) + c̃′

44(s
′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

,
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Ra� = −(e15C f /ε11)Taa andTa� = −(e′
15C′

f /ε
′
11)Taa. The reflection and transmission coefficients for an

incident pseudo-electric plane wave are

R�� = − c̃44(sa sin(θa) + k̃2
es� sin(θ�)) + c̃′

44(s
′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

c̃44(sa sin(θa) − k̃2
es� sin(θ�)) + c̃′

44(s
′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

,

T�� = − 2c̃′
44e15k̃′2

e s� sin(θ�)

c̃44e′
15(sa sin(θa) − k̃2

es� sin(θ�)) + c̃′
44(s

′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

,

R�a = T�a = 2e15s� sin(θ�)

c̃44(sa sin(θa) − k̃2
es� sin(θ�)) + c̃′

44(s
′
a sin(θ′a) − k̃′2

e s′
�

sin(θ′
�
))

.
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