
This article was downloaded by: [University of California, Berkeley]
On: 11 August 2015, At: 11:43
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place,
London, SW1P 1WG

International Journal for Computational Methods in
Engineering Science and Mechanics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/ucme20

Meshfree Simulations of Ductile Crack Propagations
Shaofan Li a & Cerup B. Simonsen b
a Department of Civil and Environmental Engineering, University of California , Berkeley, CA,
USA
b Department of Mechanical Engineering, Technical University of Denmark , Lyngby, Denmark
Published online: 23 Feb 2007.

To cite this article: Shaofan Li & Cerup B. Simonsen (2005) Meshfree Simulations of Ductile Crack Propagations, International
Journal for Computational Methods in Engineering Science and Mechanics, 6:1, 1-19, DOI: 10.1080/15502280590888612

To link to this article:  http://dx.doi.org/10.1080/15502280590888612

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/ucme20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/15502280590888612
http://dx.doi.org/10.1080/15502280590888612
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal for Computational Methods in Engineering Science and Mechanics, 6:1–19, 2005
Copyright c© Taylor & Francis Inc.
ISSN: 1550–2287 print / 1550–2295 online
DOI: 10.1080/15502280590888612

Meshfree Simulations of Ductile Crack Propagations

Shaofan Li
Department of Civil and Environmental Engineering, University of California, Berkeley CA, USA

Cerup B. Simonsen
Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark

Contents

1. INTRODUCTION .................................................................................................................................................... 1
2. CRACK SURFACE APPROXIMATION AND VISIBILITY CONDITION ............................................................... 2

(a) Crack Surface Representation and Particle Splitting Algorithm ................................................................................ 2
(b) Parametric Visibility Condition ............................................................................................................................. 3
(c) Examples of Meshfree Shape Function Near a Crack Tip ........................................................................................ 4

3. CONSTITUTIVE MODELINGS .............................................................................................................................. 6
(a) Gurson-Tvergaard-Needleman Model ................................................................................................................... 8
(b) Thermo-Elasto-Viscoplastic Model ....................................................................................................................... 8

4. MESHFREE SIMULATIONS ................................................................................................................................... 9
(a) Example I: Gurson-Tvergaard-Needleman Model ..................................................................................................10
(b) Example II: Thermo-Elasto-Viscoplastic Model ....................................................................................................10

5. DISCUSSIONS ........................................................................................................................................................15
6. CONCLUSION ........................................................................................................................................................18

In this work, a meshfree method is used to simulate ductile
crack growth and propagation under finite deformation and large
scale yielding conditions. A so-called parametric visibility condition
and its related particle splitting procedure have been developed
to automatically adapt the evolving strong continuity or fracture
configuration due to an arbitrary crack growth in ductile materials.

It is shown that the proposed meshfree crack adaption and re-
interpolation procedure is versatile in numerical simulations, and it
can capture some essential features of ductile fracture and ductile
crack surface morphology, such as the rough zig-zag pattern of
crack surface and the ductile crack front damage zone, which have
been difficult to capture in previous numerical simulations.
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1. INTRODUCTION
One of the early incentives to develop meshfree methods is to

simulate crack growth and crack propagation (e.g. Belytschko
[1994a, b]), because meshfree interpolations have flexibility to
adapt the change of the geometry of a solid due to crack growth
or fracture, which can be a painful process by using a finite
element adaptive process such as remeshing (e.g. Wawrzynek
and Ingraffea [1987]).

For two-dimensional elastostatic crack growth, meshfree sim-
ulation of crack growth has been a success. Belytschko and his
co-workers have systematically applied the so-called element-
free Galerkin (EFG) method to simulate crack growth/
propagation problems (e.g. Belytschko et al. [1994a, b],[1995a,
b], [1996a, b], [1997], Lu et al. [1995], Krysl et al. [1997] and
[1999], and Fleming et al. [1997a], among others). Special tech-
niques, such as the visibility criterion, are developed in modeling
discontinuous fields in a solid (e.g. Belytschko [1996a] and Krysl
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2 S. LI AND C. B. SIMONSEN

[1997]). Subsequently, other meshfree methods, such as the par-
tition of unity method, the so-called X-finite element method,
and the level set method have also been developed and exploited
in crack growth simulations (e.g. Daux et al. [2000], Dolbow
[2000], Stolarska et al. [2002] and Ventura et al. [2002]). It is
fair to say that at least in 2D crack growth simulation meshfree
Galerkin procedure offers considerable advantages over the tra-
ditional finite element methods, because the global remeshing
is avoided.

However, most works published in literature have mainly
dealt with elastic crack growth. Few simulation results are re-
ported for inelastic fracture or elastic-plastic crack propagation.

The technical difficulties in simulating inelastic fracture are
two: (1) lacking crack growth criterion, and (2) lacking viable
numerical algorithms to simulate crack growth without impair-
ing the original interpolation field.

The first difficulty emerges when a ductile fracture is as-
sociated with large scale yielding as well as undergoing finite
deformation. Under those circumstances, the applicability of J-
integral of elastic fracture theory is no longer accurate (see: Xia
et al. [1995a, b, c]). The second difficulty is more serious. Be-
cause ductile fracture is an irreversible process, the history of
state variables, such as plastic strain and yield stress, at each ma-
terial point, e.g. a Gauss point in a computation domain, have
to be preserved in a bookkeeping process at each time step. If
the original mesh can not automatically adapt arbitrary crack
paths, any remesh process will need the mapping or conversion
of state variables from old interpolation field to new interpola-
tion field, which is not only a time-consuming process but also a
major source of accumulative numerical error that prohibits any
possible accurate long-term simulation.

In computation practice, there are essentially three approaches
to simulate ductile fracture: (1) Embed the possible crack path
in the original finite element mesh (e.g. Xia et al. [1995a, b]). In
the embedded crack path approach, crack can only grow along
the element boundary, it usually can not capture the realistic
crack path. (2) Use the so-called erosion algorithm (e.g. Rashid
[1968]). This is basically a procedure that resets all state vari-
ables and mass to zero and nullifies a material point when stress
level of the element containing the material point exceeds a
certain threshold, which is often referred to as “the killing el-
ement procedure.” The method is a brute force approach; it is,
nevertheless, very efficient in practice. (3) Remesh and remap
state variables. At this point, ductile crack remeshing algorithms
are essentially academic demonstrations. Long–term simulation
seems to be both unreachable and unreasonable.

The objective of this study is to provide a simple but relatively
accurate and yet cost-effective solution that may lead to the final
solution of this outstanding problem in computational fracture
mechanics.

To achieve this objective, we use meshfree interpolation to ap-
proximate the discretized fields. We adopt the Gurson-Tvergarrd-
Needleman model and a thermal-viscoplastic model in consti-
tutive modeling and in damage assessment. To model surface

separation, we use a newly designed parametric visibility condi-
tion and its related particle splitting algorithm to modify previous
interpolation and connectivity maps among meshfree particles.

The paper is organized in five sections. In Section 2, we first
discuss the newly proposed parametric visibility condition, its
related particle splitting algorithm, and how to use them in duc-
tile crack surface modeling. The constitutive modeling, numeri-
cal formulation are briefly outlined in Section 3. Two numerical
examples are presented in Section 4. A few remarks are made
in the last section.

2. CRACK SURFACE APPROXIMATION AND
VISIBILITY CONDITION
A crucial step to model crack propagation in a numerical

simulation is how to represent the evolving crack surface and
automatically adjust the interpolation field around the growing
crack tip. This process is not only a re-interpolation scheme, but
also a process how to model the material re-configuration.

Belytschko and his co-workers (Belytschko et al. [1996])
have developed a so-called visibility condition that can serve as
a criterion to automatically adapt the topological connectivity
map among meshfree particles.

There are two shortcomings in previous meshfree crack sur-
face representation/visibility condition procedures: (1) crack
surface re-construction and representation schemes are compli-
cated. The complexity comes from the searching algorithm and
re-interpolation algorithm. Because of the technical complexity,
any generalization of meshfree crack surface modeling of three-
dimensional fracture or ductile fracture becomes a formidable
task; (2) it has been observed that the meshfree shape functions
of the re-interpolation field produced by the visibility condition
may contain strong discontinuities in meshfree shape functions
at certain regions near a crack tip, although we do not know for
certain this is indeed a shortcoming.

To simplify the crack surface modeling procedure, we in-
troduce the following crack surface representation and particle
splitting algorithm to model crack surface separation.

(a) Crack Surface Representation and Particle
Splitting Algorithm

The two-dimensional crack surface is represented by pairs
of piece-wise straight lines as shown in Fig. 1. In Fig. 1, the
particles on the crack surface are marked as square black boxes,
except the crack tip, whereas other meshfree particles are repre-
sented as solid circles. In previous meshfree approaches, when a
crack grows, the crack surface is being reconstructed by adding
new particles. This is not suitable for ductile crack surface mod-
eling, because one has to re-create state variables and re-
distribute mass and volume for any newly added particles.

In our approach, a crack tip is always attached to an existing
material/interpolation particle. It only moves from one particle
to another as shown in Fig. 1.
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 3

FIG. 1. Illustration of numerical scheme for crack growth.

Assume that the physical criterion to select the new crack tip
is available. To find the new crack tip, we first choose a radius
R and draw a circle centered at the current crack tip.

Then we apply the crack growth criterion to every point inside
the circle to decide which point should be the next crack tip,
except those points (square boxes) on the crack surfaces, because
we do not allow crack surface to become crack tip again (this
may happen in some unusual situations).

Once we selected a new crack tip, we split the old crack tip
into two points that have the same value of state variables at that
particular time. The mass and volume of the two particles are
re-assigned according to the following rules, which are called a
particle splitting algorithm:

Massnew1 = φ1

2π
Massold, [2.1]

Massnew2 = φ2

2π
Massold; [2.2]

and

Volumenew1 = φ1

2π
Volumeold [2.3]

Volumenew2 = φ2

2π
Volumeold [2.4]

The kinematic field variables, such as displacements, velocity,
and accelerations of the new particles are assigned as

Dispnew1 = Dispold + δ [2.5]

Dispnew2 = Dispold − δ [2.6]

Velnew1 = Velold [2.7]

Velnew2 = Velold [2.8]

Accnew1 = 0.0d0

Accnew2 = 0.0d0 [2.9]

where δ is a vector whose length |δ| � 1. It serves the purpose
to make a physical distinction of the two new particles once they
are separated.

FIG. 2. Meshfree particle splitting algorithm.

This process is illustrated in Fig. 2, in which the point
(Xtip, Ytip) is the new crack tip, and the old crack tip is split
into two particles, (Xnew1, Ynew1) and (Xnew2, Ynew2). A pair of
straight lines connect (Xnew1, Ynew1) and (Xnew2, Ynew2) with the
new crack tip (Xtip, Ytip).

(b) Parametric Visibility Condition
The meshfree interpolation relies on a local connectivity

maps to associate one particle with its neighboring particles.
To model crack propagation, one has to develop a numerical

algorithm that can automatically modify the local connectivity
map and simulate a running crack without user interference.

The following parametric visibility condition is used in the
simulation to modify the local meshfree connectivity map to
reflect geometric change of domain due to crack growth.

The visibility condition used in this study is illustrated in
Fig. 3. Figuratively speaking, a crack may be viewed as an
opaque wall. A material point at one side of the wall can not
“see” the material points in the other side of the wall. This prin-
ciple is termed “visibility condition.” To determine whether or
not two material points are separated by a crack segment, one can

FIG. 3. Visibility condition in 2D.
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4 S. LI AND C. B. SIMONSEN

check whether or not the line segment connecting two material
points intercepts the crack path segment.

Since crack growth is incremental, one only needs to check
and to modify a limited number of particles at the current crack
tip area, which is defined as the union of two circles centered at
the current crack tip and next crack tip (see Fig. 3). To modify
the meshfree connectivity map, one only needs to check the
visibility condition inside the union of two circles, denoting as
C = C1

⋃
C2. It is done by a procedure named as “parametric

visibility condition.”
Suppose that we want modify connectivity relation between

particle (X11, Y11) ∈ C and the rest of particles inside C. We
denote an arbitrary point inside C as (X12, Y12) and two crack
tips (old and new) as (X21, Y21) and (X22, Y22).

The parametric equations of the straight line that connects
points (X11, Y11) and (X12, Y12) are

{
X = X11 + λ1�X1

Y = Y11 + λ1�Y1
[2.10]

where λ1 is the parametric variable and

�X1 := X12 − X11 [2.11]

�Y1 := Y12 − Y11 [2.12]

On the other hand, the parametric equation for the straight
line that connects two crack tips are

{
X = X21 + λ2�X2

Y = Y21 + λ2�Y2
[2.13]

where λ2 is the parametric variable and

�X2 := X22 − X21 [2.14]

�Y2 := Y22 − Y21 [2.15]

If the two line segments intercept each other, one can equate
Eqs. (2.10) and (2.13), and solve for λ1 and λ2,

[
λ1

λ2

]
= 1

(�X1�Y2 − �X2�Y1)

×
[
�Y2(X21 − X11) − �X2(Y21 − Y11)

�Y1(X21 − X11) − �X1(Y21 − Y11)

]
[2.16]

If the two line segments intercept each other, the following
parametric visibility conditions have to be satisfied,

0 < λ1 < 1, and 0 < λ2 < 1. [2.17]

These parametric visibility conditions are illustrated in
Fig. 4. If both parametric visibility conditions are met, then the
line segment between two arbitrary points inside C will intercept

FIG. 4. Parametric visibility conditions.

the newly formed crack surfaces and hence one should discon-
nect the connections between these two points. In other words,
either point should be removed from the other point’s connec-
tivity map, and it then ensures that there is no non-physical
cross-crack interpolation.

(c) Examples of Meshfree Shape Function Near
a Crack Tip

In the following, a few artificial examples are shown to dis-
play the meshfree shape functions that are constructed at crack
surface via particle splitting algorithm, connectivity modifica-
tion, and parametric visibility condition.

In Fig. 5(a) and (b), a meshfree shape function is shown whose
support has been cut up to 3/4 by two orthogonally running
cracks. In Fig. 5(c) and (d), it is shown that a meshfree function
has been cut by a crack into two parts and another meshfree
shape is right at the crack tip.

A meshfree shape function whose support size has been cut
by a crack up to 1/4 is shown in Fig. 6(a) and (b). In Fig. 6(c)
and (d), a meshfree shape function has been severed into three
different shape functions.

As reported by Belytschko et al. [1996], there are some ab-
normalities about these meshfree shape functions whose sup-
ports have been modified by visibility conditions. One of them
is the apparent strong discontinuity at certain locations of the
support.

Figure 7 displays the profile of a meshfree shape function
right in front of a crack tip. One may observe from Fig. 7(b)
that there is discontinuity at the back neck of the shape function.
One may wonder why this happens, because based on visibility
condition, the support of this meshfree shape function has not
changed at all.

As a matter of fact, the visibility condition not only changes
the connectivity relations among particles, but also changes the
connectivity relations among any material points in the domain
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 5

FIG. 5. Meshfree shape function along crack surfaces (I).

(e.g. Gauss quadrature points) and meshfree particles. More
precisely speaking, visibility condition is also used to change the
domain of influence of any material point in the neighborhood
of a crack. The connective domain of influence for different ma-
terial points inside the support of the meshfree shape function,

where the meshfree shape function is evaluated, has changed.
Those changes may not be continuous as a material point moves
toward to the crack tip. This situation is illustrated in Fig. 7(c).
Shown by Fig. 7(c), as a material point approaches to the crack
tip, the domain of influence of a material point suddenly changes
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6 S. LI AND C. B. SIMONSEN

FIG. 6. Meshfree shape function along crack surfaces (II).

from a half circle to 3/4 of a circle, and with a slight move
towards the right or down, the domain of influence of a material
point will become almost a full circle except the crack line. This
sudden change of domain of influence is the source of strong
discontinuity that appears in the profile of the meshfree shape
function.

Some believed that such discontinuity in the meshfree shape
function may affect the performance of meshfree shape functions
and hence affect the accuracy of the crack tip interpolation field.
In fact, Belytschko and his co-workers were developing other
methods, for instance the so-called diffraction method, to avoid
having discontinuous meshfree shape functions near the crack
tip region.

Nonetheless, no definitive evidence has been found to link
the discontinuity of meshfree shape function with poor interpo-
lation accuracy. It is still an open question to assess the effect
of such discontinuity of meshfree shape functions, since the
completeness of meshfree interpolation near the crack tip is not
affected by such discontinuity. Therefore, in our numerical sim-
ulations, close to a crack tip the meshfree shape function with
discontinuity is used without any further modifications.

3. CONSTITUTIVE MODELINGS
In this work, we consider fracture of inelastic solids under-

going finite deformations. For inelastic large deformations, the
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 7

FIG. 7. Strong discontinuity of a meshfree shape function at a crack tip.

deformation gradient, F, may be decomposed as

F = Fe · Fine [3.1]

where Fe describes elastic deformations and rigid body rota-
tions, and Fine represents inelastic deformations. The rate of
deformation tensor, D, and the spin tensor, W, are the sym-
metric and anti-symmetric parts of the spatial velocity gradient
L = Ḟ · F−1, i.e.

D + W = Ḟ · F−1 = Ḟe · Fe−1 + Fe · Ḟine · Fine−1 · Fe−1 [3.2]

and

D := Di j ei ⊗ e j , Di j := 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
[3.3]

W := Wi j ei ⊗ e j , Wi j := 1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
[3.4]

where vi are the velocity components.
Two inelastic constitutive relations have been used in our

numerical simulations: (1) The Gurson-Tvergaard-Needleman
(GTN) model and (2) a thermo-viscoplastic material.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 1

1:
43

 1
1 

A
ug

us
t 2

01
5 



8 S. LI AND C. B. SIMONSEN

(a) Gurson-Tvergaard-Needleman Model
Consider the rate form constitutive model. The rate-of-

deformation tensor D is decomposed into additive elastic and
plastic parts,

D = Del + Dpl [3.5]

The Jaumann rate of the Cauchy stress is used in hypoelastic
formulation, i.e.

σ∇ J = C : Del = C : (D − Dpl) [3.6]

where the Jaumann rate is defined as

σ∇ J := σ̇ − W · σ + σ · W, [3.7]

where {˙} = d
dt {}, and the elastic tensor is isotropic,

Ci jk� =
(

K − 2

3
G

)
δi jδk� + G(δikδ j� + δi�δ jk) [3.8]

the bulk and shear moduli can be linked to the Young’s modulus
and Poisson’s ratio by

G = E

2(1 + ν)
[3.9]

K = E

3(1 − 2ν)
[3.10]

Define the hydrostatic, deviatoric, and equivalent stresses as

σm = 1

3
σ : I(2) [3.11]

s = σ − σmI(2) [3.12]

σeq =
(

3

2
s : s

)1/2

[3.13]

The plastic rate of deformation is obtained from the following
flow rule,

Dpl = λ̇
∂


∂σ
= λ̇

(
1

3

∂


∂σm
I(2) + ∂


σeq
n
)

[3.14]

where

n := 3

2σeq
s [3.15]

and the yield potential is defined as


 =
(

σeq

σ0

)2

+ 2q1 f ∗( f ) cosh

(
3q2σm

2σ0

)

− (
1 + q2

1 ( f ∗( f ))2
) = 0. [3.16]

In Eq. (3.16), parameters q1 and q2 were introduced by Tvergaard
[1982], [1990] to bring predictions of the original Gurson model

(Gurson [1972]) into a closer agreement with numerical analysis
of a periodic array of voids. The volume fraction of void is char-
acterized by the following function (Tvergaard and Needleman
[1984]),

f ∗( f ) =




f, ∀ f ≤ fc

fc + 1/q1 − fc

f f − fc
( f − fc), ∀ fc < f ≤ f f

1/q1, ∀ f > f f

[3.17]

where fc is the volume fraction of void at onset of coalescence
and f f is the final volume fraction of void. Equation (3.17) takes
into account both effects of void growth and coalescence.

In (3.16), if f ∗( f ) = 0, the plastic yield potential reduces to
von Mises potential of J2 flow theory. The void volume growth
rate is due to both void expansion and and new void nucleation,

ḟ = ḟ growth + ḟ nucleation [3.18]

For incompressible materials, the growth rate of the existing
void is,

ḟgrowth = (1 − f )Dpl : I(2) [3.19]

whereas the void nucleation rate is assumed to be

ḟnucleation = fN ˙̄ε pl

sN

√
2π

exp

[
− 1

2

(
ε̄ pl − εN

sN

)2]
[3.20]

where fN is the volume of void nucleating particles, εN is the
mean value strain, and sN is the standard deviation for strain
distribution.

The plastic strain rate is determined by

˙̄ε pl = σ : Dpl

(1 − f )σ0
[3.21]

and the yield stress obeys a power law,

σ̄0 = σY

(
1 − E

σY
ε̄ pl

)N

[3.22]

where σY is the initial yield stress, E is Young’s modulus, ε̄ pl is
the effective plastic strain, and N is the power index.

Detailed information on numerical integration and constitu-
tive update of GTN model can be found in Aravas [1987] and
Simonson and Li [2004].

(b) Thermo-Elasto-Viscoplastic Model
The second constitutive model used in the fracture test is a

thermo-elasto-viscoplastic solid (see Zhou, Ravichandran, and
Rosakis [1996b] for details).
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 9

The the rate form constitutive equation is

σ∇ J := C : (D − Dvp − Dt ), [3.23]

where the thermal rate of deformation, Dt , is given as

Dt = αṪ I(2) [3.24]

here α is the coefficient of thermal expansion, and the coupled
viscoplastic deformation rate is described by,

Dvp
i j := η̄(σ̄ , ε̄, T )

∂


∂σi j
[3.25]

η̄ = ε̇0

[
σ̄

g(ε̄, T )

]m

, [3.26]

g(ε̄, T ) = σ0[1 + ε̄/ε0]N

{
1 − δ

[
exp

(
T − T0

κ

)
− 1

]}

[3.27]

where both m and N are power indices, ε̇0 is the referential
strain rate, σ0 is yield stress, ε0 = σ0/E , T0 is the room tem-
perature, and both κ and δ are thermal softening parameters.
In Eqs. 3.25–3.27, the effective plastic strain is defined
as

ε̄ :=
∫ t

0

√
2

3
Dvp : Dvp dt [3.28]

and the yield potential of viscoplastic solid is of the von Mises
type,


(σeq , σ0) =
(

σeq

σ0

)2

− 1 [3.29]

For detailed discussion, one may consult a paper by Zhou et al.
[1996].

The local form of the energy equation is

ρ0C p
∂T

∂t
= χτ : Dvp +∇X(JF−1 ·K ·F−T ·∇XT ), ∀ X ∈ �0

[3.30]

where K is the heat conductivity tensor, χ is the fraction of plas-
tic work converted to heat, and C p is the specific heat
capacity.

Considering fast crack propagation, we neglect the effect of
heat conduction. Under the condition of adiabatic heating, we
have

ρ0C p
∂T

∂t
= χσ : Dvp [3.31]

4. MESHFREE SIMULATIONS
The ensuing meshfree simulation is based on the following

total Lagrangian variational (weak) formulation,

∫
�X

ρ0üiδui d�X +
∫

�X

PJiδF T
Ji d�X

−
∫

�X

ρ0 Biδui d�X −
∫

�T
X

T 0
i δui d� = 0 [4.1]

where T 0
i is the components of prescribed traction force on the

traction boundary, �T
X , and P denotes the nominal stress tensor,

which is the transpose of the first Piola-Kirchhoff stress, and
it can be related to the Cauchy stress tensor by the expression,
σ = J−1F · P, ρ0 is the density in referential configuration, and
B = Bi ei is the body force per unit mass.

The boundary conditions in referential configuration are

n · P = T0, ∀X ∈ �T
X [4.2]

u = ū, ∀ X ∈ �u
X [4.3]

It should be noted that the meshfree interpolant used is not
able to represent boundary data via boundary value interpolation.
Therefore, an extra term appears in the weak form (4.1)

∫
�u

X

T0 · δud�X [4.4]

because δu 
= 0, ∀ X ∈ �u
X . On how to estimate this term and

enforce the essential conditions, the readers may be referred to
Li and Liu [2000].

Assume that the trial and weighting functions have the same
form of interpolation,

uh(X, t) =
NP∑
I=1

NI (X)dI (t) [4.5]

δuh(X, t) =
NP∑
I=1

NI (X)δdI (t) [4.6]

where NP is the total number of particles.
The weak form (4.1) will yield the following discrete

equation

Md̈ + fint = fext [4.7]

where M is the mass matrix, and

fext
I =

∫
�T

X

T 0
i (X, t)NI (X )ei d�

+
∫

�X

Bi (X, t)NI (X )ei d� [4.8]

fint
I =

∫
�X

PJi
∂ NI

∂ X J
ei d� [4.9]
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10 S. LI AND C. B. SIMONSEN

FIG. 8. Dimensions of the tension test specimens.

(a) Example I: Gurson-Tvergaard-Needleman Model
In the first example, we simulate ductile fracture of a thin

plate (see Fig. 8).
As shown in Fig. 8, the rectangular specimen has a center

crack embedded in the middle of the plate, which has the initial
length, 0.5 mm. Velocity boundary conditions are prescribed
at both ends of the plate, so it renders the plate under uniaxial
tension loading.

The GTN model is used in the first example. The following
material parameters are used,

E = 211 GPa

ρ = 7800 kg m3

ν = 0.3

σY = 469 MPa [4.10]

q1 = 1.5, q2 = 1.0, q3 = 2.25, f0 = 0.0025,

fN = 0.02, fc = 0.15, f f = 0.25;

εN = 0.3, sN = 0.1. [4.11]

The fracture criteria that we used is a damage based criterion.
Initially, we set up a critical damage value as fracture threshold.
In this example, that threshold is chosen as fcr = 0.12. At
each time step, we evaluate damage value of each particle in the
neighborhood of the crack tip (the circle in Fig. 1). Once the
damage value of a particle exceeds fcr , we declare the particle
as the new crack tip. If damage values of two and more particles
exceed fcr at the same time step, there may be the sign to signal
crack bifurcation.

In the current simulation, we simply choose the particle that
has largest damage value among all the other particles whose
damage values exceed fc as the new crack tip.

Zooming in the crack region, we can observe crack surface
morphology. Fig. 11 shows stress distribution, σ22, around a
crack region. It is a close snap-shot of crack configurations at
two different time instances.

A careful observation of Fig. 11 reveals some important fea-
tures of ductile fracture. First, there is a growing blue region
that indicates a growing region with small normal stress value,
which is an indication of the growth of the traction-free crack
surfaces. This fact proves that the crack surfaces constructed
by automatically adjusting meshfree interpolation field are in-
deed traction-free, σ22 = 0, and it provides the right physics
around the propagating crack tip. Second, the ductile crack sur-
face shows a zig-zag pattern. This zig-zag pattern of rough crack
surface that is the trademark of ductile fracture (see Xia et al.
[1995a,b,c]). To the best of the authors’ knowledge, such unique
a feature of ductile fracture has been difficult to capture in previ-
ous numerical simulations. Third, visible necking due to strain
softening and material instability can be found Figs. 9, 10, and
11.

To test the size-effect, a second numerical simulation is con-
ducted with a larger specimen, 20 mm × 40 mm. The size of the
tension specimen is ten times larger than the specimen used in
the first simulation, and the length of the initial center crack is
5 mm long. The prescribed velocity is also increased to 30 m/s.

The contours of normal stress, σ22, and damage distribution
are depicted in Fig. 12. As may be observed in Fig. 12, the crack
path is not perpendicular to the tension direction as happened
in the first simulation. After initial crack growth, the crack
paths then follow an inclined angle (40◦∼50◦) through the spec-
imen. This suggests that for this particular geometry of the
specimen, the ductility of the specimen increases when its size
increases.

(b) Example II: Thermo-Elasto-Viscoplastic Model
In the second numerical example, the tension test specimen

(Fig. 8) is assumed to be made of a thermo-elasto-viscoplastic
material (See Zhu et al. [1996b]). The dimension of the plate is
20 mm × 40 mm, and the initial length of the crack is 5 mm.
In the numerical experiment, the prescribed tension velocity is
chosen as 20 m/s. The actual material parameters used in the
simulation are tabulated in Table 1.

The fracture criterion for the thermo-elasto-viscoplastic ma-
terial can be chosen either based on the maximum tensile stress
(hoop stress) criterion or based on a critical effective strain crite-
rion. In the particular example reported in this paper, the critical
effective strain criterion is used.

In the process of selecting a new crack tip, we measure the
effective strain at each point in a circle surrounding the crack
tip. An empirical strain value is chosen as the critical effective
strain (εcr = 0.15). When the effective strain of a particle in-
side the circle surrounding the crack tip reaches to the critical
effective strain, we declare that point the new crack tip. Once
the new crack tip is determined, one can connect the new crack
tip with the old crack tip in a straight line, which depends on the
coordinates of new crack tip and old crack tip.

Once the linear equation of the line segment connecting the
old and the new crack tips is established, one can apply the pro-
posed parametric visibility condition to modify the connectivity
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 11

FIG. 9. The stress contours: σ11 (a), (b), (c), (d) and σ22 (e), (f), (g), and (h).
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12 S. LI AND C. B. SIMONSEN

FIG. 10. Shear stress σ12 contours (a), (b), (c), (d) and damage distribution (e), (f), (g), and (h).
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 13

FIG. 11. Crack surface morphology: σ22 contour for the small specimen (a) and (b), damage f contour for the large specimen (c) and (d).

map and hence to construct the new and traction-free crack
surface.

In the numerical example reported, the critical effective strain
is chosen as εcr = 0.15 and the other material properties of the
thermal-viscoplastic material are listed in Table 1.

In Fig. 13, the stresses components, σ12 and σ22, are displayed
at various time instances during the fast crack propagation pro-
cess. Since the critical effective strain criterion is used to grow
crack, the crack path takes an almost a 45◦ angle with the hor-
izontal line. This is because that the maximum effective strain
occurs at the direction that forms almost 45◦ angle with the
remote vertical direction loading, whereas in GTN model, the
maximum damage always occurs ahead of the crack tip almost
horizontally.

It is interesting to note that in Fig. 13(a), (b), (c), and (d),
one can find that across the growing crack surfaces, shear stress,

σ12, changes its sign. This is shown by the fact that there is a
blue region (lower shear stress value) below the crack surface,
and there is a red region (higher shear stress value) above the
crack surface. First, this fact again verifies that the crack surface
constructed by meshfree interpolation is indeed traction free,
i.e. both normal stress and shear stress are zero across the crack
surface. Second, this fact shows the feature of a local mixed
mode fracture. Third, from Fig. 14, one can observe the tem-
perature induced thermal-softening and its consequence: strain
localization. Adiabatic shear bands can be observed from both
temperature profile as well as effective strain rate profile.

All the numerical experiments reported in this paper have the
same center crack geometry, which may not be the best config-
uration to study ductile fracture. Nonetheless, the main focus of
this paper is the crack growth algorithm rather than the physi-
cal features or mechanisms of ductile fracture, which has been
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14 S. LI AND C. B. SIMONSEN

FIG. 12. The contours of normal stress σ22: (a), (b), (c), (d) and damage distribution: (e), (f), (g), (h).
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 15

TABLE 1
Material parameters used in the computer simulations

Parameter Value Definition

ε̇0 1 × 10−3s−1 Reference strain rate
m 70 Rate sensitivity parameter
σ0 200 MPa Yield stress
ε0 σ0/E
N 0.01 Strain hardening exponent
T0 293 K Reference temperature
δ 0.8 Thermal softening parameter
κ 500 K Thermal softening parameter
E 200 GPa Young’s modulus
ν 0.3 Poisson’s ratio
ρ0 7830 kg m−3 Mass density
C p 448 J (kg · K)−1 Specific heat
α 11.2 × 10−6 K−1 Coefficient of thermal expansion
χ 0.9 The fraction of plastic work converted to heat
ε̇r 4.0 × 104 1/s In a range (1.0 × 104 1/s ∼ 6.0 × 104 1/s)

the main subject of an article by the same authors (Simonsen
and Li [2004]). In that paper, a more realistic three-point bend-
ing test is simulated by using the proposed crack growth algo-
rithm, and the numerical results are compared with experimental
data.

5. DISCUSSIONS
There are a few important technical issues worth discussing.
First, there have been regularized versions of the Gurson

model proposed (e.g. Pan and Huang [1994]); however, the digi-
tal version of a regularized Gurson model is still developing. The
GTN model used in this simulation is the standard version used
in numerical computations, which has been extensively used in
research to study ductile failures; recent works include: Pardoen
and Hutchinson [2000], Benzerga [2002], Becker [2002], and
Besson and Guillemer-Neel [2003]. The boundary-value prob-
lems involved with the GTN model are not completely ill-posed,
since plastic dissipation due to the damage is considered in the
numerical computation. Damage or void growth introduces a
length scale in the current formulation used. Because this length
scale is very small, strong mesh dependency and mesh sensi-
tivity are expected in finite element simulations. One of the ad-
vantages of combining meshfree methods with GTN model to
simulate ductile fracture is that the meshfree interpolation may
provide a numerical smoothing effect or regularization effect.
This is because that the meshfree interpolation is a non-local
interpolation, and it tends to smooth out or to smear the high gra-
dient displacement field or even discontinuous field caused by
strain localization. Even though this effect strongly depends on
meshfree particle distribution, but it is very helpful because the
conventional GTN model may not be well regularized, though
damage-induced plastic dissipation has been taken into account
in the current simulation.

Second, by using meshfree simulation alone, one can not
eliminate mesh sensitivity, in this case, the particle distribution
dependency. To a certain extent, the numerical results presented
in this paper may alter when different particle distributions are
employed. Nevertheless, the authors believed that the main fea-
tures captured in this study will remain, such as the zig-zag crack
surface morphology. In fact, the initial particle distribution used
in the simulation is almost uniform throughout the domain. They
are placed in a square pattern and they are symmetric based on
the mesh generator’s precision, which may introduce a small ran-
dom error distribution for the particle distribution considered.

The asymmetric fracture pattern obtained in simulations can
be attributed to the following factors: (1) The simulation is based
on the explicit computation. In each time step, fracture criterion
is being checked within a circle in front of the corresponding
crack tip. Once an old crack tip moves to its new position, new
crack surfaces are constructed, new particles are created due par-
ticle splitting algorithm, and the crack tip field is re-interpolated.
In explicit computations, individual crack growth is simulated
in the order of initial numbering. This may result in an asym-
metric interaction between cracks, which, in fact, is a reflection
of reality. (2) Ductile fracture is involved with material instabil-
ities, and there are quite a few bifurcation modes in front of a
crack tip, which are extremely sensitive to small perturbations.
A slight perturbation in round-off error or slight variation on
random error distribution of particle positions will cause one bi-
furcation mode active and suppress the other bifurcation modes.
Since the machine precision perturbation is random in time and
particle position error is random in space, one should expect dif-
ferent crack growth patterns for different cracks, though overall
symmetric or anti-symmetric patterns can still be observed in
the simulations. This is again a reflection of the reality of duc-
tile fracture, because the randomness of numerical error may
mimic the randomness spatial inhomogeneities.
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16 S. LI AND C. B. SIMONSEN

FIG. 13. Stress contours: σ22 (a), (b), (c), (d) and σ12 (e), (f), (g), (h).
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MESHFREE SIMULATIONS OF DUCTILE CRACK PROPAGATIONS 17

FIG. 14. Temperature contours (a), (b), (c), (d) and effective strain rate contours (e), (f), (g), (h).
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18 S. LI AND C. B. SIMONSEN

The micromechanics of void growth and its damage intro-
duces an intrinsic length scale. Physically, this is the dimension
of representative volume element. When the length of the par-
ticle spacing approaches this scale, one should expect the con-
vergence of numerical computations, though this has not been
demonstrated in this paper.

6. CONCLUSION
In this work, we have developed a novel meshfree interpo-

lation procedure to adaptively re-construct ductile crack sur-
faces with different fracture criteria. The numerical computa-
tions show that the proposed procedure can accurately simulate
crack growth and propagation in ductile materials undergoing
finite deformation and large scale yielding.

This work’s contributions to computational fracture mechan-
ics and meshfree methods include: (1) the new parametric vis-
ibility condition; (2) the new particle splitting algorithm; and
(3) its ability to describe inelastic solids with evolving discon-
tinuity and its ability to adapt finite deformation and large scale
yielding.

Moreover, the proposed meshfree procedures are simple,
robust, and efficient, which can be easily extended to three-
dimensional (3D) simulations, and it can be used to simulate
ductile crack propagation in three dimensional objects.
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