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ABSTRACT 

An analysis is performed for the transient response of a semi-infinite, anti-plane crack propagating in a 
hexagonal piezoelectric medium. The mixed boundary value problem is solved by transform methods 
together with the Wiener-Hopf and Cagniardde Hoop techniques. As a special case, a closed form 
solution is obtained for constant speed crack propagation under external anti-plane shear loading with the 
conducting electrode type of electric boundary condition imposed on the crack surface (a second type of 
boundary condition is considered in Part II of this work). 

In purely elastic, transversely isotropic elastic solids, there is no antiplane mode surface wave. However, 
for certain orientations of piezoelectric materials, a surface wave will occur-the Bleustein-Gulyaev wave. 
Since surface wave speeds strongly influence crack propagation, the nature of antiplane dynamic fracture 
in piezoelectric materials is fundamentally different from that in purely elastic solids, exhibiting many 
features only associated with the in-plane modes in the elastic case. 

For a general distribution of crack face tractions, the dynamic stress intensity factor and the dynamic 
electric displacement intensity factor are derived and discussed in detail for the electrode case. As for in- 
plane elastodynamic fracture, the stress intensity factor and energy release rate go to zero as the crack 
propagation velocity approaches the surface wave speed. However, the electric displacement intensity does 
not vanish. Copyright 8 1996 Elsevier Science Ltd 

Keywords: A. crack propagation and arrest, A. dynamic fracture, A. electromechanical process, 
B. piezoelectric material, C. piezoelectric effect. 

1. INTRODUCTION 

More than a century has passed since the brothers Curie discovered the piezoelectric 
effect in 1880 (Cagniard, 1939). Today, over a hundred piezoelectric materials or 
composites are known (Pohanka and Smith, 1988). Due to their intrinsic electro- 
mechanical coupling behaviors, piezoelectric materials, particularly piezoelectric cer- 
amics, have been widely used for applications such as sensors, filters, ultrasonic 
generators and actuators. 

More recently, due to emergence of piezoelectric composites, the use of piezoelectric 

t Part of this work was carried out while the author was a member of the Department of Aerospace 
Engineering, Mechanics & Engineering Science, University of Florida, U.S.A. 
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materials has gone beyond the traditional application domain of small electric devices. 
Since Bailey and Hubbard’s pioneer work (Bailey and Hubbard, 1985), piezoelectric 
materials have been employed as integrated active structural elements. These adaptive 
structures are capable of monitoring and adapting to their environment, providing a 
“smart” response to the external conditions. The interested reader is referred to a 
state of art survey by Rao and Sunar (1994). 

In some of these applications, a major concern in practical operations has been 
mechanical failure of the piezoelectric layers and the interface to the bulk material. 
Fracture on the macro- and the micro-scale can lead to undesirable mechanical and 
dielectric responses for these advanced materials. The fracture process for piezo- 
electric materials is thus of some practical interest, and has recently been the subject 
of active research. Parton (1976, 1988) and Deeg (1980) appear to have been the first 
to conduct systematic theoretical research in this area, while the last decade has seen 
many contributions, such as McMeeking (1989a, b, 1990), Li et al. (1990), Pak (1990, 
1992a, b), Sosa (1990, 1991,1992), Suo et al. (1992), Wang (1992), Zhang et al. (1992) 
and Maugin (1993, 1994). 

The main results that appear in the literature to date can be summarized as follows : 

-In a homogeneous piezoelectric material, the stress and induced electric fields 
exhibit Y-‘I* singularity in the vicinity of the crack tip. [For interface cracks, the 
situation is complex, in more ways than one (Suo et al., 1992).] 

-Electric fields may promote or retard crack propagation. 

This literature focuses almost entirely on the static electro-mechanical analysis ; much 
less attention has been paid to dynamic crack problems. However, there are strong 
reasons to anticipate that piezoelectric behavior will strongly affect dynamic crack 
growth, because of some well-known phenomena in surface wave propagation. 

Piezoelectricity enables the existence of certain kinds of bound surface wave. For 
instance, in piezoelectric materials with a symmetry of class C,,( = 6 mm), an acoustic 
surface wave-the Bleustein-Gulyaev wave-may occur if one chooses the sixfold 
axis c normal to its sagittal plane (Bleustein, 1968; Gulyaev, 1969). This SH mode 
surface wave has deeper penetrating length and lower energy loss than does a Rayleigh 
wave (Maugin, 1983) ; therefore, it is not only easily excited, but also easily detected. 
It is thus of fundamental importance in the related wave scattering and inverse 
scattering problems in piezoelectric materials. Since dynamic crack extension is a 
process of crack surface growth, we expect surface wave characteristics to be intrin- 
sically linked to crack behavior, as is the case in the purely elastodynamic case for the 
in-plane modes of crack growth. 

In this paper, we explore the anti-plane dynamic growing crack problem. Owing to 
its mathematical simplicity, the problem of anti-plane dynamic propagation in an 
elastic medium can be solved in an exact and elementary manner. However, as a 
benchmark problem of dynamic fracture mechanics, the elastic anti-plane problem is 
lacking a physical “obligatory sophistication”, because no anti-plane mode surface 
wave exists. In contrast, the anti-plane piezoelectric problem provides both math- 
ematical simplicity and interesting physics. This combination of utilitarian and aes- 
thetic appeal echoes Viktorov’s comment on the discovery of the Bleustein-Gulyaev 
wave : “[it] adds a flavor of elegance to the family of surface waves” (Viktorov, 198 1). 



Piezoelectric crack propagation-I 1801 

Specifically, the motion of a semi-infinite, anti-plane moving crack in an unbounded 

6mm piezoelectric medium is studied for the case where a concentrated point load is 

applied on the crack surfaces. On the line ahead of the crack tip, the fundamental 

solutions are obtained in an explicit manner, so that the intensity factors are derived 
for the general distribution of applied stress loading. However, the problem is made 
more complex than the corresponding elastodynamic case by the variety possible in 
the electrical conditions on the newly created crack faces. 

From the surface wave standpoint, there exist two kinds of Bleustein-Gulyaev 
wave: one compatible with an “electrode” boundary condition, the other with a 

“vacuum abutted” boundary condition. In the fracture mechanics literature, previous 

work has been considered “conducting” and “insulating” crack (Suo, 1993), but the 
influence of this distinction on the dynamic behavior has not been investigated. As we 

will show in this paper and its sequel, the boundary conditions necessitate somewhat 

different treatments of the problem. 
In this paper, we consider the “electrode” case, for which the crack faces are 

assumed to be conducting and grounded. As will be seen, the solution presented here 
may be interpreted more broadly than just as being a particular model of a “con- 

ducting crack”. The “vacuum” case, where the crack is assumed to contain an 
impermeable medium, is considered in Part 11 of this work. 

While not as rich as the vacuum case, the electrode case has some interesting 
features. When the crack propagation speed is below the “electrode” Bleustein 
Gulyaev wave velocity 

c bg = 

the asymptotic behavior of the field variables is similar to that of static fracture 

solutions, which exhibit r-‘j2 singularity for both stress and electric displacement. The 

dynamic stress intensity factor, however, goes to zero when the crack speed approaches 
cbl: in contrast to the anti-plane elastodynamic case, where the dynamic stress intensity 

factor goes to zero only at the longitudinal shear wave speed. Curiously, however, 
the dynamic intensity factor for electric displacement does not vanish at the Bleustein- 

Gulyaev wave speed. 

2. FORMULATION OF THE PROBLEM 

2.1. Governing equations 

The body of literature concerning the mechanics of piezoelectric materials is enor- 
mous ; it suffices to refer to a few influential works (Cady, 1946 ; Berlincourt et al., 
1964 ; Tiersten, 1969 ; Auld, 1973). Here the notation of Tiersten (1969) is followed 
to write the governing equations for linear piezoelectric materials as follows : 

-equations of motion 

o,,,i = p, ; (1) 
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-electrostatic charge conservation 

Di,i = 0 ; (2) 

-strain-displacement relations 

Eij = k(Ui.j+Uj.i) ; (3) 

--electric fieldelectric potential relations 

& = -4,k; (4) 

-linear, piezoelectric constitutive relations 

(~ij = C&EU - ek,jEk, (5) 

D, = eikfEkl+&Ekr (6) 

where c$, are the elastic moduli, ekli are the piezoelectricity coefficients, and EC. are the 
dielectric permittivities (with the superscript E or S indicating material constants 
measured under conditions of constant electric field or constant strain, respectively); 
-mechanical boundary conditions 

a,,n, = T, on SO; ui = ai on S,; (7) 

--electrical boundary conditions 

D,ni = -qs on S, 4 = 6 on S,, (8) 

where S,,, S,, and SD, S, identify appropriate subsets of the domain boundary. 
In this paper, attention is focused on the class of piezoelectric materials with 

hexagonal symmetry (6~2~2). Materials of this symmetry class (single crystal or poled 
polycrystals) have been used for many different industrial purposes, PZT ceramics 
for example, because of their high piezoelectric coupling coefficients. 

Let X, Y and Z denote regular Cartesian coordinates, where the Z-axis orients in 
the direction of the sixfold axis of a piezoelectric crystal or in the poling direction of 
a poled piezoelectric composite. The governing equations simplify considerably if we 
are only interested in the out-of-plane displacement component and the in-plane 
electric field components, i.e. 

ux = 24y = 0, uz = w(X, Y, t), (9) 

Ex = E,(X, Y, t), E, = Ey(X, Y, t), Ez = 0. (10) 

Switching from tensor to Voigt notation (Parton and Kudryatvsev, 1988), the sim- 
plified governing equations have the form 

cf4V2w+e,5V24 =pG, (11) 

e,,V2w-bf,V'$ = 0, (12) 

where V2 is the two-dimensional Laplacian operator, V2 4 (a’/aX’) + (a’/8 r’) ; p is the 
mass density ; cE 44, e,5 and .sfI are elastic, piezoelectric and dielectric constants, respec- 
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tively, and the superposed dot indicates material differentiation with respect to time. 
In what follows, we shall drop the superscript E and St if no confusion is caused 
thereby. For easy reference, the nontrivial constitutive equations are 

Following Bleustein (1968), a new function I,$ is introduced as 

(17) 

By substituting (17) into (11) and (12), the system of equations is transformed into 
the canonical form 

VI) = 0, (19) 

where 

is the piezoelectrically stiffened elastic constant. 

In terms of independent variables w and $. the constitutive equations (13)-(16) 
can be rewritten BS follows 

(23) 
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Fig. 1. The running crack subjected to concentrated point load. 

D =--E !!k Y ‘1 ay 

2.2. Semi-infinite moving crack 

Consider a semi-infinite crack located at Y = 0, X < 0 in an unbounded pie- 
zoelectric body (Fig. 1). It is assumed that the crack is in a static equilibrium state 
when t < 0 and its leading edge is parallel to the poling direction of the piezoelectric 
body. At t = Of, a pair of concentrated longitudinal shear forces is applied on the 
surface of the pre-existing semi-infinite crack and then the crack is assumed to 
propagate at a constant speed v. 

For dynamic fracture problems, it is usually convenient to study the crack propa- 
gation in a moving coordinate system (x, y, z), with 

x = X-vt, y = Y, z = z. (25) 

In addition, we define the nondimensional parameter 

s &% (1 - 02/c*)‘l2, (26) 

where 

c k (cJp>” (27) 

is the speed of the piezoelectrically stiffened bulk shear wave. 
By making use of (23, the equations of motion in the moving coordinate system 

are cast into the form 

,azw axw 2v a*w 1 a% 

’ ax’+Q+Paxat 2 at* - 0, (28) 

fY+!xo. 
w (29) 

As is customary in linear transient crack growth problems (Freund, 1990), we inves- 
tigate the perturbation solution corresponding to transient loading of the existing and 
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newly created crack faces, under the assumption that the pre-existing state is quiescent 
and can be removed by superposition. For such a solution, the remote boundary 
condition may be taken as 

0,*(x, y, t) = 0 I IYI + co. 
D&Y, 0 = 0 

(30) 

Though different in origin, these conditions play a similar role to a wave radiation 
condition. 

Following the approach introduced by Freund (1972a), we take as the fundamental 
problem that of a concentrated crack face load with transient crack growth, so that 
the following mechanical boundary conditions are imposed 

i 

c+(X,O, t) = -f?(x+?Jt)H(t) x < 0 (31a) 

W(X, 0, t) = 0 x30 (31b) 

where the antisymmetry of the loading and initial conditions has been used to intro- 
duce the second condition. 

In a purely elastic solid, the exact solution of the above problem may be straight- 
forwardly obtained (Ma and Chen, 1992). The piezoelectric case is more complicated, 
with most of the difficulty stemming from the imposition of the electrical boundary 
conditions. 

2.3. Electrical boundary conditions 

The issue of how to impose the electrical boundary conditions along the crack 
surfaces in piezoelectric fracture modeling is a controversial one (Suo et al., 1992 ; 
Pak, 1990). The difficulty is due both to the diversity of physical reality and to 
mathematical complications. McMeeking (1989b) has noted in the context of purely 
electrical loading that : 

If a closed slit is cut into a homogeneous dielectric, the opposing surfaces are 
still in contact. Consequently, the material is effectively seamless as far as an 
electrostatic field is concerned and the field will not be perturbed by the presence 
of the crack. Exceptions arise when the crack behaves as a conducting surface 
or is filled with a vanishingly thin medium which is impermeable to the electric 
field. 

So far, several electric boundary conditions on the crack surface have been pro- 
posed : 

effectively seamless slit (Parton, 1976) : c$’ = &, 0,’ = D; ; 
-impermeable void (Li et al., 1990; Pak, 1990) : 0,’ = D,; = 0; 
crack filled with conducting fluid (McMeeking, 1989a, b) : 4’ = &. 

Each of these assumptions provide useful analytical simplification, though there is 
not general agreement on their physical reasonableness, particularly in the case of a 
static finite crack. Moreover, these conditions appear to exclude some of the surface 
wave phenomena examined in our work, in particular those discussed in the vacuum 
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boundary condition case. Here we consider boundary conditions of the type dealt 
with in the electroacoustic literature (Bleustein, 1968 ; Gulyaev, 1969; Auld, 1973). 

Two kinds of electric surface conditions are usually considered. In the first case, 
the crack surface is assumed to be covered with a thin metal film with infinite 
conductivity, which shorts out the horizontal component of E at the crack surface 
but does not affect the mechanical boundary conditions. This metallized interpret- 
ation, which was elaborated by Bleustein (1968), is equivalent to assuming that the 
crack surfaces are coated with an infinitesimally thin, perfectly conducting electrode 
that is grounded, i.e. 

f#+,O+,t) = &x,0-,t) = 0 -cc <x < 0. (32) 

Although this metallic coating condition is chiefly a mathematically convenient prop- 
osition, it offers a good approximation for many electroacoustic problems and has 
become a standard benchmark problem (Auld, 1973). Moreover, this situation actu- 
ally exists, if there is a thin conducting film embedded in the middle of the piezoelectric 
body and a crack propagates along this interface, as might occur in piezoelectric 
composite layer structures. This boundary condition is also appropriate if the crack 
surfaces are in a state of electrical contact, or if the crack is filled with conducting gas 
or liquid. 

The full set of boundary conditions for the electrode case considered in this paper 
can be summarized as 

(TJx,O, t) = -G(x+vt)H(t), x < 0, (33) 

w(x,O, t) = 0, x 2 0, (34) 

f#l(x,O,t) =~W(x,O,1)+~(X,O,f) =o, -co <x-co, (35) 

with quiescent initial conditions 

W(&Y, 0) = 0, k(X,Y, 0) = 0, (36) 

$(X,Y,O) = 0, 3/(&O) = 0. (37) 

Note that because of the antisymmetry of the problem, it will also be true that 4 
vanishes on the line ahead of the crack. 

For the second kind of electric field boundary conditions (the “vacuum” case), the 
void formed by an opening crack is assumed to be a vacuum region. Therefore, there 
is no free charge around the surfaces of cracks, but there will be a nonzero potential 
4 in the vacuum region. The extent to which this is appropriate has been discussed in 
the finite crack case, but is likely to be a good approximation to reality in the long 
crack case, since the relative permittivity of air is close to 1. 

From a mathematical point of view, the solution procedure becomes more com- 
plicated in this case, since the equations must be solved in multiple regions-the 
piezoelectric region and the vacuum region-which interact at the crack surface. 
(Furthermore, external electric loading may be applied to the crack surfaces under 
the second type of boundary conditions.) The two cases have significantly different 
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characteristics with respect to dynamic energy release rate, as is discussed in Part II 
of this work. For the moment, we proceed with the simpler case. 

3. INTEGRAL EQUATION SOLUTIONS 

3.1. Transform methods 

In this section, the standard procedure of multiple Laplace transforms is employed 
to derive the solutions of the above mixed initial-boundary value problem. The 
multiple transforms are introduced for the variable pair (x, t). To suppress the time 
variable t, the usual, one-sided Laplace transform is applied 

f*(x,y,p) = 
s 

mf(x,~. t) exp(-pt) dt, 
0 

where the inversion integration is taken over the usual Bromwich path. 
To suppress the spatial variable x, the two-sides Laplace transform is used 

s^*(i,Y,P) = 
s 

cc f*(x,Y,P)exp(-prx)dx, 
--cc 

f*(x,.~,p) = & 
s 

./%,Y,P) exp(p0) dc. 
Br2 

After transformation, the governing equations (28) and (29) become 

+*g,y,p> = 0, 

d2 
_ -P2(E2 -C2) 
dy2 1 @Ky,p) = 0. 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

Consideration of the boundary conditions at infinity and of the problem’s anti- 
symmetry suggests choosing solutions of the form 

1 LA(i) exp(-w.4 Y > 0 
G,*(i,Y,P) = pm 

- iN) exp(Pmy) 
Pm 

Y < 0. 

(44) 
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: 

L N3 ew( -p/b) 

4m.w) = Pm 

- f WI exp(&) 

Y>O 

(45) 

y < 0. 

The concentrated loading boundary condition dictates the choice m = 2, and the 
coefficient functions c( and b may be written as 

(46) 

(47) 

Here E is introduced as an auxiliary (positive real) perturbation parameter, with the 
understanding that whenever E is present, the final expressions involved are always 
evaluated at E = 0 at the end of the manipulation. 

Remark 1. The technique of introducing an auxiliary parameter has been 
widely used in applying transform methods to solve partial differential equations 
(there are many useful examples in Duffy’s book (1994)). In particular, Broberg 
(1973) used the approach to facilitate the Wiener-Hopf decomposition that 
arose in his analysis of elastoplasto-dynamic crack growth. 

However, one may in fact motivate the “trick” for our present application by 
careful consideration of the quasi-static approximation implicit in the original 
governing equations. The basic hypotheses of the quasi-static approximation 
(Auld, 1973) are : first, the rotational electric field can be neglected ; second, all 
the electromechanical wave solutions travel at velocities compared to which the 
speed of electromagnetic waves, c,, is very large. From this point of view, it is 
physically plausible to write (43) as 

d2 
_ -P2(E2-12) 
dY2 1 pKY,P> = 0, 

where E is of order 0(1/c,). A detailed account from this perspective of the 
electromagneto-elastic equations in linear piezoelectric materials and the related 
SH mode electromagnetoacoustic surface wave has been carried out recently by 
one of the authors (Li, 1996) ; by taking into account the full Maxwell equations, 
a generalized wave speed equation for SH mode electromagnetoacoustic surface 
wave is derived, which reduces to Bleustein-Gulyaev wave when c/cr + 0. 

In (44) and (45), Re(cr([), /3(i)) 2 0 in the plane with branch cuts 

CI: Im([) = 0 Re([) < -l/(c-_y), and Re(B) > l/(c+v), 

j?: Im([) = 0 Re(i) < -E, and Re([) > E. 

From the transformed electric boundary condition 

(49) 

(50) 



Piezoelectric crack propagation-I 1809 

= 0, - co<x<o, (51) 

it follows that 

(52) 

Defining 

(53) 

the integral representations ( for y > 0) can be expressed in terms of a single unknown 
function 

MO exp( --P(v - ix>) di 

qlX,Y,P) = 2 s [g+im 

PW(I) exp (-_pUb-C-4) dL ” 
i,,-1u 

(57) 

where the integration paths are restricted by 

- l/(c-u) < [, < l/(c+zi), (58) 

-E < is < E. (59) 

For displacement and electrostatic potential, the integral representations reduce to 

1 

s 

i,ilcu 

“*(x,Y,P) = 2nip 40 exp ( -P(V - ix)> di, (60) ;,_ja 
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-s $+im 
4i)ex~(-~@~-bWi (61) 

is -im 

3.2. Wiener-Hopf 

In order to apply the Wiener-Hopf technique, it is expedient to expand the mech- 
anical boundary conditions over the full range of the x-axis. This can be done by 
introducing new unknown functions in the usual way 

c~~~(x,O+,t) = o+(x,t)-d(x+ut)H(t), --cg <x < co, (62) 

W(X,O+,t)=W_(X,t)+0, -cO<x<<. (63) 

with 

w-(x, t) 4 
i 

0 x20 

W(X,O+,t) x < 0. 

After suppressing both x and t, 

qz(i,Of~P) = - +0-kJB(i))A(i), 

A(i) 
bc*g, Of ,p) = __ 

P2 . 

On the other hand, the transformed mechanical boundary conditions yield 

a,z(c,O+,p) = c, + L’ 
P PU (i-l/4’ 

l-- (0 
s*g, o+ ,p) = ~ 

P2 ’ 

where 

m C+(5) ii P 
s 

a*, (x, P) exp( -PM dx, 
0 

0 

U_(i) 4 p* 
s 

WE (x,p) exp( -p(x) dx. 
-02 

Comparison of (66) and (67), with (68) and (69) leads to 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 



Piezoelectric crack propagation-I 1811 

-C44(a(i)-_k,2B(I))A(I) = C+(i)+ ;&q> 
A(i) = UP(r)? 

which leads to the standard Wiener-Hopf equation 

(72) 

(73) 

C+(i)+ l 
4-l/4 

= f4i) u- (ih (74) 

where 

K(i) A -%(M)--k,zB(i)). (75) 

The bracketed term is recognizable as the Bleustein-Gulyaev wave function. K(c) 
may be rewritten in the form 

m) = -~44(S--k,2)J(1/(Cbg++V)-~i)(l/(Cbg-~)+i)S(i), (76) 

where 

(40 -CP(O> 
SK) A (S--k,Z)J(l/(cbg+u)-i)(l/(Cbg-U)+i)’ 

and 

c 

(77) 

(78) 

denotes the Bleustein-Gulyaev wave speed in a piezoelectric half space shielded with 
electrode (Bleustein, 1968 ; Gulyaev, 1969). Note that S(c) + 1, as /[I + co. 

The key to solving the Wiener-Hopf equation (74) is the product factorization of 
S(i) ; that is, we seek factors such that 

SK) = S+ (OS - (0, (79) 

where the functions S+(c) and S(i) are sectionally analytic with respect to their 
respective half planes P+(c) and P_(i), where (see Fig. 2) 

P+(i) 4 {[EC I Wi) > -E>, (80) 

P-(i) g (L'ECl Re(i) < E}. (81) 

Because of the simple structure of the Bleustein-Gulyaev wave function, one can find 
its roots exactly in simple algebraic form, which facilitates the ensuing product 
decomposition. From Fig. 2, it is evident that there are three branch points along 
each integration contour 

in p+(c): {-&, -l/(c-uh -1/(%-u)}, 

in P_(i): (-&, -l/(c-u), -l/(cbg-u)}. 

Consequently, the product decomposition here differs from that of the Rayleigh 
wave function, which only has two branch points along each integration contour 
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c - Plane 
I 

h(r) 

-l/(cbg - v) 
-Ei 

1 I 

-l/(C - v) j 

l/(C + v) Re cc, 

l/(cbs + v) 

Fig. 2. Complex c-plane showing the l’ocations 0; branch points of function S(c). 

(Baker, 1962; Freund, 1990). The decomposition may be carried out by employing 
the Cauchy integral theorem to express the product terms as contour integrals around 
certain isolated branch cuts. The beauty of this approach is that one can form a 
precise factorization by evaluation of a contour integral, which is difficult to obtain 
by inspection. The details of this procedure may be found in Appendix A. The final 
product factorization results are listed here 

where 

l/(c-0) 
arctan(E( - q)) $ , 

(83) 
1 

Y_(i) Aexp -- t ,r 

I/(c+u) d? 1 
arctan( n_~, 

c I ” JE ‘I b 

and 

k:rl 
E(r) A S(1/(c-u)+yl)“2(1/(c+0)+‘~~ 

(84) 

Functions S_(c) and S+(i) are analytic, single-valued and nonzero in the half plane 
P_(c) and P+(i), respectively. The overlap region is 
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--E < Re(c) < E, (85) 

Substituting (82) into (79) and (76) one can rearrange (74) such that 

c+ (C)D+ (0 

J_ + v(i- l,V)?& 

= _~44(S_k,Z)~~~_(i)U~(i), 

where 

(86) 

1 
D+(i) A s+(5) 

Let 

where 

1 
9+(1/o) a Y+(l,v). 

(87) 

(88) 

(89) 

Equation (86) can now be expressed as 

E+(i)F+([)+ F+(i) = -c,,(s-k,2) (l’(cbg+u)-i) Y_([)U_([). 
UK - 1 iv) JKTm (90) 

In order to separate the second term in (90) into two sectionally analytic functions, 
additive factorization is performed. By inspection, a possible additive decomposition 
is 

( 1 1 
,(i_1!‘v)(F+(i)-Fc(l/c)) + 

)+ (U%!l/;:)). 9 

where the constant F, (1 /u) is evaluated as 

0 (%g-D) ~+(llv) 
F+(l/u) = -______ 

J c &j (l-Q’/” 

The Wiener-Hopf equation can be rearranged into the desired form 

C + (OF+ (0 + uct: l,u) (F+(i)-F+Ulu)) 

(91) 

(92) 

(93) 
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Equating both left and right hand side of (93) to an entire function, say ET(c), 

-WI) = ~+(W+ (0 + $ l,u) v+ (0 -~+(1/4), 

-_Eqg = c44(S--k,2) (ll(ctlg+4-0 
JmGiT 

y- (i) u- (0 + If;i’l’;;;, . (95) 

Integrable energy density requires that as x + Of, 

lor(x,P)l - ~(I~-“*l). (96) 

Continuity of displacement requires that as x + O-, for some q > 0 it is the case that 

IW’(X,P)I - ~WQI). (97) 

From the Abel theorem (van der Pol and Bremer, 1955) it follows that 

lim x”‘o:(x,p) - hii j”*C+ (0 * C+(i) - O(i-I’*), (98) x-ro+ 

lim J~l-~w?(x,p) - ,$ni l[l’+“U_([) * U_(i) - 0(i--((“2)+q)). (99) 
X-O- 

It follows that as jr1 --) cc, 

x + KY+ (0 + ~~111!6)(Fi(i)-F,(l/u))l - Wli-‘I) (100) 

and 

2 (l/(cbg+4-0 
e,,O-k,)~~~_(I)U_(i)+ $;“& - 0(liV”*)+q)l). (101) 

By the extended Liouville’s theorem (Noble, 1958), the entire function ET([) must be 
a polynomial of degree no greater than max( r - (i+ q) 1 , r - 11 ), that is, it must 
be identically zero. Hence, 

u-(i) = - c 
F+(llv) Jll0-i 9-(i) 

(&s-P) (l/(c +1)-i) v([-l/U)’ 44 P 

~+a = -&j&l], 

(102) 

(103) 

where 

or, in expanded form 

1 
9-K) A Y_(i) (104) 

1 1 (&s+k,2) 1 
lx([) = -:-- 

9+(1/u) Jll(c+~)-i 9-C) 

c44 Ji (1 -w JGji ( l+v/cbg) l/(cbg+v)-O (i-l/u) (105) 
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and 

1 
C+(() = i- 

&Cl -4cbg) U/(cbg-4+0) 
u (5-l/4 [ JGjs J_ y+(i)-1 . 1 (lo6) 

4. FUNDAMENTAL SOLUTION IN PHYSICAL DOMAIN 

Having carried out the Wiener-Hopf procedure, we are now in a position to invert 
the expressions (54)-(57), and (60)-(61), to obtain explicit solutions in the original 
physical domain. The exact inversion can be achieved by the Cagniardde Hoop 
scheme (Cagniard, 1939; de Hoop, 1960). 

4.1. Inversion by Cagniard-de Hoop method 

We proceed by replacing the original Bromwich path by a deformed Cagniard 
contour such that the one-sided Laplace transform can be obtained by inspection. 
We seek contours in the c-plane (see Fig. 3) along which the exponentials in each 
integral of (54)-(61) take the form exp( -pt). To achieve this, we let 

ct(&J - ix = t. (107) 

Then the first set of deformed paths are obtained as 

iI+ =x2+1s2y2(-(tx+~yz)*iyJ~). (108) 

ha(C) 
(- Plane 

Red) 

l/(Qg+ v ) l/v 

Fig. 3. Cagniard-de Hoop contours in c-plane. 
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Similarly, letting 
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B(i)Y-lx = t 

yields the second set of deformed paths 

12* = +( -xt*iytJL$) 

t = - O( r 
-cosQ*isintIJ~), 

where r2 = x2+y2. 

The inversion path [I + intercepts the Re(c) axis at the location 

Similarly, the second path 12* intercepts the axis as 

[ = -a; = -&COSe, at t2 = 0. 

It is easy to verify that 

-1 1 
~ < iii < ~ 
C-V c+v’ 

and 

--E < 12i < E. 

(109) 

(111) 

(112) 

(113) 

(114) 

As shown in Fig. 3, the contour ii* may intercept the Re([), axis through the branch 
cut, whereas the contours c2* always avoid the cut. Therefore, for [, +, a supplemental 
contour /$, may be needed consisting of two straight segments and a circle of radius 
6(6 -+ 0) centered at the end of the branch cut at [ = -.a. The two segments are 
represented by 

iI,+ = x2+1s2y2( - (xt+ ~y2)+yJ$FJQ)*iiA (115) 

and the range of t to which these expressions apply is 

to < t < t,, 

where 

to =-v. 
C 

(116) 

(117) 

As a result of the foregoing manipulations, the inversion integrals along the Cagniard 
contours may be expressed as follows 
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ai,, 
iI+u-KI+),, 1 exp( -pt) dt 

ak- 
- L- u- (L > 7 1 exp( -PO dt 

%]exp( -Pt) di), (118) 

-k,2 8(12+)U-CL+) %]exp(-pi) dt). (119) 

L+ u-(L.) %]exp( -pt) dr). (120) 

B(L+)U-(&+I %]exp( -pt) dt). (121) 

and 

w*(x,Y,P) = ; U~(il+> 
x,+ 
at 1 exp( -PO dt 

+f - Up (L) g]exp(--pr) dt), (122) 

ai,+ 
U-(i,+),t 1 exp( -pt) dt 

1 exp( -A dt 

(123) 

Since cc(c), [, and U_(i) are all analytic along the strip - l/(c-u) < Re(i) < -6, all 
of the integrals along the supplemental path it1 vanish. Thus, closed form solutions 
are available as follows 



1818 S. LI and P. A. MATAGA 

and 

, 
D,(x,y,t) =$Wf-f,)Im ai,, L+U-(L+)T 1 j 

x2+ b(L+)U-(L+)(?f 1 , 

6 + (4 K(i,+(9)~ dz, 1 
x1+(4 

K(il+(t)),t dz 1 
- 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

It may be verified that as the electro-mechanical coupling coefficient k, --f 0, the above 
solutions recover the solution for anti-plane crack propagation in a purely elastic 
medium (Ma and Chen, 1992). 

4.2. Asymptotic solution 

For purposes of fracture analysis, most of the significance of these results is encap- 
sulated in the near-tip fields of the running crack. When y = 0, both inversion contours 
take the same path c,+ = L, = i+, i.e. 

It follows that ahead of the moving crack tip, x + O+(E + 0), 
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1 (s+k,2) c2 
q,.,(X,O+,t) = -~ 

g+ (l/v) JGzGi 

= & (l-W2 &G (ct%+u) 

.(sJ(t-x/(c--))(t+x/(c+v))-_~t) 9-(-t/x) 

(r+xlrJ)(t+x/(GB+U)) & ’ 

t > t 

” (13’) 

1 e15 (~+k,2) 
DJX,O+,t) = -:- 

c2 g+ (l/u) 

7r c44 &i (1 -k,4)“2 J& (c,,+v) 

tJiTqz3 D-(-t/x) 

.(t+X/l))(t+X/(Cbx+L1)) & ’ t’ t2. 
(132) 

Asx+O+,t/x+a, 

%(-t/x) + 1 (133) 

and the asymptotic stress field ahead of crack tip reduces to 

(134) 

and the asymptotic electric displacement field to 

1 e15 (s+kp2) 
D,(x,o+, t) - -:- 

c2 9+(1/4 1 ~__ 
7cc44 Jvc (1 -k:)ij2 J& (C&+v) fi +@(l). (135) 

It can be seen from (134) and (135) that both stress and electric displacement exhibit 

a square root singularity as the crack tip is approached. 

4.3. Intensity factors 

Before expressing the usual dynamic intensity factors, the result above may be 
generalized in a familiar way (Freund, 1972a) to the distributed loading case. For 
example, assume a general antisymmetric external load distribution, p(x), over the 
newly formed crack surface (0 < X < vt). The general stress field and electric dis- 

placement field ahead of the crack tip are then obtained from the fundamental 
solutions as 

@‘kt) = j-~~yz(x,O,t-$Q-')dX, (136) 

(137) 

where the superscript (g) indicates that the field is induced by the general traction 
load distribution. 

Making the change of variable vt - X = q and introducing 
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the dynamic stress intensity factor for this general load distribution is 

and the electric displacement intensity factor is 

Kf;;(vt, v) A lii ,/‘%iD_f)(x, t) 

811 P k2 
=- (s+k:) g+ (l/v) P(vt) 

e15 (1 -k,4) (1 +v/%g) Jm ’ 

(138) 

(139) 

(140) 

where the following decoration of the intensity factors is adopted: the superscript 
[((r) or (D)] indicates stress or electric displacements ; the subscript (ZZZT) indicates 
that the loading is an antiplane traction loading. 

For crack problems in piezoelectric materials, even in the static case (Pak, 1992b ; 
Zhang and Hack, 1992) careful distinction between intensity factors must be main- 
tained, because of the possibilities for different combinations of loading and boundary 
conditions (mechanical and electrical). The various cases for dynamic crack propa- 
gation will be dealt with systematically in Part II of this work. 

Following Freund (1972a), it is convenient to introduce a normalization based on 
the corresponding “quasi-static” intensity factors. The relevant intensity factors are 

and 

K$&(vt, 0) = P(vt) (141) 

Kjf&(vt, 0) = 2 
k,’ 

---P(vt). 
e15 l-k,2 

(142) 

Hence, the dynamic intensity factors can be expressed as 

K$&(vt, v) =f(v)K$~T(vt 0) 3 9 (143) 

K%(vt, v) = &W%(vt, O), (144) 

where 

and 

f(v) A (l- v’cbJ 9 (l/v) 

Jiq + 
(145) 
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g(u) & (s+fe) 1 g+ (l/v) 
(1 +kj) (1 +u/cbg) ,/m 

are the nondimensional dynamic intensity factors. 
As is the case for the normalized stress intensity factor in the elastodynamic case 

[to whichf(u) reduces when k, + 01, both functionsf(v) and g(u) are independent of 
the load distribution function p(X) and the crack extension distance vt. They only 
depend on crack speed and the material constants, which include the shear wave speed 
c, the Bleustein-Gulyaev wave speed cbg and the electro-mechanical coupling factor 
k,.. That is,fand g are universal functions of piezoelectric dynamic crack growth. 

5. DISCUSSION 

Before examining the detailed characteristics of the universal functionsfand g, the 
physical context may be set by tabulating properties for several commonly used 
piezoelectric materials (Table 1). (It should be noted that even for the same material 
these properties may vary with factors such as manufacturer and year of production.) 
The corresponding piezoelectrically stiffened Young’s modulus, bulk shear wave 
speed, electro-mechanical coupling coefficient, and the BleusteinGulyaev wave speed 
are shown in Table 2. The materials chosen in the illustration cover a fairly large 
range of electro-mechanical coupling coefficient ; usually the Bleustein-Gulyaev wave 
speed is quite close to the bulk shear wave speed. 

For these parameter values, the universal functionsf(v) and g(v) have been plotted 
against crack propagation speed, normalized by Bleustein-Gulyaev wave speed. Fig- 
ure 4 displays the results for two compounds PZT 65/35 and ZnO. 

The behavior of the universal functionf(v) is similar to the universal function k,,,(v) 

of purely elastic solids, to which it of course reduces when k, = 0. However, the 
behavior of the normalized dynamic electric displacement intensity factor, g(c), is 
qualitatively different. It does not monotonically decrease as crack velocity increases, 
but after an initial decrease as the crack speed increases from zero, increases again as 
the Bleustein-Gulyaev speed is approached. 

Table 1. Material properties of several piezoelectric media 

Compound 
p (density) 
( 1 O9 kg/m3) 

ES, CL e15 
(IO-‘F/m) (10”’ N/m’) (C/m) 

PZT-4 7.5 6.4634 2.56 12.7 
PZT-5” 1.75 8.1103 2.11 12.3 
BaTlO,” 5.7 9.8722 4.4 11.4 
PZT 65/35h 7.825 5.66 3.890 8.387 
ZnO’ 5.68 0.0757 4.241 -0.48 

“Berlincourt et al., 1964 
%hen, 1983 
‘Auld. 1973 
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Table 2. Electroacoustic constants of several piezoelectric materials 

45 
c‘+4 = $4 + - 

81 I 

(10” N/m2) k, S 

cJci$ 

(IO3 m/s) (lo3 m/s) 

PZT-4” 5.0554 0.7026 2.5963 2.2579 
PZT-5” 3.9754 0.6850 2.2649 2.000 
BaTiO,” 5.7164 0.4799 3.1668 3.0817 
PZT 65/35b 5.1328 0.492 1 3.9045 3.7883 
ZnO’ 4.5514 0.2586 3.5327 3.5248 

“Berlincourt et al., 1964 
bChen, 1983 
‘Auld, 1973 

Examining this a little further, Fig. 5 displays f(v) for a broader range of electro- 
mechanical coefficients (I& = 0.00, 0.30,0.60, 0.90, 0.99), and plots against two different 
dimensionless velocities v/c and v/cbg. For k, = 0.0, the elastodynamic result is recovered 

1 ,091 \ (d) ke= 0.2588 1 0.6 
9 
$r 

0.4 

‘0.81 u 

Fig. 4. Comparison between dynamic stress intensity factorf(u) and dynamic electric displacement intensity 
factor (g(u) : (a)f(v) for PZT65/35 ; (b) g(u) for PZT65/35 ; (c)flu) for ZnO; (d) g(v) for ZnO. 
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f(v) = k,,[(U) = Jl -v/c. (147) 

For larger values of k,, the curve shape flattens [Fig. 5(b)], but the major contribution 
to suppression of stress intensity is the divergence of the Bleustein-Gulyaev wave 
speed from the bulk shear wave speed (though rather large values of k, are required 
for this effect to be pronounced). This vanishing of stress intensity at the surface wave 
speed is analogous to the case of in-plane crack extension for purely elastic materials, 
for which the limiting speed is the Rayleigh wave speed rather than the bulk longi- 
tudinal wave speed. Curiously, it is in sharp contrast with the classical anti-plane 
crack propagation problem in purely elastic materials (Kostrov, 1966 ; Sih and Chen, 
1977), for which the bulk shear wave speed is the critical speed. 

The behavior of g(v) is a little less straightforward (Fig. 6). As v approaches cbe, 
g(u) attains a finite nonzero value 

k2 
g&J = e g+ (lkbg) 

(1 +W Jw 
(148) 

However, there is some boundary layer character with respect to electro-mechanical 
coefficient k,. That is, the following limit processes are not interchangeable 

As a matter of fact, one can obtain 9+(1/u) explicitly 

9+(1/u) = 
~(1 +k:) 
~ 

s+k: ’ 

so that 

On the other hand, at k, = 0.0 

g(u) = J& 
which leads to 

(149) 

(150) 

(151) 

(152) 

(153) 

In general, the electrical contribution to the energy release rate must be taken into 
account, in which case the behavior ofg(v) would be significant for crack propagation. 
For the particular case of the “electrode” boundary condition considered here, the 
electrostatic potential is zero both along the line ahead of the crack and on the crack 
faces ; consequently, for this case (but not for other choices of boundary condition or 
loading) there is no contribution from electric field to the energy release rate. The 
energy release rate can be calculated in a way analogous to the elastic case, for 
example (Atkinson and Eshelby, 1967). 
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(a) (b) 

0 1 

Fig. 5. Variations of universal functionf(u) : (a) f(u) versus v/c ; (b) f(u) versus v/cbg 

(a) 
1 

0.85 

0.85 

0.6 

0.5 1 
V/C 
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0.55 
0 
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‘. \ 

k&O.?9 
‘. 

‘. 
‘. 

‘. 
‘. 

‘. 
‘. 

‘_ 
‘. 

‘. 

V,::;bg, 
1 

Fig. 6. Variations of universal function g(u) : (a) g(u) versus u/c ; (b) g(u) versus u/cbg 
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84 
r~~;.,(x, o, t) $x, 0, t) +4(x, 0, t) %(x, 0, t) + vE 1 dx 

q.z(x, 0, t) g(x, 0, t) dx. (154) 

Making use of the identity (Freund, 1972b) 

yields 

G(vt, v) = $ C2(S+kz) (jyjg&t, L,))?. 
2c44 (Cbg - v) (Cbg + VI 

(156) 

A convenient normalization is to the quasi-static elastic result 

Go,, (vt) g & (P(vt))‘. (157) 
44 

The normalized energy release rate then reduces to 

GW, v) J (1 + 44 (1 -VI%!) 
______ = Goo(vt) (1 -v/c) (1 +v/ciJ 

As k, + 0, (158) reduces to the purely elastic results (e.g. Eshelby, 1969) 

G(vt, v> (1 -v/co> ----= 
Goo (4 J (1 +v/co)’ 

where 

c44 
cg= - r P 

(158) 

(159) 

(160) 

is the elastic shear wave speed. 
It is of interest to look at the preceding results from the point of view of a material 

with fixed elastic properties as piezoelectric coupling increases. Figure 7 shows the 
profiles of the normalized energy release rate at different values of k,, plotted against 
v/co. For v = 0 there is no effect of piezoelectricity on energy release rate; the result 
coincides with the elastic result for the same loading. There are two competing wave- 
speed effects : the bulk shear wave speed c increases with k, for fixed c,,, and the ratio 
cbg/c decreases with increasing k,. However, since Q,,/c, = 7 I+ k, , the former effect 
dominates, and the overall effect is to increase the energy release rate for a given crack 
speed and loading. 

Nevertheless, the Bleustein-Gulyaev wave speed provides for this case the limiting 
velocity for crack propagation, just as the Rayleigh wave does for the in-plane elastic 
case. For this reason, we have not in this paper discussed the supersonic crack velocity 
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Fig. 7. The normalized energy release rate C(ut, v)/G&ut) versus u/q 

regimes for which u exceeds chg. This discussion is deferred until the second part of 
this work, in which we describe the much richer behavior arising when vacuum 
boundary conditions are applied. 
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APPENDIX A : PRODUCT DECOMPOSITION OF S(5) 

This appendix outlines the derivation of the product decomposition of an expression involv- 
ing the Bleustein-Gulyaev function cc([) - kafi(<). This factorization provides the essential 
ingredient in solving the Wiener-Hopf equation (86). 

From (77), the expression of interest is 

40 - kSP(i) 
‘(‘) ’ (s-k:),/(l/(c,,+v)-Q(l/(c,,-v)+i)’ 

(A.11 

for which we seek the decomposition 

S(i) = S+ (i)S- (0, (A.2) 

where both S, ([) and S_ ([) are sectionally analytic functions. 
It is convenient [following, for example, Achenbach (1973)] to express this in the form 

log S(C) = log(S+ (0) + log (S- (0). (A.3) 

Moreover, logs+([), log S_(i) can further be expressed as 

logs+(i) = - & s I+ +‘w log S(z) 
pdz, Re([) > y+ > --E 

Y+ -1% Z-i 

and 
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-dz, Re([) < y_ < E. 

I829 

(A.5) 

Since in the present work we restrict attention to cases where ~1 < cbg 

.s* -k,4 = +p)(cbr+u) > 0. 64.6) 

A polar decomposition may now be employed to advantage. The argument of function S(c) 
along branch cuts in P_(i) are as follows 

f arctan (Z(<)}, - I/(c-v) < Re([) < -E, (a) 

argS(i) = i5, -l/(%g -v) < Re([) < - l/(c-p), (b) (A.7) 

0, - x, < Re([) < - I /(cbg - P). (cl 

where 

E(i) p iJ k&/p 
(A.81 

s (l/(c-u)+r)(l/(c+c)--i) 

and the argument of S(l) along branch cuts in the left half space P+(i) are 

argS(5) = 

1 

*arctan {E(c)), E < Re(i) < l/(c+v), (a) 

TF, tl(c+v) < Re(i) < l/(c,,+u), (b) (A.9) 

0, l/(cbg+t) < Re(i) < co. (c) 

Cauchy’s integral theorem and [A.~(c)] and [A.~(c)] allow the rewriting of (A.4) and (A.5) as 
the following contour integrals 

logS+(5) = 2’,i 
s 

1ogGxz) dz, 
~ 

z-i 
Re([)>y> --E 

r+ 

and 

log S (i) = & 
s 

log S(z) d 
~ 

z-i 
z, Re([) < :’ < E, 

r+ 

(A.10) 

(A.1 1) 

where integration contours f+ are shown in Fig. A.1, and both f’+ and f.. traverse in the 
clockwise direction. 

From Fig. A. 1, one can see that there are three branch points along each integration contour ; 
this differs from the decomposition of the Rayleigh wave function used in in-plane mode crack 
propagation in an elastic medium (Achenbach, 1973), for which there are only two branch 
points along each integration contour. 

Now we proceed to evaluate the contour integral for S+(c). Since ]S(q+iO’)] = ]S(q+iO -)I. 
it follows by direct (but nontrivial) application of the residue theorem that 

Consequently, 

(A.12) 
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Fig. A. 1. Integration contours used for product decomposition of function S(c). 

logS+([) = f 
s 

- 1!&,-“) drl 
- 

-,K-“, v-i 

(*.,3) 

so that 

where 

(A. 14) 

Z(q) A 
k&/m 

s (l/(c-~)+ll)(l/(c+u)-rl) 

Similarly, 

S_(i) = Jzexp{-i[“““_tan(E(q))3). 

Finally, letting E --t 0 in (A. 14)-(A. 16) yields (82), (83) and (84). 

(A. 15) 

(A.16) 


