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In this paper, we present new conservation laws of linear elasticity which have been
discovered. These newly discovered conservation laws are expressed solely in terms
of the Cauchy stress tensor, and they are genuine, non-trivial conservation laws that
are intrinsically different from the displacement conservation laws previously known.
They represent the variational symmetry conditions of combined Beltrami–Michell
compatibility equations and the equilibrium equations.

To derive these conservation laws, Noether’s theorem is extended to partial differ-
ential equations of a tensorial field with general boundary conditions. By applying
the tensorial version of Noether’s theorem to Pobedrja’s stress formulation of three-
dimensional elasticity, a class of new conservation laws in terms of stresses has been
obtained.

Keywords: elasticity; path-independent integrals; Noether’s theorem

1. Introduction

The invariant integrals, or path-independent integrals, in three-dimensional (3D)
elasticity are profound manifestations of intrinsic properties of elastic continua, which
are not only permanent intellectual knowledge in mathematics and mechanics, but
also could provide powerful analytical apparatus in applications, such as the case of
Rice’s J-integral (Rice 1968).

Since Eshelby’s seminal work (Eshelby 1951, 1956), the subject of conservation
laws in elasticity has been well studied. Landmark contributions on conservation
laws of elasticity include: Eshelby (1970), Knowles & Sternberg (1972), Budiansky &
Rice (1973), Fletcher (1976), Edelen (1981), Olver (1984a, b), Hill (1986) and Gurtin
(1995), among others. A detailed view of the application of conservation laws in
elasticity as configurational/material forces can be found in the excellent texts by
Maugin (1993), Gurtin (1999) and Kienzler & Herrmann (2000).

Most of the conservation laws published so far in the literature are in terms of dis-
placements. Recently, however, Li (2004) formulated the so-called dual conservation
laws, which are in terms of the Airy stress function. The dual-conservation laws of
Bui (1974) are a combination of both stresses and displacements. To the best of the
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authors’ knowledge, a purely stress-based conservation law in 3D elasticity has never
been obtained before.

In fact, some 30 years ago, during a discussion, C. A. Berg raised the question:

Can one use the complementary energy density to construct a comple-
mentary energy-momentum quantity which would provide an estimate of
the displacement of a defect from its equilibrium site when prescribed
forces are applied to the body?

Subsequently, Eshelby (1970) made the following remark.

The natural argument of the complementary energy is the stress. To
fit the formalism I presented, the stress would have to be written as the
gradient of something. I dare say that if this were done in detail something
interesting might come out. But, any connection with displacement would
be pretty indirect because the new energy-momentum tensor would still
be a stress.

In search of a dual energy-momentum tensor, a systematic study on stress con-
servation laws in linear elasticity is carried out in this work. We first discuss stress
formulations and develop an appropriate variational principle in § 2. In § 3, we present
Noether’s (1918) theorem for symmetric tensorial fields, and, finally, in § 4 we apply
the tensorial version of Noether’s theorem to derive the conservation laws of linear
elasticity in terms of stresses.

2. Stress formulations

A well-known stress formulation in linear elasticity is the Beltrami–Michell stress
formulation (e.g. Gurtin 1972), given by the following boundary-value problem,

σji,j = 0, ∀x ∈ Ω, (2.1)

σij,kk +
1

1 + ν
σkk,ij = 0, ∀x ∈ Ω, (2.2)

σjinj = pi, ∀x ∈ ∂Ω, (2.3)

where σij is the Cauchy stress tensor, ν is Poisson’s ratio, pi is the prescribed traction
vector and ni is the normal vector field on ∂Ω.

In principle, one can solve the Beltrami–Michell compatibility equations and the
equilibrium equations with traction boundary conditions to find a unique stress solu-
tion (Gurtin 1972). Nevertheless, the Beltrami–Michell formulation is not mathemat-
ically well posed (e.g. nine equations, six unknowns and three boundary conditions).
Moreover, its differential operator is not symmetric (not self-adjoint). On the other
hand, there is a less well known but well established stress formulation in linear
elasticity theory, which is the so-called Pobedrja stress formulation (Pobedrja 1978,
1980, 1994; Pobedrja & Kholmatov 1982; Kucher et al . 2004 (hereafter referred to as
KMP)). Pobedrja’s stress formulation is a set of tensorial partial differential equa-
tions, which are elliptic, self-adjoint, and well posed (Pobedrja 1980; Pobedrja &
Kholmatov 1982). In the following, we study the conservation laws of linear elastic-
ity based on Pobedrja’s formulation.
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(a) Pobedrja’s boundary-value problem

Pobedrja’s boundary-value problem (BVP) (Pobedrja 1978, 1980), which has six
equations, six unknowns and six independent boundary conditions, is expressed
in terms of stresses only. In the physical range of Poisson’s ratio, the solution of
Pobedrja’s BVP satisfies both the equilibrium equations and the Beltrami–Michell
compatibility equations in the domain, and satisfies traction boundary conditions
along the boundary. Moreover, Pobedrja’s stress formulation has the Fredholm prop-
erty in the domain except at two points (KMP).

In fact, Pobedrja (1980) showed that Navier’s displacement formulation of the
traction boundary-value problem of an isotropic, homogeneous, linear elastic mate-
rial,

∆ui +
1

1 − 2ν
uk,ki = − 1

µ
Fi, ∀x ∈ Ω (2.4)

and

2µ
ν

1 − 2ν
uk,kni + µ(ui,k + uk,i)nk = pi, ∀x ∈ ∂Ω, (2.5)

is equivalent to the following boundary-value problem in terms of the Cauchy stress
and vice versa:

∆σij + bσkk,ij + cσmn,mnδij − e∆σkkδij + a[σik,kj + σjk,ki]

= −(a + 1)
(

Fi,j + Fj,i +
1 − b − e

2b − 1
Fk,kδij

)
, ∀x ∈ Ω, (2.6)

and

σiknk = pi, ∀x ∈ ∂Ω, (2.7)

σik,k = −Fi, ∀x ∈ ∂Ω, (2.8)

where ∆ is the Laplacian operator, ui is the displacement vector field, µ is the shear
modulus, Fi is the body force vector, and parameters a, b, c, e are constants satisfying

b =
1

1 + ν
, (2.9)

e = 1 − b + ζ(2b − 1), (2.10)

c = a
1 − b − e

2b − 1
. (2.11)

Note that the constants a and ζ are free parameters. The conditions (2.9)–(2.11) that,
for the traction boundary-value problems, Navier’s displacement formulation and
Pobedrja’s stress formulation are equivalent, have been revised recently by Kucher
et al . (2004).

If b = c, the boundary-value problem (2.6)–(2.8) becomes a self-adjoint BVP. The
constant parameters can be then expressed in terms of Poisson’s ratio ν and a free
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parameter ζ:

b = c =
1

1 + ν
, (2.12)

e =
1

1 + ν
(ν + ζ(1 − ν)), (2.13)

a = − 1
ζ(1 + ν)

. (2.14)

We find that, if
ζ = − ν

1 − ν
→ e = 0, (2.15)

then

a =
1 − ν

ν(1 + ν)
, (2.16)

b = c =
1

1 + ν
. (2.17)

Under this condition, the Pobedrja stress formulation coincides with the Beltrami–
Michell stress formulation almost everywhere except on the boundary. Under this
condition, equation (2.6) degenerates to
(

∆σij + bσkk,ij + Fi,j + Fj,i +
ν

1 − ν
Fk,kδij

)
+ bδij(σmn,mn + Fm,m)

+ a[(σik,kj + Fi,j) + (σjk,ki + Fj,i)] = 0, (2.18)

which is an identity from equations (2.1) and (2.2) (with Fi ≡ 0). Together with
(2.7) and (2.8), (2.18) is equivalent to (2.1), (2.2) and (2.3). We refer to this case
as ‘the Beltrami–Michell special case’. We shall only consider the case of vanishing
body force, i.e. Fi ≡ 0, in the rest of the paper.

(b) A variational principle in terms of stress

We now present a variational statement for Pobedrja’s BVP.

Theorem 2.1 (variational principle (Pobedrja & Kholmatov 1982)).
Assume that b = c and Fi = 0, ∀x ∈ Ω. Let

LΩ := 1
2σij,kEijk

= {1
2σij,kσij,k + bσkk,iσij,j − 1

2eσkk,�σjj,� + 1
2a(σik,kσij,j + σjk,kσji,i)}, (2.19)

where
Eijk(σ) :=

∂LΩ

∂σij,k
, ∀x ∈ Ω. (2.20)

On the entire boundary x ∈ ∂Ω, we prescribe pi(x) such that

δpi = 0, ∀x ∈ ∂Ω. (2.21)

Let
χij(x) := Eijk(σ(x))nk(x), ∀x ∈ ∂Ω. (2.22)
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It is readily verified that the governing equations of the Pobedrja BVP may be
written as

dEijk

dxk
= 0, ∀x ∈ Ω. (2.23)

By the divergence theorem,∫
∂Ω

Eijknk dS = 0 →
∫

∂Ω

δχij dS = 0, (2.24)

which is the weak form of the so-called ‘frozen’ condition (see Pobedrja 1980).
The boundary-value problem (2.6)–(2.8) is then equivalent to the stationary con-

dition of the functional

Π(σ,∇σ) :=
∫

Ω

LΩ(∇σ) dΩ −
∫

∂Ω

χijσij dS

+
∫

∂Ω

[12(σij,jσik,k + σijnjσiknk) − piσijnj ] dS. (2.25)

Proof . Taking the first variation of (2.25),

δΠ =
∫

Ω

∂LΩ

∂σij,k
δσij,k dΩ −

∫
∂Ω

χijδσij dS

+
∫

∂Ω

[σij,jδσik,k + (σijnj − pi)δσiknk] dS. (2.26)

Integration by parts and using the frozen condition δχij = 0, ∀x ∈ ∂Ω, yields

δΠ = −
∫

Ω

(
d

dxk

∂LΩ

∂σij,k

)
δσij dΩ +

∫
∂Ω

(Eijknk − χij)δσij dS.

+
∫

∂Ω

[σij,jδσik,k + (σijnj − pi)δσiknk] dS. (2.27)

The stationary condition, δΠ = 0, then leads to

∆σij + bσkk,ij + cσmn,mnδij − e∆σkkδij + a[σik,kj + σjk,ki] = 0, ∀x ∈ Ω, (2.28)

and boundary conditions

σijnj = pi, ∀x ∈ ∂Ω, (2.29)

σij,j = 0, ∀x ∈ ∂Ω. (2.30)

�

One may generalize the above variational principle into a more general form.

Proposition 2.2. The Euler–Lagrange equations of the fundamental integral

Π(σ,∇σ) =
∫

Ω

LΩ(σ,∇σ) dΩ −
∫

∂Ω

LΓ (σ,∇σ) dS (2.31)
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are

Eij :=
∂LΩ

∂σij
− d

dxk

(
∂LΩ

∂σij,k

)
= 0, ∀x ∈ Ω, (2.32)

E(B1)
ij :=

∂LΩ

∂σij,k
nk − ∂LΓ

∂σij
= 0, ∀x ∈ ∂Ω, (2.33)

E(B2)
ijk :=

∂LΓ

∂σij,k
= 0, ∀x ∈ ∂Ω. (2.34)

Proof . The stationary condition yields

δΠ =
∫

Ω

(
∂LΩ

∂σij
δσij +

∂LΩ

∂σij,k
δσij,k

)
dΩ −

∫
∂Ω

(
∂LΓ

∂σij
δσij +

∂LΓ

∂σij,k
δσij,k

)
dS

=
∫

Ω

(
∂LΩ

∂σij
− d

dxk

∂LΩ

∂σij,k

)
δσij dΩ +

∫
∂Ω

(
∂LΩ

∂σij,k
nk − ∂LΓ

∂σij

)
δσij dS

−
∫

∂Ω

∂LΓ

∂σij,k
δσij,k dS = 0. (2.35)

Therefore, the variational statement is equivalent to the Euler–Lagrange equations
for a tensor field, (2.32)–(2.34). �

3. Noether’s theorem for a tensorial field

Unlike most BVP in linear elasticity, Pobedrja’s BVP has two special features: it
is a BVP of a tensorial field, and in order for the interior solution to satisfy the
equilibrium equations, the solution on the boundary has to satisfy the equilibrium
equations. Therefore, the fundamental integral (2.25) always contains a term of the
boundary contribution. We start the discussion below by first assuming a transforma-
tion group, and then deriving conditions which should be satisfied for the invariance
of the fundamental integral. Finally, we present a derivation of Noether’s theorem as
required for the present purpose.

Consider the functional

Π(σ,∇σ) = ΠΩ(σ,∇σ) + ΠΓ (σ,∇σ), (3.1)

where

ΠΩ(σ,∇σ) :=
∫

Ω

LΩ(xi, σij , σij,k) dΩx, (3.2)

ΠΓ (σ,∇σ) :=
∫

∂Ω

LΓ (xi, σij , σij,k, ni, pi, χij) dSx. (3.3)

Assume that we are given an r-parameter family of transformations on coordinate
variable xi, Cartesian tensor field σij , normal vector field ni, the traction vector field
pi and the frozen tensorial field χij . In addition, we assume that the r-parameter
family of invertible transformations with identity form an r-parameter Lie group
of transformations (e.g. Olver 1986; Bluman & Kumei 1989; Ibragimov 1985). The
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transformations are given as

x̄i = x̄i(x,σ,n,p,χ, ε), (3.4)

σ̄ij = σ̄ij(x,σ,n,p,χ, ε), (3.5)

n̄i = n̄i(x,σ,n,p,χ, ε), (3.6)

p̄i = p̄i(x,σ,n,p,χ, ε), (3.7)

χ̄ij = χ̄ij(x,σ,n,p,χ, ε), (3.8)

where ε = (ε1, ε2, . . . , εr) such that

x̄i|ε=0 = x̄i(x,σ,n,p,χ,0) = xi,

σ̄ij |ε=0 = σ̄ij(x,σ,n,p,χ,0) = σij ,

n̄i|ε=0 = n̄i(x,σ,n,p,χ,0) = ni,

p̄i|ε=0 = p̄i(x,σ,n,p,χ,0) = pi,

χ̄ij |ε=0 = χ̄ij(x,σ,n,p,χ,0) = χij ,

where σij , χij , σ̄ij , χ̄ij ∈ Sym, where Sym is the linear space of all symmetric second-
order Cartesian tensors.

Definition 3.1. The fundamental integral (3.1) is invariant under the r-parameter
family of transformations (3.4)–(3.8) if∫

Ω̄

LΩ(x̄i, σ̄ij , σ̄ij,k) dΩx̄ −
∫

Ω

LΩ(xi, σij , σij,k) dΩx = o(ε), ∀ε ∈ R
r (3.9)

and∫
∂Ω̄

LΓ (x̄i, σ̄ij , σ̄ij,k, n̄i, p̄i, χ̄ij) dSx̄

−
∫

∂Ω

LΓ (xi, σij , σij,k, ni, pi, χij) dSx = o(ε), ∀ε ∈ R
r, (3.10)

where

Ω̄ := {x̄ ∈ R
3 | x̄i = x̄i(x,σ,n,p,χ, ε),x ∈ Ω}

and

∂Ω̄ := {x̄ ∈ R
3 | x̄i = x̄i(x,σ,n,p,χ, ε),x ∈ ∂Ω}.

Note that xi, ni, pi and χij are not independent variational arguments.
The strong form (local form) of global conditions (3.9) and (3.10) is given as follows

LΩ(x̄i, σ̄ij , σ̄ij,k) det
(

∂x̄

∂x

)
− LΩ(xi, σij , σij,k) = o(ε), (3.11)

LΓ (x̄i, σ̄ij , σ̄ij,k, n̄i, p̄i, χ̄ij) det
(

∂x̄

∂x

)[
n ·

(
∂x̄

∂x

)−1

· n̄

]

−LΓ (xi, σij , σij,k, ni, pi, χij) = o(ε). (3.12)
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Note that in (3.12), Nanson’s formula (e.g. Malvern 1969), i.e.

n̄ dS̄ = Jn · F −1 dS or dS̄ = det
(

∂x̄

∂x

)
∂xi

∂x̄j
nin̄j dS, (3.13)

is used.

Using Taylor’s theorem, one can expand the r-parameter transformations, (3.4)–
(3.8) in terms of a small vector variable {ε}α, α = 1, 2, . . . , r,

x̄i = xi + ϕiα(x,σ,n,p,χ)εα + o(ε), (3.14)

σ̄ij = σij + ξijα(x,σ,n,p,χ)εα + o(ε), (3.15)

n̄i = ni + νiα(x,σ,n,p,χ)εα + o(ε), (3.16)

p̄i = pi + γiα(x,σ,n,p,χ)εα + o(ε), (3.17)

χ̄ij = χij + λijα(x,σ,n,p,χ)εα + o(ε), (3.18)

where

ϕiα(x,σ,n,p,χ) :=
∂x̄i

∂εα

∣∣∣∣
ε=0

, (3.19)

ξijα(x,σ,n,p,χ) :=
∂σ̄ij

∂εα

∣∣∣∣
ε=0

, (3.20)

νiα(x,σ,n,p,χ) :=
∂n̄i

∂εα

∣∣∣∣
ε=0

(3.21)

γiα(x,σ,n,p,χ) :=
∂p̄i

∂εα

∣∣∣∣
ε=0

, (3.22)

λijα(x,σ,n,p,χ) :=
∂χ̄ij

∂εα

∣∣∣∣
ε=0

. (3.23)

Theorem 3.2. The fundamental integral (3.1) is invariant (in the sense of defi-
nition 3.1.), if the following conditions hold:

{
∂LΩ

∂xi
ϕiα +

∂LΩ

∂σij
ξijα +

∂LΩ

∂σij,k

(
dξijα

dxk
− σij,�

dϕ�α

dxk

)}
+ LΩ

dϕiα

dxi
= 0,

∀x ∈ Ω, α = 1, 2, . . . , r.
(3.24){

∂LΓ

∂xi
ϕiα + χijξijα +

∂LΓ

∂ni
νiα +

∂LΓ

∂pi
γiα +

∂LΓ

∂χij
λijα

}

+LΓ

{
dϕiα

dxi
− ∂ϕiα

∂xj
ninj + niνiα

}
= 0,

∀x ∈ ∂Ω, α = 1, 2, . . . , r.
(3.25)
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Proof . We first prove (3.24). Following Logan (1977) and using the short-hand
notation, (·)0 ≡ (·)ε=0, we start by noting the following:(

∂σ̄ij

∂xk

)
0

=
(

∂x̄i

∂σjk

)
0

= 0; (3.26)

(
∂σ̄ij

∂σk�

)
0

= 1
2(δikδj� + δi�δjk), σ̄ij , σij ∈ Sym; (3.27)

(
∂x̄i

∂xj

)
0

= δij ; (3.28)

(
∂2σ̄ij

∂εα∂xk

)
0

=
∂ξijα

∂xk
; (3.29)

(
∂2σ̄ij

∂εα∂σk�

)
0

=
∂ξijα

∂σk�
; (3.30)

(
∂2x̄i

∂εα∂xj

)
0

=
∂ϕiα

∂xj
; (3.31)

(
∂2x̄i

∂εα∂σjk

)
0

=
∂ϕiα

∂σjk
. (3.32)

Differentiating (3.11) and then evaluating at ε = 0, we have
{

∂LΩ

∂xi
ϕiα +

∂LΩ

∂σij
ξijα +

∂LΩ

∂σij,k

(
∂σ̄ij,k

∂εα

)
0

}[
det

(
∂x̄

∂x

)]
0

+ LΩ

[
∂

∂εα
det

(
∂x̄

∂x

)]
0

= 0. (3.33)

To evaluate (3.33), we start by evaluating

det
(

∂x̄

∂x

)∣∣∣∣
0

= 1, (3.34)

and

∂

∂εα

[
det

(
∂x̄

∂x

)]∣∣∣∣
0

=
∂

∂εα

(
∂x̄i

∂xj

)
Aij

∣∣∣∣
0

=
(

∂2x̄i

∂εα∂xj
+

∂2x̄i

∂εα∂σk�
σk�,j

)
Aij

∣∣∣∣
0

=
(

∂ϕiα

∂xj
+

∂ϕiα

∂σk�
σk�,j

)
δij =

dϕiα

dxi
, (3.35)

where Aij is the co-factor of (∂x̄i/∂xj), and (Aij)0 = δij . To evaluate (∂σ̄ij,k/∂εα)0,
differentiate σ̄ij = σ̄ij(x̄) to obtain

∂σ̄ij

∂x̄k
=

∂σ̄ij

∂xk
+

∂σ̄ij

∂σ�m
σ�m,k =

∂σ̄ij

∂x̄�

(
∂x̄�

∂xk
+

∂x̄�

∂σmn
σmn,k

)
. (3.36)
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By virtue of (3.26), (3.27) and (3.29) we also have
(

∂σ̄ij

∂x̄k

)
0

= σij,k. (3.37)

Finally, using (3.36) we obtain
(

∂σ̄ij,k

∂εα

)
0

=
dξijα

dxk
− σij,�

dϕ�α

dxk
. (3.38)

Substitution of equations (3.34)–(3.38) into (3.33) yields the invariant condition
(3.24).

We now prove (3.25). Differentiating (3.12) with respect to εα and evaluating the
expression at ε = 0, we obtain
{

∂LΓ

∂xi
ϕiα +

∂LΓ

∂σij
ξijα +

∂LΓ

∂σij,k

(
∂σ̄ij,k

∂εα

)
0

+
∂LΓ

∂ni
νiα +

∂LΓ

∂pi
γiα +

∂LΓ

∂χij
λijα

}

×
[
det

(
∂x̄

∂x

)(
∂xi

∂x̄j

)
nin̄j

]
0

+ LΓ

{
∂

∂εα

[
det

(
∂x̄

∂x

)(
∂xi

∂x̄j

)
nin̄j

]}
0

= 0.

(3.39)

It is readily shown that
[
det

(
∂x̄

∂x

)(
∂xi

∂x̄j

)
nin̄j

]
0

= 1. (3.40)

The last term of (3.39) can be expanded as

∂

∂εα

{
det

(
∂x̄

∂x

)(
∂xi

∂x̄j

)
nin̄j

}∣∣∣∣
0

=
dϕiα

dxi
+ det

(
∂x̄

∂x

)
∂

∂εα

(
∂x̄j

∂xi

)−1

nin̄j

∣∣∣∣
0

+ det
(

∂x̄

∂x

)(
∂x̄j

∂xi

)−1

ni
∂n̄j

∂εα

∣∣∣∣
0
. (3.41)

Considering

∂

∂εα

(
∂x̄j

∂xi

)−1∣∣∣∣
0

= −
(

∂x̄j

∂xk

)−1(
∂2x̄�

∂εα∂xk

)(
∂x̄�

∂xi

)−1∣∣∣∣
0

= −∂ϕjα

∂xi
,

∂n̄j

∂εα

∣∣∣∣
0

= νjα, (3.42)

we then have
{

∂LΓ

∂xi
ϕiα +

∂LΓ

∂σij
ξijα +

∂LΓ

∂σij,k

(
dξijα

dxk
−σij,�

dϕ�α

dxk

)
+

∂LΓ

∂ni
νiα +

∂LΓ

∂pi
γiα +

∂LΓ

∂χij
λijα

}

+ LΓ

{
dϕiα

dxi
− ∂ϕiα

∂xj
ninj + niνiα

}
= 0. (3.43)
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Using equations (2.33) and (2.34), we finally obtain the invariant conditions on the
boundary as
{

∂LΓ

∂xi
ϕiα + χijξijα +

∂LΓ

∂ni
νiα +

∂LΓ

∂pi
γiα +

∂LΓ

∂χij
λijα

}

+ LΓ

{
dϕiα

dxi
− ∂ϕiα

∂xj
ninj + niνiα

}
= 0, ∀x ∈ ∂Ω, α = 1, 2, . . . , r. (3.44)

�

Theorem 3.3 (Noether 1918). If the fundamental integral, Π(σ,∇σ), is invari-
ant (i.e. it satisfies equations (3.9) and (3.10)) under the r-parameter transformations
(3.4)–(3.8), then the following conservation laws hold:

d
dxk

[(
LΩδk� − σij,�

∂LΩ

∂σij,k

)
ϕ�α +

∂LΩ

∂σij,k
ξijα

]
= 0, α = 1, 2, . . . , r. (3.45)

Proof . Consider the following identities:

∂LΩ

∂xi
ϕiα =

dLΩ

dxi
ϕiα − ∂LΩ

∂σjk
σjk,iϕiα − ∂LΩ

∂σjk,�
σjk,�iϕiα, (3.46)

∂LΩ

∂σij,k

dξijα

dxk
=

d
dxk

(
∂LΩ

∂σij,k
ξijα

)
− d

dxk

(
∂LΩ

∂σij,k

)
ξijα, (3.47)

∂LΩ

∂σij,k
σij,�

dϕ�α

dxk
+

∂LΩ

∂σjk,�
σjk,�iϕiα =

d
dxk

(
∂LΩ

∂σij,k
σij,�ϕ�α

)
− d

dxk

(
∂LΩ

∂σij,k

)
σij,�ϕ�α.

(3.48)

Substituting (3.46)–(3.48) into (3.24) yields

d
dxk

(
LΩϕkα +

∂LΩ

∂σij,k
ξijα − ∂LΩ

∂σij,k
σij,�ϕ�α

)

+
(

∂LΩ

∂σij
− d

dxk

(
∂LΩ

∂σij,k

))
(ξijα − σij,�ϕ�α) = 0. (3.49)

Finally, using (2.32) in (3.49), we obtain equation (3.45). �

4. Conservation laws in stress space

Theorem 4.1. Consider a simply connected region, Ω ∈ R
3, with Lipschitz

continuous boundary ∂Ω. Assume that a second-order symmetric Cartesian ten-
sor, σij(x) ∈ Sym, is the solution of the Beltrami–Michell boundary-value problem
(Gurtin 1972)

σji,j = 0, ∀x ∈ Ω, (4.1)

σij,kk +
1

1 + ν
σkk,ij = 0, ∀x ∈ Ω, (4.2)

σjinj = pi, ∀x ∈ ∂Ω, (4.3)
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where σij(x) ∈ [C2(Ω)]6. The following quantities are then conserved (they are diver-
gence free with respect to index k):

(C1) X̃kα = 1
2σ�m,nσ�m,nδkα − σij,ασij,k − bσik,ασqq,i; (4.4)

(C2) R̃kα = 1
2σ�m,nσ�m,nεpkαxp + (ε�iασ�j + ε�jασi� − σij,�εm�αxm)

× (σij,k + 1
2b(δjkσqq,i + δikσqq,j)); (4.5)

(C3) S̃k = −σ�m,nσ�m,nxk + (2σij,�x� + σij)

× (σij,k + 1
2b(δjkσqq,i + δikσqq,j)); (4.6)

(C4 a) P̃k = (σij,k + 1
2b(δjkσqq,i + δikσqq,j))cij ; (4.7)

(C4 b) P̃kα = 2[σαj,k + 1
2b(δjkσqq,α + δαkσqq,j)]cj ; (4.8)

(C5 a) G̃ik = σik; (4.9)

(C5 b) G̃ijk = (σij,k + 1
2b(δjkσqq,i + δikσqq,j)); (4.10)

(C5 c) Ẽijk = σij,k + 1
2b(δjkσpp,i + δikσpp,j + 2δijσkp,p)

+ a(δjkσip,p + δikσjp,p); (4.11)

(C6) B̃k = Ẽijk(σ)τij − σijẼijk(τ ); (4.12)

where δij is the Kronecker delta symbol, εijk is the permutation symbol,

a =
1 − ν

ν(1 + ν)
, b =

1
1 + ν

,

ci is an arbitrary constant vector, cij is an arbitrary constant symmetric tensor, and
τij(x) is an arbitrary solution of the Beltrami–Michell BVP. (It does not satisfy the
required boundary condition (4.3).)

Proof . According to Noether’s theorem, derived in the previous section, the vari-
ational-symmetric conservation laws have the form

dCkα

dxk
= 0, α = 1, 2, . . . , r, (4.13)

where the conserved quantities are

Ckα =
(

LΩδk� − σij,�
∂LΩ

∂σij,k

)
ϕ�α +

∂LΩ

∂σij,k
ξijα, k = 1, 2, 3, (4.14)

and

LΩ = 1
2{σij,kσij,k + 2bσkk,iσij,j − eσii,kσjj,k + a(σik,kσim,m + σjk,kσjm,m)}. (4.15)

We denote

LΓ = χijσij + [piσijnj − 1
2(σij,jσik,k + σijnjσiknk)]. (4.16)
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(a) Coordinate translation

Let

x̄i = xi + εi, (4.17)
σ̄ij = σij , (4.18)
n̄i = ni, (4.19)
p̄i = pi, (4.20)

χ̄ij = χij . (4.21)

The corresponding generators of infinitesimal transformations are

ϕiα =
∂x̄i

∂εα

∣∣∣∣
ε=0

= δiα, α = 1, 2, 3, (4.22)

ξijα = 0, (4.23)
νiα = 0, (4.24)
γiα = 0, (4.25)

λijα = 0. (4.26)

One may verify that invariant conditions (3.24) and (3.25) are satisfied trivially.
We can then obtain the following conserved quantities due to coordinate translation:

Xkα = LΩδkα − (σij,ασij,k + bσii,ασkq,q + bσik,ασqq,i − eσii,ασqq,k + 2aσik,ασiq,q),
k, α = 1, 2, 3. (4.27)

Considering the Beltrami–Michell special case, i.e. ζ = −ν/(1 − ν), or e = 0, and
using the equilibrium relations over the domain (σij,j = 0), we obtain (C1),

X̃kα = 1
2σ�m,nσ�m,nδkα − σij,ασij,k − bσik,ασqq,i, (4.28)

where the tilde denotes the special case.

(b) Coordinate rotation

Let

x̄i = Qji(ε)xj , (4.29)
σ̄ij = Qki(ε)σk�Q�j(ε), (4.30)
n̄i = Qji(ε)nj , (4.31)
p̄i = Qji(ε)pj , (4.32)

χ̄ij = Qki(ε)χk�Q�j , (4.33)

where the rotation matrix {Qij(ε)} ∈ SO(3) and {Qij(0)} = {δij}. For infinitesimal
rotation,

Qij(ε) = δij + εijkεk + o(ε), k = 1, 2, 3, (4.34)

and

�
ε := {εijkεk} =

⎡
⎣ 0 ε3 ε2

−ε3 0 ε1
−ε2 −ε1 0

⎤
⎦ ∈ so(3). (4.35)
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The infinitesimal generators are

ϕiα =
∂x̄i

∂εα

∣∣∣∣
ε=0

=
∂Qji

∂εα

∣∣∣∣
ε=0

xj = εjiαxj , (4.36)

ξijα =
∂σ̄ij

∂εα

∣∣∣∣
ε=0

=
∂Qki

∂εα

∣∣∣∣
ε=0

σk�Q�j

∣∣∣∣
ε=0

+ Qki

∣∣∣∣
ε=0

σk�
∂Q�j

∂εα

∣∣∣∣
ε=0

= εkiασkj + ε�jασi�, (4.37)

νiα = εjiαnj , (4.38)

γiα = εjiαpj , (4.39)

λijα = εkiασkj + ε�jασi�, (4.40)

where α = 1, 2, 3.
It can be easily shown that transformations (4.29)–(4.33) satisfy invariant condi-

tions (3.24) and (3.25).
The conserved quantities are

Rkα = LΩεmkαxm +
∂LΩ

∂σij,k
(ε�iασ�j + ε�jασi� − σij,�εm�αxm)

= LΩεmkαxm + (ε�iασ�j + ε�jασi� − σij,�εm�αxm)

× (σij,k + bδijσkq,q + 1
2b(δjkσqq,i + δikσqq,j)

− eδijσqq,k + a(δjkσiq,q + δikσjq,q)). (4.41)

Considering the Beltrami–Michell special case, i.e e = 0 and using the equilibrium
equations, we obtain (C2).

Remark 4.2.

(i) The conservation laws resulting from the transformations based on the princi-
ple of material frame-indifference (Truesdell & Noll 1965) are linear combina-
tions of conserved quantities obtained by coordinate translation and coordinate
rotation.

(ii) The Lagrangian density LΩ may be viewed as a pseudo-energy density and, by
definition,

Eijk =
∂LΩ

∂σij,k
and σij,k =

∂LΩ

∂Eijk
. (4.42)

However, one may verify that the sixth-order tensor,

Dijk�mn :=
∂2LΩ

∂σij,k∂σ�m,n
, (4.43)

is not an isotropic tensor. Therefore, the rigid-body rotation is not an invariant
transformation.
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(c) Scaling

Choose

x̄i = (1 + c1ε)xi → ϕiα = c1xi, (4.44)
σ̄ij = (1 + c2ε)σij → ξijα = c2σij , (4.45)
n̄i = (1 + c3ε)ni → νiα = c3ni, (4.46)
p̄i = pi → γiα = 0, (4.47)

χ̄ij = (1 + c4ε)χij → λijα = c4χij , (4.48)

where c1, c2, c3 and c4 are real constants. Substituting (4.44)–(4.48) into the invariant
conditions (3.24), (3.25), we obtain

(2c2 + c1)LΩ = 0, (4.49)

and

(c2 + c3)χijσij + LΓ (2c1 + c4) = 0. (4.50)

Let
c1 = 1, c2 = −1

2 , c3 = 1
2 , c4 = −2. (4.51)

The conserved quantities are then given as

Sk = −2LΩxk + (2σij,�x� + σij)

× (σij,k + bδijσkq,q + 1
2b(δjkσqq,i + δikσqq,j)

− eδijσqq,k + a(δjkσiq,q + δikσjq,q)). (4.52)

Considering the Beltrami–Michell special case, i.e. e = 0 and using the equilibrium
equations, we obtain (C3).

(d) Constant pre-stress

Let

x̄i = xi, (4.53)
σ̄ij = σij + εcij , cij ∈ Sym, (4.54)
n̄i = ni, (4.55)
p̄i = pi, (4.56)

χ̄ij = χij . (4.57)

The non-zero infinitesimal generators are

ξijα = cij , α = 1. (4.58)

Both invariant conditions (3.24) and (3.25) are satisfied. To verify condition (3.25),
we note that, by the frozen condition,∮

Γ

χij dS = 0 → cij

∮
Γ

χij dS = 0, ∀cij ∈ Sym, (4.59)

where Γ is an arbitrary closed contour.
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The following quantities are conserved:

Pk =
∂LΩ

∂σij,k
cij

= [σij,k + bδijσkq,q + 1
2b(δjkσqq,i + δikσqq,j)

− eδijσqq,k + a(δjkσiq,q + δikσjq,q)]cij . (4.60)

Considering the Beltrami–Michell special case, i.e. e = 0 and using the equilibrium
equations, we obtain (C4 a).

An alternative construction is to let

σ̄ij = σij + (εicj + ciεj), i, j = 1, 2, 3, (4.61)

where {ci} is an arbitrary constant vector.
The corresponding non-zero infinitesimal generators are

ξijα = δiαcj + ciδjα, α = 1, 2, 3. (4.62)

We obtain the following conserved quantities:

Pkα =
∂LΩ

∂σαj,k
cj +

∂LΩ

∂σiα,k
ci = 2

∂LΩ

∂σαj,k
cj , k, α = 1, 2, 3. (4.63)

We can then obtain (C4 b) as a special case.

(e) Others

For the present BVP, equation (2.32) reduces to

d
dxk

(
∂LΩ

∂σij,k

)
= 0, ∀x ∈ Ω. (4.64)

Noting (2.20), we conclude that Eijk is a conserved quantity. We obtain (C5 c) for
the Beltrami–Michell special case. We further obtain (C5 a) and (C5 b) by using the
equilibrium relations.

By using the self-adjoint property of the Pobedrja formulation, a reciprocal theo-
rem can be derived, which leads to the following conserved quantities:

Bk = Eijk(σ)τij − σijEijk(τ ), (4.65)

where τ is an arbitrary solution of the BVP (it does not satisfy the required boundary
conditions). We can prove that the above quantity is divergence free by first noting
that

dEijk(σ)
dxk

= 0 and
dEijk(τ )

dxk
= 0, (4.66)

and observing that

Eijk(σ)τij,k = σij,kEijk(τ ). (4.67)

We then obtain the conservation law (C6) for the Beltrami–Michell special case.
Here τ is an arbitrary solution of the Beltrami–Michell BVP. (It does not satisfy the
required boundary condition (4.3).)
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Equation (4.12) also provides us with a systematic way of generating higher-order
stress conservation laws. For example, take τij = σij,kk. It can be easily verified
that τij satisfies the Beltrami–Michell BVP (with an additional requirement that
σij(x) ∈ [C4(Ω)]6). We then obtain new higher-order conserved quantities (using
(4.12)),

Ãk = Ẽijk(σ)σij,qq − σijẼijk(∆σ). (4.68)

Remark 4.3. It should be noted that the above transformations may not be the
only transformations under which we can obtain conservation laws.

�

5. Closure

The conservation laws in terms of the stress had been anticipated by Eshelby (1970),
and it was hinted that they may be useful in studying defects in solids.

In this paper, by using Pobedrja’s stress formulation of linear elasticity, we have
discovered, we believe for the first time, a set of conservation laws in terms of stresses.
The stress conservation laws represent the intrinsic properties of elastic materials,
and they may provide physical insights to study material behaviours. It should be
noted that the stress conservation laws discovered in this paper represent an intrinsic
mathematical structure of 3D elasticity, and their existence does not depend on
Pobedrja’s stress formulation.

The laws derived here are new, genuine and non-trivial conservation laws of linear
elasticity, which represent the symmetry properties of the compatibility equations
and the equilibrium equations. Even though these conservation laws are expressed
solely in terms of stresses, they may be also viewed as higher-order displacement
conservation laws if the stress components are converted into strain components, and
it may be possible to derive them as the higher-order conservation laws of Navier’s
equations.

cokNote that here we have not exhausted all the possibilities of conservation laws
in stress formulations. We have only documented several conservation laws that have
physical implications.

This work is supported by a grant (no. CMS-0239130) from NSF (S.L.), and a visiting Miller
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