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Peierls stress of a screw dislocation in a piezoelectric medium
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In this letter, the Peierls-Nabarro (PN) model is extended to describe dislocation mobility in
piezoelectric materials. The Peierls stress of a screw dislocation in a piezoelectric material is
calculated based on the generalized PN model and linear piezoelectricity theory. © 2004 American
Institute of Physics. [DOI: 10.1063/1.1790030]

Piezoelectric materials have been extensively used to
manufacture thin films and other components in sensors,
transducers, integrated circuits, and various other electric de-
vices. There has been a keen interest to study the dislocation
mobility in piezoelectric materials.

Nevertheless, only a few analytical studies regarding dis-
location mechanics of piezoelectric materials have been re-
ported in the literature.1–5 Moreover, it seems to us that the
issues regarding the mobility of dislocations in such materi-
als have not been resolved. We are curious about the piezo-
electric effect on the dislocation mobility. In this study, an
analytical expression for the Peierls stress in a piezoelectric
crystal is obtained, which takes into account the piezoelectric
coupling effect.

Consider a piezoelectric screw dislocation in a hexago-
nal crystal �6mm�. Assume that the x-y plane is the isotropic
basal plane and the z axis is the out-plane axis. Consider an
infinitely long screw dislocation with Burgers vector bm ly-
ing along the z axis.

The dislocation mechanics in piezoelectric materials is
more complicated than the dislocation mechanics in purely
elastic media. In a piezoelectric medium, dislocations often
coexist with discontinuous charge distributions. Similar to
the dislocation representing displacement discontinuity, the
electrical potential discontinuity is represented by the electric
dipole. In this analysis, it is assumed that there is an electric
dipole vector be along the z axis.

For simplicity, we consider the following coupled anti-
plane strain and in-plane electric potential problem:

ux = uy = 0, uz = uz�x,y� , �1�

Ex = − �,x�x,y�, Ey = − �,y�x,y�, Ez = 0, �2�

where �=��x ,y� is the electrical potential, Ei �i=x ,y ,z� are
the electric-field components, and ui �i=x ,y ,z� are the dis-
placement components.

A set of nontrivial constitutive equations can be obtained
for the present purpose.4 For a hexagonal crystal of 6mm
class, they are given as

�xz = c44�xz − e15Ex, �3�

�yz = c44�yz − e15Ey , �4�

Dx = e15�xz + �11Ex, �5�

Dy = e15�yz + �11Ey , �6�

where �xz ,�yz are the two out-plane shear stresses, �xz ,�yz
are the related shear strains, Dx ,Dy are in-plane electrical
displacements, and c44, e15, �11 are shear elastic modulus,
piezoelectric coefficient, and dielectric constant, respectively.

Assuming that the body force and the volume charge
distribution are absent, we have the following nontrivial
equilibrium equations,

��xz

�x
+

��yz

�y
= 0,

�Dx

�x
+

�Dy

�y
= 0. �7�

The governing equations for a screw dislocation are then
obtained using the above relations,

c44�
2uz + e15�

2� = 0, �8�

e15�
2uz − �11�

2� = 0. �9�

Since c44�11+e15
2 �0, the governing equations can be decou-

pled as:

�2uz = 0, �2� = 0. �10�

Because the electrostatic charge equation is decoupled with
the stress equilibrium equation, the screw dislocation solu-
tion has the same form as the classical Burgers’ solution,4

uz =
bm

2�
arctan

y

x
, �11�

� =
be

2�
arctan

y

x
, �12�

�xz = −
�c44bm + e15be�y

2��x2 + y2�
, �13�

�yz =
�c44bm + e15be�x

2��x2 + y2�
, �14�

Dx =
�− e15bm + �11be�y

2��x2 + y2�
, �15�

Dy =
�e15bm − �11be�x

2��x2 + y2�
. �16�

To extend the original Peierls-Nabarro (PN) model6,7 to
piezoelectric materials, we distribute a single mechanical dis-
location and a single electrical dipole along the glide plane,
such that the nonlocal dislocation system has an equivalent
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displacement jump w and an equivalent electric potential
jump � along the upper half of the crystal �y�0� with re-
spect to the lower half �y�0�. These jumps are assumed to
result from the distribution of an infinitesimal dislocation,
bm� , and an infinitesimal jump in electric potential, be�, respec-
tively. Such infinitesimal quantities are determined by the
following equivalency conditions:

bm� = �� �w

�x
��

x=x�
, be� = �� ��

�x
��

x=x�
, �17�

and

bm = �
−	

	

bm� �x�dx, be = �
−	

	

be��x�dx . �18�

By doing so, we create a cohesive strip that connects two
perfect crystal half spaces. Comparing with the two perfect
crystal half spaces, the cohesive strip may be viewed as a
phase of a lower order symmetry, because of the presence of
the topological defect and the biased charge distribution. As
an analog to Landau’s potential,8 it is then plausible to specu-
late that the excess free energy inside the cohesive strip
could be expressed by an even-order polynomial expansion
of some order parameters.9 In an equilibrium state, these
order parameters may be proportional to nondimensional
misfit variables, w /bm and � /be. The stress and the electric
displacement field, caused by the misfit and derived from the
above-mentioned free energy will be an odd function of the
order parameters. In the spirit of original PN model, we as-
sume these fields by the following sinusoidal expressions:

�yz�x,0� =
c44bm

2�d
sin�2�w

bm
� +

e15be

2�d
sin�2��

be
� , �19�

Dy�x,0� =
e15bm

2�d
sin�2�w

bm
� −

�11be

2�d
sin�2��

be
� , �20�

where d is the width of dislocation. It should be noted that
the validness of the above assumption hinges on the fact that
the Taylor expansion of a sinusoidal function is a series of
odd order polynomials.

Using Eqs. (14) and (16) and considering the fact that
the smeared dislocation and the electrical dipole are along
y=0, we may obtain the stress field �yz and the electric dis-
placement field Dy,

�yz�x,0� =
c44

2�
�

−	

	 bm�

x − x�
dx� +

e15

2�
�

−	

	 be�

x − x�
dx�, �21�

Dy�x,0� =
e15

2�
�

−	

	 bm�

x − x�
dx� −

�11

2�
�

−	

	 be�

x − x�
dx�. �22�

Comparing Eq. (19) with Eq. (21) and Eq. (20) with Eq.
(22), we obtain two nonlinear integral equations,

�
−	

	 ��w/�x�x=x�

x − x�
dx� =

bm

d
sin�2�w

bm
� , �23�

�
−	

	 ���/�x�x=x�

x − x�
dx� =

be

d
sin�2��

be
� . �24�

The solutions of these nonlinear integral equations are,

w�x� =
bm

�
arctan

2x

d
+

bm

2
, �25�

��x� =
be

�
arctan

2x

d
+

be

2
. �26�

A standard procedure is now followed to calculate the total

FIG. 1. The Peierls stress in piezoelec-
tric materials.
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misfit enthalpy generated by the dislocation-dipole system
and to obtain an analytical expression for the Peierls stress.10

Let a be the spacing of atomic planes in x direction (in
the absence of a dislocation). If the dislocation is translated
by u, then the planes at a position na (where n is an integer)

in the upper half of the crystal will be displaced with respect
to lower half by w�na−u�. Also the planes at na in the upper
half of crystal will then experience a potential shift ��na
−u�, with respect to the lower half. The misfit enthalpy be-
tween a pair of atomic planes can be written as


H = ad� ��yzd�yz − DydEy� = a� ��yzdw + Dyd��

=
c44bma

2�d
�

0

w

sin�2�w

bm
�dw +

e15bea

2�d
�

0

w

sin�2��

be
�dw

+
e15bma

2�d
�

0

�

sin�2�w

bm
�d� −

�11bea

2�d
�

0

�

sin�2��

be
�d�

= 
H1 + 
H2 + 
H3 + 
H4. �27�

The terms, 
Hi , i=1,2 ,3 ,4, are evaluated as follows:


H1 =
c44bm

2 a

4�2d
�

0

w

sin�2�w

bm
�d�2�w

bm
�

=
c44bm

2 a

4�2d
�1 + cos 2�arctan

2�na − u�
d

	
 . �28�

Summing 
H1 from n=−	 to +	, one has

H1�u� =
c44bm

2 a

4�2d
�

n=−	

	 �1 + cos 2�arctan
2�na − u�

d
	
 .

�29�

Use the identity

1 + cos 2�arctan�2�na − u�
d

	
 =
2�d/2�2

�d/2�2 + �na − u�2 .

and let �=d /2a and �=u /a. We then have

H1�u� =
c44bm

2 a

2�2d
�2 �

n=−	

	
1

�2 + �n − ��2

=
c44bm

2

4�
+

c44bm
2

2�
exp�− �d/a�cos�2�u

a
� . �30�

The limit for wide dislocations ��1� has been used in
the above calculation.10 Similarly, it may be found that

H4�u� = −
�11be

2

4�
−

�11be
2

2�
exp�− �d/a�cos�2�u

a
� , �31�

which is the contribution due to the electric dipole distribu-
tion.

Considering the interaction terms in the enthalpy,


H2 =
e15bea

2�d
�

0

w

sin�2��

be
�dw , �32�


H3 =
e15bma

2�d
�

0

�

sin�2�w

bm
�d� . �33�

One may find the following identity relating � and w [using
Eqs. (25) and (26)],

tan
��

be
= tan

�w

bm
. �34�

With the help of above identity and following usual argu-
ments, it can be readily shown that,

H2�u� =
e15bmbe

4�
+

e15bmbe

2�
exp�− �d/a�cos�2�u

a
� ,

H3�u� =
e15bmbe

4�
+

e15bmbe

2�
exp�− �d/a�cos�2�u

a
� .

The Peierls potential in the cohesive strip (or the total
misfit enthalpy) is

H�u� = H1�u� + H2�u� + H3�u� + H4�u�

=
1

4�
�c44bm

2 + 2e15bmbe − �11be
2

· �1 + 2exp�− �d/a�cos�2�u

a
�	 . �35�

The Peierls stress for a screw dislocation in a piezoelec-
tric crystal of 6mm class is then obtained by finding the
maximum stress,

�P = max� 1

bm

�H�u�
�u

	 . �36�

We therefore obtain

Appl. Phys. Lett., Vol. 85, No. 10, 6 September 2004 S. Li and A. Gupta 3

  PROOF COPY 009436APL  



  PROOF COPY 009436APL  

  PRO
O

F CO
PY 009436APL  

�P
pz = � c44bm

a
+

2e15be

a
−

�11be
2

abm
�exp�−

�d

a
� , �37�

where the superscript pz denotes the Peierls stress for piezo-
electric materials. When be=0, we recover the classical
Peierls stress for a purely elastic crystal,10

�P
m =

c44bm

a
exp�−

�d

a
� , �38�

where superscript m denotes the Peierls stress for a purely
mechanical system (i.e., for which be=0).

Let

X ª

e15be

c44bm
, k ª

c44�11

e15
2 . �39�

Then,

�P
pz

�P
m = 1 + 2X − kX2. �40�

We plot the ratio, �P
pz /�P

m, against the nondimensional vari-
able X for some typical semiconductor piezoelectric materi-
als. The results are displayed in Fig. 1.

We notice from the figure that the ratio �P
pz /�P

m depends
on the ratio be /bm for a particular semiconductor (see Table I
for material properties of some semiconductors). This im-
plies that depending on the magnitude of mechanical dislo-
cation and electrical dipole vector, the Peierls stress for the
considered piezoelectric material may increase or decrease
(with respect to mechanical Peierls stress), and therefore re-
sult in a decrease or increase of dislocation mobility. These
curves vary with material properties and will be different for
different piezoelectric materials.

As a second example we investigate the mobility of a
dislocation in a 180° domain-wall structure of a ferroelectric
material by using the modified Peierls-Nabarro developed in
this paper. We consider only those ferroelectric materials that
possess the symmetry of transversely isotropy, and thus we
can describe the above-mentioned structure by the same set
of field equations developed previously in this paper. A slight
modification is required in calculating the total misfit en-
thalpy. Since the piezoelectric coefficient e15 changes sign
across the 180° domain wall, the interaction terms [Eqs. (32)
and (33)], after being added along the two atomic planes,
produce a vanishing result. The other two terms in the ex-
pression for total enthalpy remain unchanged (they are inde-
pendent of the piezoelectric coefficient). Following the usual
algebra we can then obtain the expression for the Peierls
stress for the considered case as

�P
pz

�P
m = 1 − kX2. �41�

From Eq. (41), we conclude that unlike piezoelectric materi-
als, the presence of an electric dipole in a 180° domain-wall
structure of a ferroelectric material will always result in a
decrease of the Peierls stress and thus result an increase in
mobility. This is illustrated by plotting the Peierls stress of
BaTiO3 versus nondimensional electric dipole density, X, in
Fig. 1.
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TABLE I. Material properties of some semiconductors (Ref. 11).

Compound
� (density)

�103 kg/m3�
�11

�10−9 F /m�
c44

�1010 N/m2�
e15

�C/m2�

ZnS 3.98 0.0770b 2.28 −0.0638
ZnO 5.68 0.0757a 4.247 −0.48

BaTiO3 5.7 9.8722a 4.4 11.4

aConstant strain.
bConstant stress.
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