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Mesh-free simulation of ductile fracture
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SUMMARY

This paper is concerned with mesh-free simulations of crack growth in ductile materials, which is
a major technical difficulty in computational mechanics. The so-called reproducing kernel particle
method, which is a member of the mesh-free method family, is used together with the Gurson–
Tvergaard–Needleman constitutive model for simulation of ductile fracture. A study has been carried
out to compare the proposed mesh-free simulation with the available experimental results and previous
finite element simulations for crack propagation in a three-point-bending steel specimen. The results
show that the mesh-free simulation agrees well with experimental results, and it is confirmed that
the proposed method provides a convenient and yet accurate means for simulation of ductile fracture.
Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: mesh-free method; ductile fracture; crack propagation; Gurson–Tvergaard–Needleman
model; experiments

1. INTRODUCTION

There is an enormous application potential for a method for prediction of the onset and prop-
agation of macroscopic cracks in structures undergoing gross plastic deformations. Despite a
substantial effort over the past decades, still no method has been proposed which is fully sat-
isfactory with regard to general accuracy on the one hand and ease of use for the engineering
society on the other hand. One of the challenges in predicting fracture in structures is the
significant span of length scales. While the size of structures is in the order of a meter the
mechanics governing material separation under void growth and coalescence is on a scale of
10–100 �m.

The successful prediction of crack propagation requires:

• a criterion that determines when the crack propagates
• a method that can solve the boundary value problem with an evolving crack
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1426 B. C. SIMONSEN AND S. LI

The classical approach to the first item is fracture mechanics. In the case of small-scale
yielding conditions a single parameter (for example the J -integral) gives a satisfactory descrip-
tion of the crack tip conditions. The conventional fracture mechanics—which is obviously very
successful—builds on this basis. It breaks down, however, in the presence of excessive plasticity
where the fracture toughness turns out to be a strong function of the crack tip constraint—see
for example Reference [1] or Reference [2]—which implies that the fracture toughness becomes
a function of the size and geometry of the test specimen. So-called two-parameter fracture me-
chanics (for example J -Q- or J -T theory) has been developed to incorporate the effect of
crack tip constraint but although these methods have apparently increased the applicability of
the J -approach, [2, 3], they still do not apply to general loading conditions with large strains,
large-scale yielding or significant crack growth.

The alternative to fracture mechanics is the so-called local approach. The basic idea is to
resolve the continuum mechanics problem all the way to the crack tip and introduce material
separation whenever a damage measure has reached a critical value. A very large number
of constitutive models with evolving damage have been proposed over the past few decades.
The simplest of these methods can be called damage indicators. Those methods—for example
that of Rice and Tracey [4]—do not include any coupling between the constitutive behaviour
and the material damage, except at the point of fracture where the stress carrying capacity
is removed instantaneously. A large part of the methods falls in the category of damage me-
chanics, where a scalar or tensor defines the degradation of material stiffness without referring
this damage quantity to the microstructure of the material. Finally, yet another category of
methods uses micro-mechanics to relate the developing microstructure of the material to the
macromechanical behaviour of the material. The model applied in the present paper is based
on the idea that material fracture is governed by nucleation, growth and coalescence of voids.
The idea was originally proposed by McClintock [5] and Rice and Tracey [4]. It was further
developed by Gurson [6] and subsequently modified by Tvergaard and Needleman Tvergaard
[7–9] as described later. Although the model has certain shortcomings—see the discussions
by Pardoen and Hutchinson [10] and Roychowdhury et al. [11] —it has also proved to be
able to predict the important phenomena of initiation, [12], and propagation [13]. Since the
focus of the present paper is on the application of the mesh-free method rather than on the
material model, this so-called Gurson–Tvergaard–Needleman (GTN) model is used here without
modifications.

The second challenge mentioned above—solution of the boundary value problem—has also
received considerable attention. The most commonly used approach is the finite element method
together with an ‘element extinction’ procedure, see for example Reference [9] or Reference
[12]. Once the conditions of the material in an element reach a predefined critical state,
the element is taken out of the existing discretization, i.e. the connectivity map is modified
to exclude the particular element. With a sufficiently fine discretization and the appropriate
constitutive law, this finite element based approach should be able to predict fracture accurately.
However, the wide range of physical length scales mentioned earlier and the fact that the crack
trajectory is not known a priori make it practically impossible to discretize a sufficiently
large part of the structure to the scale of the smallest mechanism. Therefore, in practice
the finite element models normally need to use a relatively coarse mesh, which introduces
problems of mesh size and mesh orientation sensitivity. Various strategies are pursued toward
efficient handling of the changing topology, for example adaptive mesh refinement, mesh overlay
techniques [14] and discontinuous element formulations [15, 16].
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The mesh-free method was initially proposed several decades ago by Lucy [17] and Gingold
and Monoghan [18] to study astrophysics problems. Recently, it has experienced a renaissance
in solution of problems with which conventional finite element methods may have difficulties
such as simulations of crack growth in a solid. Overviews of the mesh-free methods are found
in References [19–21]. The mesh-free method used in this paper is the so-called reproducing
kernel particle method (RKPM) proposed by Liu et al. [22]. The objective of the paper is
to illustrate that it is possible to predict ductile fracture by use of the GTN model and the
RKPM. The paper describes the basic continuum mechanics formulation used, the special
features of the mesh-free interpolant, how the evolving discontinuity is modelled, the theory
and implementation of the GTN model and finally a comparison between experiments and
predictions of crack propagation in a three-point-bending (TPB) specimen of steel.

Conventional index or tensor notation is used. The summation convention applies to both
upper and lower cases. In general, lower case (i, j, k) refer to the components of a tensor and
upper case I or J to the identification number of a particle. Parts of the formulation and the
notation used here follow that of Belytschko et al. [23]. For detailed derivations, for instance
of the principle of virtual work, readers are referred to this book.

2. BASIC KINEMATICS

The motion is described in a Cartesian co-ordinate system. In the initial, referential state the
position of a material particle is denoted by X. At time t the position is denoted by x = �(X, t).
Obviously, X = x(X, 0) = �(X, 0). The displacement of a material point in the time interval
from t = 0 to t is

u(X, t) = �(X, t) − �(X, 0) = �(X, t) − X (1)

The velocity is

v(X, t) = ��(X, t)

�t
= �u

�t
= u̇ (2)

The deformation gradient is

F = ��(X, t)

�X
(3)

The velocity gradient is

L = �v
�x

= (∇v)T (4)

The rate of deformation, D, is the symmetric part of L and the spin, W, is the skew symmetric
part of L, i.e.

L = (∇v)T = D + W (5)

D = 1
2 (L + LT) (6)

W = 1
2 (L − LT) (7)
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Since a total Lagrangian approach is adopted here, it is convenient to express D and W in
terms of the reference coordinates. It can be shown that

L = Ḟ · F−1 (8)

and the rate of deformation and the spin can then be expressed as

D = 1
2 (Ḟ · F−1 + F−T · ḞT) (9)

W = 1
2 (Ḟ · F−1 − F−T · ḞT) (10)

where Ḟ = �v/�X.

3. WEAK FORM AND DISCRETIZATION

The total Lagrangian formulation is employed. The weak form can be developed by multiplying
the momentum equation by a test function �ui and integrating over the referential spatial
domain: ∫

�0

�ui

(
�Pji

�Xj

+ �0bi − �0üi

)
d�0 = 0 (11)

where Pij is the nominal stress, �0 is the initial density of the material, bi denote the body
forces and the domain of integration is the initial (reference) spatial domain �0. The spaces
for the trial and test functions are

u(X, t) ∈ U (12)

�u(X) ∈ U0 (13)

where U is the space of kinematically admissible displacements and U0 is the subspace of U

for which displacements vanish on displacement boundary conditions. While the trial and test
functions used in the conventional finite element method immediately fulfil the requirements of
essential boundary conditions, this is not the case for the functions constructed from mesh-free
interpolants, such as the smooth particle hydrodynamics (SPH) or the reproducing kernel particle
method (RKPM) used here. Special care must therefore be taken to handle essential bound-
aries so that the requirements given by Equations (12), (13) are met. The procedure described
in Reference [24] is used here without modifications for an accurate and well documented
treatment of essential boundary conditions. The principle of virtual work can be written as

�W int(�u, u) − �W ext(�u, u) + �W kin(�u, u) = 0 (14)

where the contributions to the work equation are

�W int =
∫

�0

�FijPji d�0 (15)
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�W ext =
∫

�0

�ui�0bi d�0 +
nSD∑
i=1

∫
�0

ti

�ui t̄
0
i d�0 (16)

�W kin =
∫

�0

�ui�0üi d�0 (17)

where nSD is the number of spatial dimensions, �0 is the boundary with traction boundary
conditions and t̄0i is the boundary traction. As usual, subscript 0 refers to the initial configu-
ration. The subsequent section will describe in detail how the mesh-free interpolation works.
At this point it should be noted that the motion is described by use of discrete, nodal values
and interpolation functions as in the finite element method:

xi(X, t) = xiI(t)NI (X) (18)

where I denotes the ID-number of a particle (equivalent to node point in the FEM) and the
summation convention works for both upper and lower case indices. The Galerkin method is
applied here so the test functions are constructed using the same shape functions as the trial
functions. The trial displacement field and the test functions are then, respectively,

ui(X, t) = uiI(t)NI (X) (19)

�ui(X, t) = �uiI(t)NI (X) (20)

The velocities and accelerations are found by taking the time derivative of Equation (19):

u̇i(X, t) = u̇iI(t)NI (X) (21)

üi(X, t) = üiI(t)NI (X) (22)

For the discretized trial and test functions given by Equations (19), (20), it can be shown that
the weak form, Equation (14), is equivalent to

�uiI(f
int
iI − f ext

iI + MijIJ üjJ) = 0 ∀I, i /∈ �ui
(23)

where f int
iI and f ext

iI are the internal and external nodal forces, respectively, MkjIJ is the
mass matrix and �ui

are the degrees of freedom on the boundary controlled by displacement
boundary conditions. The components of internal force, external force and mass matrix are
expressed as

f int
iI =

∫
�0

�NI

�Xj

Pji d�0 (24)

f ext
iI =

∫
�0

NI�0bi d�0 +
∫

� 0
ti

NI t̄
0
i d�0 (25)

MijIJ = �ij

∫
�0

�0NINJ d�0 (26)
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Finally, since Equation (23) applies for arbitrary values of the nodal displacement components
which are not affected directly by essential boundary conditions, it follows that

MijIJ üjJ = f ext
iI − f int

iI ∀I, i /∈ �ui
(27)

The weak form, Equation (24) makes use of the nominal stress, which is related to the Cauchy
stress and the deformation gradient as

P = JF−1 · � (28)

where J = det(F). Equation (27) is solved by an explicit integration scheme using a central
difference method as described in Reference [23].

4. MESH-FREE SIMULATION OF CRACK PROPAGATION

4.1. The RKPM Interpolant

The displacement interpolation in a two-dimensional domain is given by

ui(X1, X2) = NI (X1, X2)uiI , i = 1, 2 and (X1, X2) ∈ �0 (29)

where uiI is the displacement of particle no. I in the i-direction and NI (X1, X2) is the
interpolation function associated with this particle. In the finite element method the trial function
approximation within a single element is similar to Equation (29), but the summation would
extend only over the nodes of the element containing the material point X = (X1, X2). Most
mesh-free interpolations are non-local, i.e. the sampling or the summation is not confined in
an element but extends over a much larger, however still limited, spatial area. This property
of the finite extent of the interpolant is denoted compact support and it conveniently implies
that the summation in Equation (29) only has to be carried out over the subset of particles
(typically around 20 in 2-D) for which NI (X1, X2) is non-zero.

In this paper the so-called RKPM is used. The RKPM is a further development of the
original SPH method [17, 18]. Comprehensive development and application of the method have
been performed by the computational mechanics group at Northwestern University, [22–26].
The basic idea of RKPM and the other so-called corrective SPH methods is to ‘correct’ the
original SPH kernel (hereafter called window function), ��(X − XI ), to make the method a
partition of unity so that rigid body motion can be correctly represented. The RKPM not only
reproduces a constant but any basis function included in the Pb-vector. The window function
��(XI − X) is modified by a factor, the correction function:

C�(X − XI ) = Pb

(
(X − XI )

�

)
b
(

X
�

)
(30)

where Pb is a vector function of any type and the coefficients held in b are chosen so that
the local truncation error is minimized [22]. The interpolation function is then given by

NI (X) = Pb

(
(X − XI )

�

)
b
(

X
�

)
��(X − XI )�VI (31)
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where �VI is the integration weight of node I . There are various possible choices of both
�� and P. The reproducing property makes it possible to approximate accurately solutions to
particular cases—for example a crack tip displacement field as considered by Belytschko et al.
[27] and Fleming et al. [28]. The basis in the present work is composed of polynomials:

Pb(X1, X2) = (1, X1, X2, X1X2) (32)

which obviously means that the interpolant can reproduce exactly a bi-linearly varying dis-
placement field (including a constant). The window function is obtained by a Cartesian product
of the one-dimensional cubic spline functions:

��(X − XI ) = 1

�1�2
f1(X1 − X1I )f2(X2 − X2I ) (33)

where

f�(X� − X�I ) =
{
1 − 2

3 q2
� + 3

4 q3
� for 0� q� = |X�−XI�|

��
< 1

1
4 (2 − q�)

3 for 1� q� � 2
(34)

It is seen that this window function has a rectangular support of the size 4�1 · 4�2 (unit:
[m] · [m]). The vector b(X) is found by enforcing the reproducing condition, which leads to
the following system of equations:

M(X)b(X) = Pb(0) (35)

where M is the moment of the window function

M(X) =




m00 m10 m01 m11

m10 m20 m11 m21

m01 m11 m02 m12

m11 m21 m12 m22


 (36)

The components of the moment matrix are found by a numerical, nodal integration using the
trapezoidal rule

mij =
∑ (

X1 − X1I

�1

)i (
X2 − X2I

�2

)j

��(X − XI )�VI (37)

The integration weights �VI need to be carefully assigned to each node to make the integration
correct as discussed in Reference [19]. It should be noted that the correction factor b(X) is
truly a function of X so it has to be determined at each point where the solution is of interest,
i.e. at the particle and Gauss points. Furthermore, for problems like the present one where the
topology changes during the solution, b(X) has to be determined in each time step, at least in
the part of the structure affected by the crack.

4.2. Crack Propagation

One of the main challenges in numerical simulations of crack initiation and propagation
is that the topology of the structure changes during the deformation process. A practical
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Figure 1. Connectivity in the mesh-free method, one-dimensional case.

solution which has found widespread application in finite element modelling of fracture is
the so-called ‘erosion’, ‘element kill’ or ‘element extinction’ method, where an element is
taken out of the connectivity matrix once a particular criterion is met. For a sufficiently fine
finite element discretization many examples have shown that this method works well—see for
example References [9, 12, 29–31]. Despite such examples of success, it is widely recognized
that the finite element method is difficult to use for modelling of crack propagation in real-
size structures, largely due to the above mentioned problem of the span of length scales. One
way of overcoming the problem of resolving the moving crack tip field is to use adaptive
meshing. While adaptive meshing has certainly proved efficient in many problems, the method
is still complicated to implement and computationally expensive. An alternative to conventional
adaptive meshing is to use a highly graded moving overlap grid’ which takes the coarse-scale
solution to the fine scale [14].

As an alternative to killing elements, it has been proposed to introduce discontinuities into
the shape functions of finite elements. This class of methods has shown promising results
[15], but it seems that it is still an open question whether the methods work efficiently for
ductile fracture, where the shape functions need to include very complex solutions to capture
the highly non-linear mechanics at the blunting crack tip.

To alleviate the problems related to the use of an element mesh, a substantial effort has
been made to develop the mesh-free method for crack propagation. Since the topology—i.e. the
connectivity between material particles—in the mesh-free method is defined differently from
that of the finite element method, there is a potential gain with regard to the description and
modelling of the propagating crack. Figure 1 illustrates the mesh-free modelling of fracture for
a 1-D problem. The locations of Gauss points (GPs) and node points (NPs) are shown together
with the support size 2q1. The support size of the interpolation function at a NP determines
the extent of the integrals in Equations (24)–(26). Assume that GP no. 4 in Figure 1 has
reached a state where the material is fully damaged and stresses can no longer be transmitted
through the element, i.e. a crack is formed. In the ‘erosion’ approach used in finite element
modelling this would be taken into account by removing the element between NP no. 2 and
NP no. 3 from the model. In the present approach the crack is included, i.e. the new topology
is enforced, by modifying the domains of the integration in Equations (24)–(26), so that no
integral extends over the discontinuity and by updating the shape-functions by use of Equation
(35). The domain of integration for NP 3 is then only XGP4 �X �XNP3 + 2q1. This way the
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Figure 2. Connectivity and visibility in the mesh-free method, two-dimensional case.

crack edge becomes traction-free which is the correct boundary condition. It should be noted
that the mesh-free method conserves mass contrary to the element extinction method.

The same principle can be applied to multiple-dimensional cases, although there is no
physically based criteria which can be used to adjust the connectivity map automatically.
Several methods have been proposed as discussed in Reference [20]. One of the simplest ways
to implement a discontinuity is to use the so-called ‘visibility’ criterion, [31]. This method has
also been applied to three dimensional problems, [32]. The basic idea of this method is that
the crack is opaque and that material particles which cannot ‘see’ each other should not be
connected. As an example Figure 2 shows NPs in a model with fairly uniform and isotropic
particle distributions. The crack tip is at NP 10 and the equations of motion for NP 7 are
considered for the illustration. It is assumed that the interpolation function for NP 7 initially
extends over the entire area shown in Figure 2. Consider the case where the deformation is
such that the crack tip should be incremented from NP 10 to NP 11. According to the visibility
criterion this would exclude the area ‘behind’ a line connecting NPs 13, 10, 11 and 16 from
the domains of integration in Equations (24)–(26) because NP 7 cannot ‘see’ this area once
the crack tip extends to NP 11. As in the previous example the change of model topology
obviously calls for a reassignment of integration weights �VI and a recalculation of the model
interpolation functions by Equation (35) in the area within the domain of influence of the crack.
The visibility criterion introduces discontinuities into the shape-functions wherever a domain
of influence is partially cut by a discontinuity, i.e. at the crack tip, see Reference [20]. From
a theoretical point of view this is quite unsatisfactory because it violates the foundation of
the Galerkin method. In particular it is unfortunate that the potential inaccuracy is introduced
exactly at the crack tip, where the stress and deformation state has to be carefully evaluated in
order to propagate the crack correctly. On the other hand the solution at the crack tip comes
as a sum of several contributions, and it is not immediately clear how the discontinuities of
the individual shape-functions affect the total solution. In the application examples given at
the end of the paper it is shown that the field at the crack tip is rather smooth, so without
further investigation into accuracy and convergence aspects, it is assumed here that the visibility
criterion can be practically used for problems of ductile fracture like the ones considered in
this paper.
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1434 B. C. SIMONSEN AND S. LI

The crack propagation procedure is implemented in the following way:

1. An initial crack is defined as a line extending between an arbitrary point in space and a
particle (for example NP no. 10 in Figure 2).

2. The connectivity between particles and Gauss points is defined by search routines with
due consideration to the ‘crack line(s)’. This search is performed in the initial, reference
configuration.

3. The system of equations, Equation (27), is set up and the solution is incremented using
explicit integration in time.

4. The material damage is evaluated in the particles around the crack tip.
5. If the damage has reached a critical magnitude at a particle ahead of the crack, then

• the ‘crack line’ is extended to this particle, which is at the new crack tip.
• a new particle is introduced in the location of the previous crack tip particle and
this new particle inherits all historical data of the old particle. The two particles at
the previous crack tip share the original integration weight equally. Finally these two
particles are separated by a distance which is small compared to the spacing of the
particles.

• the procedure is continued from step 2 above.

If no critical damage state is reached ahead of the crack tip, the procedure is continued
from step 3.

During the solution, the geometry of the crack is recorded as a list of line segments connecting
particles.

5. CONSTITUTIVE MODELLING

The first part of this section describes the theoretical background to the so-called Gurson–
Tvergaard–Needleman (GTN) model and derives the set of governing non-linear equations. The
last part of the section describes how the equations are solved by implicit integration. The
derivation largely follows the method of Aravas [33], however, modified to be consistent with
the present rate formulation, somewhat as in Reference [34].

5.1. The Gurson–Tvergaard–Needleman Material Model

The rate of deformation tensor D is decomposed into additive elastic and plastic parts:

D = Del + Dpl (38)

The Jaumann rate of the Cauchy stress � is used in the present hypoelastic formulation:

�∇J = C: Del = C: (D − Dpl) = �el − C : Dpl (39)

where

Cijkl = 2G�ik�j l − (
K − 2

3 G
)
�ij�kl (40)
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and the shear and bulk moduli are

G = E

2(1 + �)
(41)

K = E

3(1 − 2�)
(42)

The trial stress is computed by taking into account the effect of finite rotation, which is
accomplished by using the Hughes–Winget formula [35].

�eln+1 = Q�nQT + �tC∇J : D (43)

Q = I + (I − �W)−1W (44)

where � = 0.5. It should be noted that the global integration scheme assumes constant first-
order derivatives throughout the time step, which is consistent with the above assumption of
constant values of Q and W during the time step. The hydrostatic, deviatoric and equivalent
stresses are defined as follows:

�m = 1
3� : I (45)

�dev = � − �mI (46)

�eq = ( 3
2 �dev : �dev

)1/2
(47)

The stress tensor can then be decomposed as

� = �mI + 2
3 �eqn (48)

where

n = 3

2�eq
�dev (49)

The inelastic behaviour of the material is described by a plasticity model which includes void
growth caused by hydrostatic tension. The Gurson model used in this paper is the computa-
tional version proposed by Tvergaard and Needleman [9], which has been extensively used in
numerical simulations and has been commonly referred to as the Gurson–Tvergaard–Needleman
(GTN) model. The basic idea is that the state of the material damage is described by the current
void volume fraction f , i.e. the volume of voids to the total element volume in a representative
volume element. The material between the voids, i.e. at the microscopic level, is assumed to
follow a general, isotropic material hardening law fh(�̄pl) where �̄pl is the microscopic, work-
equivalent plastic strain. In the numerical computations shown later, fh is described by a power
law, i.e.

�̄0 = fh(�̄
pl) (50)

= �y

(
1 − E

�y

�̄pl
)N

(51)
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where �y is the initial yield stress. The evolution of �̄pl is determined from the condition
that the plastic work of the macroscopic stresses and strains should be equal to the energy
dissipated in plastic deformations at the microlevel:

(1 − f )�̄0 ˙̄�pl = � : Dpl (52)

which leads to

˙̄�pl = � : Dpl

(1 − f )�̄0
(53)

At the macrolevel, the yield function, or the flow potential, is given as

� =
(

�eq
�̄0

)2
+ 2q1f

∗(f ) cosh

(
3q2�m

2�̄0

)
− (1 + q2

1f
∗(f )2) (54)

It is seen that when the damage parameter f (the volume fraction of voids) is zero the Gurson
model reduces to J2 flow theory. The parameters q1 and q2 were introduced by Tvergaard
[7, 8], to bring predictions of the original Gurson model [6], into closer agreement with full
numerical analyses of a periodic array of voids. The function f ∗(f ) was proposed by Tvergaard
and Needleman [9], to account for the effects of rapid void coalescence at failure.

f ∗(f ) =



f for f � fc

fc + 1/q1−fc

ff −fc
(f − fc) for fc < f � ff

1/q1 for f > ff

(55)

The void volume grows partly due to the expansion of existing voids and partly due to the
nucleation of new voids:

ḟ = ḟgrowth + ḟnucleation (56)

Since the material between the voids is incompressible, the growth rate of existing voids is

ḟgrowth = (1 − f )Dpl : I (57)

Nucleation of voids has previously been considered to be either stress or strain controlled. In
the present work only strain controlled nucleation is considered in the form

ḟnucleation = AN ˙̄�pl (58)

The formulation proposed by Chu and Needleman [36] is used, i.e. the nucleation strain follows
a normal distribution with a mean value �n and a standard deviation sN:

AN(�̄pl) = fN

sN
√
2�

exp

[
−1

2

(
�̄pl − �N

sN

)2]
(59)

where fN is the volume fraction of void nucleating particles.
As discussed by various authors, for example Tvergaard [37], Pardoen and Hutchinson [10]

and Dodds et al. [11, 38] the macroscopic material behaviour during void initiation, growth
and coalescence may exhibit a sensitivity to the shape and distribution of voids which cannot
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be captured by the void volume fraction alone. Even if the predicted value of f may not
correspond to the measured value, several studies have shown that the model has excellent
capacity to predict macroscopic behaviour, i.e. crack length, applied loads, etc. Reference is
made to Yu [39], Mathur et al. [29], Besson et al. [12] and Baaser and Gross [30], Xia et al.
[13, 40, 41], for various examples ranging from small specimens to large-scale shell structures.
It is seen from Equation (54) that as the void volume fraction, f , grows towards ff and f ∗(f )

approaches 1/q1, the yield surface for the macroscopic stresses shrinks towards a point. To
attain numerical stability the present procedure assumes full material damage, i.e. � = 0, when
f = kf ff where 0.5 < kf < 0.9, as discussed later. The flow rule gives

Dpl = 	̇
��

��
(60)

= 	̇

{
1

3

��

��m

I + ��

��eq
n
}

(61)

Define

Dm = 	̇

(
��

��m

)
(62)

Deq = 	̇

(
��

��eq

)
(63)

and use these definitions in Equation (61). The flow rule then finally writes

Dpl = 1
3 DmI + Deqn (64)

Elimination of 	̇ from Equations (62), (63) gives

Dm

��

��eq
+ Deq

��

��m

= 0 (65)

By inserting Equation (64) back into Equation (39) and integrating from tn to tn+1 it can be
shown that the relaxation from the trial stress is given by

�n+1 = �el − K�tDmI − 2G�tDeqnn+1 (66)

The mean and equivalent components of Equation (66) are

�m = �elm − �tKDm (67)

�eq = �elm − 3�tGDeq (68)

The underlying assumption of constant values of Dm and Deq during the time step is consistent
with the global, explicit integration method, as mentioned.
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As noted by Aravas, Equation (66) shows that the return in the deviatoric stress space is
along nn+1 which can be determined from the trial stress tensor:

nn+1 = 3

2�eleq
�eldev (69)

The fact that nn+1 is determined by the elastic trial stress tensor simplifies the analysis signif-
icantly because the stress tensor at tn+1 is then determined by only two unknowns, (Dm, Deq),
instead of all six components of the stress tensor.

5.2. Constitutive Update

Given the stress tensor �n at time tn, the time step size �t and the rate of deformation tensor
D, the task is to calculate the stress �n+1 at time tn+1. In the previous section it was shown
that the non-linear set of equations defining the stress state at tn+1 can be set up to be a
function of only the two unknowns Dm and Deq. In summary this set of equations is

1. The yield function, Equation (54).
2. The associative flow rule, Equation (65).
3. The stress state at tn+1 expressed in terms of Dm and Deq, Equation (66)
4. The evolution of state variables, Equations (53), (56).

The two internal variables, the effective plastic strain and the void volume fraction, define
the state of the material and are kept as the vector H , i.e.

H1 = �̄pl (70)

H2 = f (71)

The time derivatives of these state variables are given by Equations (53), (56):

h1 = �H1

�t
= �mDm + �eqDeq

(1 − f )�0
(72)

h2 = �H2

�t
= (1 − f )Dm + AN ˙̄�pl (73)

= (1 − f )Dm + ANh1 (74)

The integration in time is then simply given by

H1,n+1 = H1,n + �th1 (75)

H2,n+1 = H2,n + �th2 (76)

In order to determine the values of Dm and Deq which satisfy the yield function and the
flow rule at tn+1 an iterative Newton method is used. The two equations, Equations (65), (54),
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to be solved are denoted f1 and f2, respectively:

f1(Dm, Deq) = Dm

��

��eq
+ Deq

��

��m

= 0 (77)

f2(Dm, Deq) = �(Dm, Deq) = 0 (78)

where the n + 1 subscript is dropped for simplicity. The roots (Dm, Deq) are determined in a
predict-correct iteration by improving the initial, predicted estimate, (Dk

m, Dk
eq)

Dk+1
m = Dk

m + �Dk
m (79)

Dk+1
eq = Dk

eq + �Dk
eq (80)

where k is an iteration counter. The correction (�Dk
m, �Dk

eq) is found by a first-order Taylor
expansion of f1 and f2 and solution of the resulting linearized set of equations:

f k+1
1 = f k

1 + �f k
1

�Dm

�Dk
m + �f k

1

�Deq
�Dk

eq = 0 (81)

f k+1
2 = f k

2 + �f k
2

�Dm

�Dk
m + �f k

2

�Deq
�Dk

eq = 0 (82)

where the notion f k
i = fi(D

k
m, Dk

eq) is used. Appendices A and B summarize the iteration
scheme and list the involved partial derivatives.

6. NUMERICAL EXAMPLE AND DISCUSSIONS

Prior to simulation of ductile fracture, to validate our formulation and computer code, we first
conducted a numerical simulation of pre- and post-necking based on J -2 plasticity. Comparisons
to the results presented by Mikkelsen [42] showed that the presently used mesh-free method
gave the same results as presented by Mikkelsen to an accuracy within the read-off error of
the graphs in that paper.

To discuss and demonstrate the predictive power of the proposed method for simulation
of crack propagation under ductile conditions, our mesh-free simulations focus on a three-
point-bending test, whose experimental data is well documented [43, 44], and has been used
as a benchmark test in finite element simulations by Xia et al. [40]. In the computational
procedure proposed by Xia et al., the crack path is pre-defined to be within a row of the so-
called ‘computational cells’, each with a constitutive behaviour according to the GTN model,
described in the present paper. Xia et al. choose a side length of the computational cells of
0.2 mm and adjusted the material parameters of the GTN model to give a good prediction
of the loads and crack growth in the TPB specimen. To make the present predictions easily
comparable to those of Xia et al., the present work also uses particle spacing of 0.2mm around
the expected path of the crack and uses the same material parameters as found by Xia et al.
The test specimen dimensions and material parameters are given in Table I.
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Table I. Specimen dimensions and material parameters.

Total length, L [mm] 220
Distance btwn. supports, H [mm] 200
Width, W [mm] 50
Initial notch depth, a0 [mm] 30
Thickness*, B [mm] 25.4

Elastic modulus, E [GPa] 200
Poisson ratio, � [1] 0.3
Initial yield stress, �y , Equation (51), [MPa] 400
Hardening exponent, N , Equation (51), [1] 10
Initial void volume ratio, f [1] 0.005
Void volume at coalescence, fC , Equation (55), [1] 0.021
Void volume at total failure, ff , Equation (55), [1] 0.2109
GTN parameters, (q1, q2), Equation (54) (1.5,1)
Void nucleation parameter, fN, Equation (59) [1] 0
∗Note: The specimen thickness, B, is only used to transfer the measured load to a load per unit thickness, P ,
in the 2-D space.

Symmetry conditions are not enforced, in order to allow the crack to move away from the
symmetry line. The model initially consists of 8399 particles and this number increases to
8427, as the crack length increases 5.6 mm during the process. There are 8539 background
cells in the mesh-free discretization. Each of them contains four Gauss quadrature points for the
numerical integration of Equations (24)–(26). The need for a small particle spacing at the crack
tip relative to the specimen dimensions makes it necessary to use a graded mesh. Since the
convergence of mesh-free interpolation requires a quasi-uniform particle distribution, a highly
graded background grid is needed to ensure that each Gauss point is covered by supports of an
appropriate number of interpolation functions. The essential boundary conditions are prescribed
by forcing displacement at the boundary in a simple but rather crude manner: Each of the
two support points are fixed by prescribing the displacement at the two particles occupying
the appropriate positions, whereas the essential boundary condition at the loading point is
prescribed by specifying a uniform displacement over the neighbouring 13 densely spaced
particles to assure a global bending mode of the beam rather than just a local indentation at
the loading point. The displacement of the loading point is increased at a sufficiently low and
smooth rate to ensure that dynamic effects do not dominate the response.

Figure 3 shows the void volume fraction and the vertical stress ahead of the crack tip. It is
seen that the maximum void growth occurs ahead of the crack tip. Due to numerical difficulties
when the void volume fraction is close to ff , the present routine assumes full material damage
when f = kf ff , with kf = 0.5. It is seen from Figure 3 that the vertical stress, �22 diminishes
a distance of approximately one to two particle spacings ahead of the tip. This effect of stress
reduction due to material damage smoothes the discontinuous ‘cutting’ process and the solution
becomes rather insensitive to the chosen value of kf . Figure 4 shows sequences of the global
bending of the beam together with close-ups of the area around the crack tip. The close-ups
show that the load does introduce some local indentation but the figures also illustrate that
the global bending is dominant, as it should be. Figure 5 shows a comparison between the
present predictions and the experiments by Joyce and Hacket and Joyce and Link as published
by Xia et al. [40]. There is seen to be a good agreement between experiments and theory,
with an agreement equivalent to the results presented by Xia et al. [40], where a finite element
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Figure 3. The void volume fraction, f , and the stress �22 = �yy at the crack
tip before any crack tip propagation has taken place.

method was used. As the purpose of the paper is to demonstrate that the mesh-free method
can be used to predict ductile fracture and give similar results to the FEM, no attempts have
been made here at carefully adjusting material- and numerical parameters to make a perfect
fit to experiments. Figure 6 shows the predicted increase in crack length as a function of the
displacement of the loading point. The experimental results presented by Xia et al. [40], also
showed a crack length of approximately 5mm when the displacement was 6.5mm, i.e. a result
very close to the theoretical prediction shown in Figure 6.

7. CONCLUSION

The objective of this paper is to present a numerical model for prediction of crack propagation
in ductile metals. Plane strain is assumed to model the crack tip condition. The basic framework
is the mesh-free method, the Reproducing kernel particle method, which represents a further
development of the SPH Method. The Gurson–Tvergaard–Needleman model is adopted as the
constitutive model. The evolving topology is modelled by use of the so-called visibility criterion.
The validity of this criterion may be questioned because it may introduce discontinuities around
the crack tip. However, the numerical computations presented here show that the proposed
method seems to work well for the present problem of ductile crack propagation. A careful
comparison study was conducted for crack propagation in a three-point-bending (TPB) specimen
to compare mesh-free simulation with experimental data [43, 44] and the results of finite element
computation previously obtained by Xia et al. [40] via a so-called computational cell model
(homogenization model). This study shows that the results of the proposed mesh-free method
are in good agreement with the previously published experimental and numerical results.

The proposed methodology could be further developed along various natural paths:

• Development of the crack description so that it is not restricted to evolving from node to
node. It could easily be developed to evolve from Gauss point to Gauss point or it could
advance more continuously between the Gauss Points.
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Figure 4. Sequences of the TPB process. �: Displacement of loading point. �a:
Increase of crack length. Left: � = 1.5 mm, �a = 0. Middle: � = 4.6 mm,

�a = 2.4 mm. Right: � = 7.8 mm, �a = 5.6 mm.

• Development of a procedure where crack initiation can also be modelled, i.e. a crack can
develop in a body which is initially crack-free.

• Coupling with the finite element method so that the mesh-free modelling is only used
around the crack tip.

• Extension to 3-D.

It is thus believed that the proposed methodology could be further developed to become an
accurate and practical procedure for modelling of ductile crack propagation.
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APPENDIX A: STRESS UPDATE ALGORITHM

A.1. Summary of calculation procedure

Equations (81), (82) can be written as[
�Dk

m

�Dk
eq

]
=
[

K11 K12

K21 K22

]−1 [
R1

R2

]
(A1)
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where the coefficients Kij and Ri are the partial derivatives of fi and the residuals respectively,
as derived below.

If plasticity is detected from the trial stress tensor, i.e. � > 0, then the following iterative
scheme determines the stress at the end of the time step.

1. Set the iteration counter k = 0
2. Initialize. If t = 0 then

Dm = Deq = 0 (A2)

Ḣ1 = Ḣ2 = 0 (A3)

otherwise use the values of the previous time step:
3. Calculate Kij , see below.
4. Calculate Ri , see below.
5. Invert Kij and get the increments in the solution vector from Equation (A1).
6. Update the solution

Dk+1
m = Dk

m + �Dm (A4)

Dk+1
eq = Dk

eq + �Deq (A5)

�k+1
m = �e

m − K�tDk+1
m (A6)

�k+1
eq = �e

eq − 3G�tDk+1
eq (A7)

Ḣ k+1
1 = ¯̇�p = �k+1

m Dk+1
m + �k+1

eq Dk+1
eq

(1 − f )�̄0
(A8)

Ḣ k+1
2 = ḟ = (1 − f )(DmI + Deqn) (A9)

+A
�mDm + �eqDeq

(1 − f )�̄0
(A10)

A = fN

sN
√
2�

exp

[
−1

2

(
�̄p − �N

sN

)2
]

(A11)

Hk+1
1,n+1 = H1,n + �tḢ k+1

1 (A12)

Hk+1
2,n+1 = H2,n + �tḢ k+1

2 (A13)

7. Check convergence. Converged if |f1| < �1 and |f2| < �2 where �1 = �2 = 10−10 is used.
If not converged set k = k + 1 and return to 3. If converged, then compute the stresses
as:

�n+1 = �e − �t (KDmI + 2GDeqn) (A14)
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A.2 Coefficients in the newton method

The constants Kij and Ri in Equation (A1) are

K11 = �f1(Dm, Deq)

�Dm

= ��

��eq
+ Dm

(
−�tK

�2�
��eq��m

+
2∑

i=1

�2�
��eq�Hi

�Hi

�Dm

)

−Deq

(
−�tK

�2�
��2m

+
2∑

i=1

�2�
��m�Hi

�Hi

�Dm

)
(A15)

K12 = �f1(Dm, Deq)

�Deq

= − ��

��m

+ Dm

(
−3G�t

�2�
��2eq

+
2∑

i=1

�2�
��eq�Hi

�Hi

�Deq

)

−Deq

(
−3G�t

�2�
��m��eq

+
2∑

i=1

�2�
��m�Hi

�Hi

�Deq

)
(A16)

K21 = �f2(Dm, Deq)

�Dm

= −�tK
��

��m

+
2∑

i=1

��

�Hi

�Hi

�Dm

(A17)

K22 = �
�Deq


2(Dm, Deq)

= −3G�t
��

��eq
+

2∑
i=1

��

�Hi

�Hi

�Deq

R1 = −f1(Dm, Deq)

= −Dm

��

��eq
+ Deq

��

��m

R2 = −f2(Dm, Deq)

= −�(�m, �eq, H1, H2)
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In the derivations of the above results it has been used that

��m

�Deq
= 0

��m

�Dm

= −K�t

��eq
�Deq

= −3G�t

��eq
�Dm

= 0

which follows directly from Equations (67), (68). The partial derivatives necessary for the
evaluation of the above coefficients are given below.

A.3 Derivatives of the GTN model

� =
(

�eq
�y

)2
+ 2q1f

∗(f ) cosh

(
3q2�m

2�y

)
− (1 + (q1f

∗(f ))2)

H1 = �̄pl

H2 = f

��

��m

= 3q1q2f ∗(f )

�̄0
sinh

(
3q2�m

2�y

)

��

��eq
= 2�eq

�̄20

��

�H1
= − �̄′

0

�2y

[
2

�2eq
�̄0

+ 3q1q2f
∗(f )�m sinh

(
3q2�m

2�y

)]

��

�H2
= 2

�f ∗(f )

�f

[
q1 cosh

(
3q2�m

2�y

)
− q3f

∗(f )

]

�2�
��m�H1

= −3q1q2f ∗(f )�̄′
0

�̄20

(
sinh

(
3q2�m

2�̄0

)
+ 3q2�m

2�̄0
cosh

(
3q2�m

2�̄0

))

�2�
��m�H2

= 3q1q2
�̄0

�f ∗(f )

�f
sinh

(
3q2�m

2�y

)
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�2�
��eq�H1

= −4�eq
�̄30

�̄′
0

�2�
��eq�H2

= 0

�f ∗(f )

�f
=
{

1 for f � fc

1/q1−fc

ff −fc
for f > fc

where �̄′
0 is the derivative of true stress versus natural strain from a tensile test, �̄′

0 =
��̄0(�̄pl)/��̄pl.

The derivatives �Hi/�Dm and �Hi/�Deq are obtained in the following way. The time deriva-
tives of H1 and H2 are

Ḣ1 = h1(Dm, Deq, �m, �eq, H1, H2)

Ḣ2 = h2(Dm, Deq, �m, �eq, H1, H2)

Since these rates are assumed to be constant during the time step from t = tn to t = tn+1 =
tn + �t , the linearized behaviour around t = tn can be written as

Hi(t = tn + �t) = Hi,n+1 = Hi,n + �thi(Dm, Deq, �m, �eq, Hi) (A18)

Taking the derivative of Equation (A17) with respect to Dm gives the two equations

�H1

�Dm

= �t

(
�h1

�Dm

+ �h1

��m

��m

�Dm

+ �h1

�H1

�H1

�Dm

+ �h1

�H2

�H2

�Dm

)

�H2

�Dm

= �t

(
�h2

�Dm

+ �h2

��m

��m

�Dm

+ �h2

�H1

�H1

�Dm

+ �h2

�H2

�H2

�Dm

)

Noting that ��m/�Dm = −K�t and writing in matrix form give

1 − �t �h1

�H1
−�t �h1

�H2

−�t �h2
�H1

1 − �t �h2
�H2






�H1
�Dm

�H2
�Dm


 = �t




�h1
�Dm

− �tK �h1
��m

�h2
�Dm

− �tK �h2
��m


 (A19)

Following a derivation as above, the derivatives �Hi/�Deq are given by the system of equations



1 − �t �h1

�H1
−�t �h1

�H2

−�t �h2
�H1

1 − �t �h2
�H2






�H1
�Deq

�H2
�Deq


 = �t




�h1
�Deq

− 3�tG �h1
��eq

�h2
�Deq

− 3�tG �h2
��eq


 (A20)
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Finally, the partial derivatives in Equations (A19), (A20) are given by

H1 = �̄pl

H2 = f

Ḣ1 ≡ h1 = �mDm + �eqDeq

(1 − f )�y

Ḣ2 ≡ h2 = (1 − f )Dm + BGTN ˙̄�pl

AN = fn

sn
√
2�

exp

[
−1

2

(
�̄pl − �n

sn

)2]

�h1

�H1
= −h1

�̄0
�̄′
0

�h2

�H1
= AN

[
�h1

�H1
− (�̄pl − �n)h1

s2n

]

�h1

�H2
= h1

(1 − f )

�h2

�H2
= −Dm + AN

�h1

�H2

�h1

��m

= Dm

(1 − f )�̄0

�h2

��m

= AN
�h1

��m

�h1

��eq
= Deq

(1 − f )�̄0

�h2

��eq
= AN

�h1

��eq

�h1

�Dm

= �m

(1 − f )�̄0

�h2

�Dm

= (1 − f ) + AN
�h1

�Dm

�h1

�Deq
= �eq

(1 − f )�̄0

�h2

�Deq
= AN

�h1

�Deq
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