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Abstract. Dual conservation laws of linear planar elasticity theory have been systematically studied based on stress function
formalism. By employing generalized symmetry transformation or the Lie–Bäcklund transformation, a class of new dual con-
servation laws in planar elasticity have been discovered based on the Noether theorem and its Bessel–Hagen generalization. The
physical implications of these dual conservation laws are discussed briefly.
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1. Introduction

The conservation law of elasticity has been well studied in the past 30 years, though the origin of its
intellectual inspiration may be traced back to Eshelby’s seminal work in 1950s [1, 2]. Since Rice [3]
linked J -integral with the energy release rate of a crack, the subject has become part of the theoretical
foundation of fracture mechanics. Contributions on conservation laws of elasticity include: [4–10,
27, 28], among others.

Classical elasticity is a perfect embodiment of duality, in which strain representation and stress
representation complement each other to describe a complete image of an equilibrium-deformation
process. On the variational level, the duet are the minimal potential energy principle and the minimal
complementary energy principle. Since conservation laws of elasticity are manifestation of symme-
try properties of variational principles in elasticity, naturally, conservation laws of elasticity ought to
come as dual pairs, and they should be displayed on an equal footing. Indeed, some authors have
studied conservation laws based on the complementary variational principle. Several dual invariant
integrals or dual conservation laws have been derived. Among them, the dual J -integral derived
by Bui [11] is the earliest contribution. Other notable contributions include those of Sun [12] and
Li [13].

The early studies on dual conservation laws are mainly based on physical observation or intuition
via direct divergence-free inspection. The path integrals derived are indeed invariant. However, most
early studies are not only incomplete, they also do not match the standard of elegance and rigor that
are usually expected in continuum mechanics. Part of the reason may be attributed to lack of serious
attention to the subject. Probably the lack of proper physical interpretation of dual conservation laws can
be attributed as another reason for such public oblivion. In fact, most dual conservation laws published
in the literature are trivial in the sense that they can be easily obtained by integration by parts from the
conservation laws of the potential energy variational principle, which may give an impression that the
conservation laws of the Navier equations may have exhausted all the possible symmetry properties of
linear elasticity. The dual conservation laws may be just a repetition of the conservation law derived from
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the minimal potential energy principle, and no more non-trivial conservation laws are left undiscovered
in linear elasticity theory.

Apparently, this is a false impression. Over the years, people have realized that additional conservation
laws may still exist in linear elasticity, and some of them remain undiscovered. The conservation laws
discovered by Christiansen et al. [14, 15] and the conservation laws derived independently by Horgan et
al. and Flavin [16–19] are such examples. In fact, these conservation laws are very useful as theoretical
apparatuses in applications, e.g. estimating energy bounds, justifying the Saint-Venant principle, and
possibly in convergence study of finite element methods.

2. Preliminary

2.1. PLANAR ELASTICITY

To fix the notation, we start by reviewing some basic facts of planar elasticity. For a plane stress state,
linear two-dimensional (2D) elastic constitutive relations can be written,

εαβ = Cαβλµσλµ or σαβ = Eαβλµελµ (1)

where εαβ , σαβ are the usual strain, stress tensor, respectively; and Cαβλµ, Eαβλµ are the elastic com-
pliance, and stiffness tensor respectively. Note that the Einstein summation convention is implicitly
assumed throughout the paper.

For isotropic, homogeneous elastic materials, the 2D elastic compliance tensor can be expressed as

Cαβλµ := 1 + ν

E
δαλδβµ − ν

E
δαβδλµ; (2)

and the 2D elastic stiffness modulus tensor has the form

Eαβλµ := E

1 + ν
δαλδβµ + Eν

1 − ν2
δαβδλµ, (3)

where E is Young’s modulus, and ν is the Poisson ratio.
The above elastic stiffness tensor and compliance tensor are only valid in the plane stress state. To

find the elastic stiffnes tensor and compliance tensor in the plane strain state, one can replace Young’s
modulus and Poisson’s rate by

E ⇒ E

1 − ν2
, ν ⇒ ν

1 − ν
, (4)

and the corresponding tensors in the plane strain state are:

Cαβλµ = 1 + ν

E
δαλδβµ − (1 + ν)ν

E
δαβδλµ, (5)

Eαβλµ = E

1 + ν
δαλδβµ + Eν

(1 + ν)(1 − 2ν)
δαβδλµ. (6)

In the rest of paper, we mainly deal with the plane stress description, with the understanding that all the
results are valid for the plane strain description as well, unless it is indicated otherwise.

In absence of body force, one may introduce the Airy stress function, such that

σαβ = εαλεβµϕ,λµ or ϕ,αβ = εαλεβµσλµ, (7)
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where εαβ is the 2D permutation tensor, i.e.

[εαβ] =
[

0 1
−1 0

]
. (8)

A useful identity of the 2D permutation tensor is self-contraction,

εγαεγβ = δαβ. (9)

For the plane stress state, the density of the complementary energy is

Lc(σ; x) = 1

2E
[(1 + ν)σαβσαβ − νσλλσµµ] (10)

In terms of the Airy stress function, the complementary energy density in the plane stress state can be
written as

L (se)
c (∂2ϕ; x) = 1

2E
[(1 + ν)ϕ,αβϕ,αβ − νϕ,λλϕ,µµ] (11)

where ∂2ϕ = {ϕ,αβ}, α, β = 1, 2 and the complementary energy density in the plane strain state is

L (sa)
c (∂2ϕ; x) = (1 + ν)

2E
[ϕ,αβϕ,αβ − νϕ,λλϕ,µµ] (12)

Assume that the stress function is prescribed over the whole boundary. The total complementary
potential energy is

�c(ϕ; x) =
∫ ∫




Lc(∂2ϕ; x)d
. (13)

The Euler–Lagrangian equation of the complementary energy functional is the biharmonic equation,
i.e.

∂Lc

∂ϕ
− ∂

∂xα

∂Lc

∂ϕ,α

+ ∂2

∂xα∂xβ

∂Lc

∂ϕ,αβ

= 0 ⇒ ϕ,ααββ = 0, (14)

which carries different information from the 2D Navier equations. Specifically, the biharmonic equation
satisfied by stress function, ϕ, characterizes the compatibility constraint of 2D elasticity.

Given linear operator L = Lαβλµeα ⊗ eβ ⊗ eλ ⊗ eµ; and a = aαeα �= 0, b = bαeα �= 0; a, b ∈ IR2.
Let A := a ⊗ b. We say that L is strongly elliptic if

A:L:A = Lαβλµaαbβaλbµ > 0 . (15)

It is not difficult to verify the positive definite condition for complementary potential energy,

1 + ν

E
> 0,

1 − 2ν

E
> 0 (plane stress); (16)

1 + ν

E
> 0,

(1 + ν)(1 − 2ν)

E
> 0 (plane strain). (17)

Therefore, for a two-dimensional elastic solid, a positive definite elastic compliance tensor is equivalent
to E > 0 and −1 < ν < 1/2, which is the same as in three-dimensional elastic solids (see [20]).
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2.2. ONE-PARAMETER GROUP OF INVARIANT TRANSFORMATION

The Lie group analysis of partial differential equations has been a triumph in mathematics, physics, and
engineering science. For contemporary expositions, readers may consult monographs by Ibragimov,
and Olver [21–23]. In this section, we briefly summarize the main technical ingredients of generalized
symmetry transformation, or the Lie–Bäcklund transformation, and Noether’s theorem [29]. The no-
tation adopted in this paper mainly follows Olver [23] and Ibragimov [22]. In this paper, we are only
interested in the partial differential equation of a scalar function and its associated variational problem.

Let

x = (x1, x2, . . . , xn) ∈ IRn, (18)

where IRn is the n-dimensional Cartesian space and

∂u =
{

∂u

∂xi

}
, . . . . . . , ∂su =

{
∂su

∂xs
i

}
, . . . , 1 < s, 1 ≤ i ≤ n. (19)

The space Z is a direct product,

Z = IRn × V, (20)

where V is an infinite dimensional vector space with component

y = (u, ∂u, . . . , ∂su, . . .) ∈ V . (21)

The point z = (z1, z2, . . .) ∈ Z can be written as

z = (x, y) = (x1, x2, . . . , xn, u, ∂u, . . . , ∂su, . . .). (22)

Denote the vector space of all differential functions of finite order m as A and any finite sequence of
z as [z]. Then elements of A may be written as f ([z]) ∈ A.

Consider a formal one-parameter group G of generalized transformation of the following type,

x∗
i = exp(εξi )xi ; (23)

u∗ = exp(εη)u; (24)

where

ξi := dx∗
i

dε

∣∣∣∣
ε=0

, (25)

η := du∗

dε

∣∣∣∣
ε=0

. (26)

The transformation is generalized in a sense that its infinitesimal generators have the form

ξi = ξi (x, u, ∂u, . . . , ∂su, . . .) = ξi (z), 1 ≤ i ≤ n (27)

η = η(x, u, ∂u, . . . , ∂su, . . .) = η(z). (28)
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Definition 2.1 (Olver [23]). A generalized vector field is a formal expression of the following form

v = ξi (z)
∂

∂xi
+ η(z)

∂

∂u
(29)

Themorem 2.1 (prolongation formula) (Ibragimov [21], Olver [23]). An infinite prolongation (or
prolongation for short) formula of the generalized (Lie–Bäcklund) vector field v is

prv = v +
∑
1≤s

η
(s)
i1···is

∂

∂ui1···is

(30)

where

η
(s)
i1···is

= Di1 · · · Dis (η − ξ j u, j ) + ξ j u, j i1···ıs , s = 1, 2, . . . (31)

and

Di := ∂

∂xi
+ u,i

∂

∂u
+ · · · + u,i i1···is−1

∂

∂u,i1···,is

+ · · · . (32)

A p-th order prolongation formula of generalized vector field v is

pr(p)v = v +
∑

1≤s≤p

η
(s)
i1···is

∂

∂ui1···is

(33)

where p is the maximal order of non-vanishing derivatives, and

η
(s)
i1···is

= Di1 · · · Dis (η − ξ j u, j ) + ξ j u, j i1···ıs , 1 ≤ s ≤ p (34)

Di = ∂

∂xi
+ u,i

∂

∂u
+ · · · + u,i i1···i p−1

∂

∂u,i1···,i p

. (35)

Consider a q-th order scalar partial differential equation (PDE) denoted by

F = F([z]) = F(x, u, ∂u, . . . , ∂qu), (36)

where q ≥ 1 is some positive integer. Define the differential manifold

[F] : F = 0, . . . D11 . . . Dik F = 0, k = p + q. (37)

We have the following theorem.

Theorem 2.2 (Ibragimov [21], Olver [23]). Let G be a group of the Lie–Bäcklund transformation,
with tangent vector field prv. The differential manifold [F] is invariant under G, if and only if

prvF
∣∣∣
[F]

= 0. (38)
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Note that

prvF = 0 ⇒ pr(q)vF([z]) = 0. (39)

Equation (39) is often referred to as the determining equation.

Define the Euler–Lagrangian operator

E := ∂

∂u
+

∑
1≤s

(−1)s D11 . . . Dis

∂

∂ui1···is

, (40)

and the Noether operator

Ni = ξi + (η − ξ�u,�)

{
∂

∂u,i
+

∑
1≤s

(−1)s D j1 . . . D js
∂

∂u,i j1··· js

}

+
∑
1≤r

Dk1···kr (η − ξ�u,�)

{
∂

∂u,ik1···kr

+
∑
s≥1

(−1)s D j1 . . . D js
∂

∂u,ik1···kr j1··· js

}
.

(41)

The celebrated Noether theorem can be stated as follows.

Theorem 2.3 (Ibragimov [24]). Given a formal Lie–Bäcklund transformation group with the
Lie–Bäcklund operator prv, the following identity

prv + Diξi = (η − ξ j u, j )E + Di Ni (42)

holds.

Consequently, for y satisfying the Euler–Lagrangian equation

E(L([z])) = 0, (43)

the prolongation equation equals to a divergence form

prv(L) + LDivξ = DivN(L) = 0. (44)

Taking into account null Lagrangians, there exist functions {Bi (z)} such that

prv(L) + LDivξ = DivB, (45)

then the following conservation laws yield

DivP(L) = 0, (46)

where Pi (L) = Ni (L) − Bi , or P(L) = N(L) − B.
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3. Symmetry and Invariant Group

3.1. LIE–BÄCKLUND SYMMETRY

For planar elasticity, the Euler–Lagrangian equation of complementary energy potential is the bihar-
monic equation satisfied by the Airy stress function ϕ. Since the variational symmetry group is a
subgroup of invariant transformation admitted by its Euler–Lagrangian equation, we begin by finding
the Lie–Bäcklund symmetry admitted by biharmonic equations. Different from the approach adopted
by Bluman and Gregory [25], we are looking for more general symmetry—the Lie–Bäcklund symmetry
admitted by the biharmonic equation.

Let x = (x1, x2), u = ϕ(x1, x2), and

x∗ = exp(εξ)x, (47)

ϕ∗ = exp(εη)ϕ. (48)

The generalized vector field is given as

v = ξα

∂

∂xα
+ η

∂

∂ϕ
. (49)

Consider the infinitesimal generators of the following forms

ξα = ξα(x), (50)

η = f (x) + g(x)ϕ + hγ (x)ϕ,γ + kλµ(x)ϕ,λµ + pλ(x)ϕ,ααλ, (51)

where f (x), g(x) are the unknown scalar functions; ξα(x), hα(x), kλµ(x), and pλ(x) are the unknown
vector or tensorial functions.

By Theorem (2.2), the invariant conditions, or the determining equations, are

pr(4)v
(

∂4ϕ

∂xα∂xα∂xβ∂xβ

)
= 0, (52)

where

pr(4)v = ξα

∂

∂xα

+ η
∂

∂φ
+ η(1)

α

∂

∂ϕ,α

+ · · · + η
(4)
αβλµ

∂

∂ϕ,αβλµ

. (53)

This leads to an algebraic equation for the fourth-order extensions,

η
(4)
ααββ = 0. (54)

The determining equation can be written as follows,

η
(4)
αβαβ = f,αβαβ

+ [g,αβαβϕ + 4g,αββϕ,α + 2g,ααϕ,ββ + 4g,αβϕ,αβ + 4g,αϕ,αββ]

+ [(hγ,αβαβ − ξγ,αβαβ)ϕ,γ + 4(pγ,ααβ − ξγ,ααβ)ϕ,γβ
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+ 4(hγ,αβ − ξγ,αβ)ϕ,γαβ + 2(hγ,αα − ξγ,αα)ϕ,γββ + 4(hγ,α − ξγ,α)ϕ,γαββ]

+ [kλµ,αβαβϕ,λµ + 4kλµ,ααβϕ,λµβ + 2kλµ,ααϕ,λµββ

+ 4kλµ,αβϕ,λµαβ + 4kλµ,βϕ,λµαββ + kλµϕ,λµαβαβ]

+ [pλ,ααββϕ,γ γ λ + 4pλ,αββϕ,γ γ λα + 4pλ,αβϕ,γ γ λαβ

+ 2pλ,ααϕ,γ γ λββ + 4pλ,αϕ,γ γ λββ + pλϕ,γ γ λααββ] = 0. (55)

Let ξ̄κ := ξκ − hκ . The determining equation can be split into a set of coupled differential equations
among unknown functions, f (x), g(x), hκ (x), kλµ(x), pκ (x), and ξκ (x):

ϕ0 : f,ααββ = 0; (56)

ϕ1 : g,ααββ = 0; (57)

∂ϕ : 4g,αββϕ,α − ξ̄κ,ααββϕ,κ = 0; (58)

∂2ϕ : 4g,αβϕ,αβ + 2g,ααϕ,ββ − ξ̄κ,αββϕ,κα + kλµ,ααββϕ,λµ = 0; (59)

∂3ϕ : 4g,αϕ,αββ − 4ξ̄κ,αβϕ,καβ − 2ξ̄κ,ααϕ,κββ + 4kλµ,αββϕ,λµα + pκ,ααββϕ,κδδ = 0; (60)

∂4ϕ : −4ξ̄κ,αϕ,καββ + 4kλµ,αβϕ,λµϕ,λµαβ + 2kλµ,ααϕ,λµββ + 4pκ,αββϕ,καδδ = 0; (61)

∂5ϕ : 4kλµ,αϕ,λµαββ + 4pκ,αβϕ,καβµµ = 0. (62)

A set of special solutions of the above differential equations are obtained:

pκ (x) = p(2)
κ xαxα + p(1)εκγ xγ + p(0)

κ , (63)

kλµ(x) = k(2)δλµxαxα +
(

k(1)
λ xµ + k(1)

µ xλ

)
+ k(0)

λµ, (64)

ξα(x) = P1
αλµxλxµ + θ1

αβ xβ + d1
α, (65)

hα(x) = P2
αλµxλxµ + θ2

αβ xβ + d2
α. (66)

The superscript (i) in a coefficient indicates the order of polynomial that the coefficient preceeds. The
superscript α = 1, 2, indicates different sets of coefficients.

The free parameter tensors P ι
αλµ and θ ι

αβ satisfy the conditions

P ι
αλµ = P ι

αµλ, ι = 1, 2 (67)

P ι
αλµ = −P ι

λαµ, α �= λ, ι = 1, 2 (68)

θ ι
αβθ ι

βγ = δαγ det|θ ι|, and det|θ ι| = θ ι
11θ

ι
22 − θ ι

12θ
ι
21, ι = 1, 2. (69)

Denote �Pαλµ := P1
αλµ, −P2

αλµ, �θαβ := θ1
αβ − θ2

αβ , �dα = d1
α − d2

α . Then

ξ̄α(x) = �Pαλµxλxµ + �θαβ xβ + �dα,

g(x) = 1

2
ξ̄α,α + c = �Pααµxµ + 1

2
�θαα + c, (70)

f = f (x), where f,ααββ = 0, (71)

and f (x) can be any function that satisfies the biharmonic equation.
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3.2. VARIATIONAL SYMMETRY

The symmetry group admitted by the Euler–Lagrangian equation may not necessarily yield variational
symmetry. A simple procedure to find the variational symmetry group is to test all invariant solutions
admitted by the Euler–Lagrangian equation and to select those that indeed satisfy both the determining
equation and the prolongation equation, i.e.

prvLc + (Dαξα)Lc = η
(2)
αβ

∂Lc

∂ϕ,αβ

+ (Dαξα)Lc = 0

⇒ (Dα Dβ(η − ξ,γ ϕ,γ ) + ξγ ϕ,γαβ)
∂Lc

∂ϕ,αβ

+ ξγ,γ Lc

= ∂Lc

∂ϕ,αβ

{ f,αβ + (g,αβϕ + g,αϕ,β + g,βϕ,α + gϕ,αβ)

+ hκϕ,καβ − (ξ̄κ,αβϕ,κ + ξ̄κ,αϕ,κβ + ξ̄κ,βϕ,κα)

+ (+kλµ,αϕ,λµβ + kλµ,βϕ,λµα + kλµϕ,λµαβ)

+ (pκ,αβϕ,κγ γ + pκ,αϕ,κβγ γ + pκ,βϕ,καγ γ + pκϕ,καβγ γ )} (72)

+ 1

2E
((1 + ν)ϕ,ααϕ,αα − νϕ,ααϕ,ββ)ξγ,γ = 0, (73)

where

∂Lc

∂ϕ,αβ

=
(

1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
. (74)

Consequently, one obtains the following Killing’s equations,

∂2ϕ :
∂Lc

∂ϕ,αβ

f,αβ = 0; (75)

ϕ∂2ϕ :
∂Lc

∂ϕ,αβ

(ϕg,αβ) = 0; (76)

∂ϕ∂2ϕ :
∂Lc

∂ϕ,αβ

(g,αϕ,β + g,βϕ,α − ξ̄κ,αβϕκ ) = 0; (77)

∂2ϕ∂2ϕ :
∂Lc

∂ϕ,αβ

(
gϕ,αβ − ξ̄κ,αϕ,κβ − ξ̄κ,βϕ,κα + 1

2
ξγ,γ ϕ,αβ

)
= 0;

∂2ϕ∂3ϕ :
∂Lc

∂ϕ,αβ

(hκϕ,καβ + kλµ,αϕ,λµβ + kλµ,βϕ,λµα + pκ,αβϕ,κγ γ ) = 0; (78)

∂2ϕ∂4ϕ :
∂Lc

∂ϕ,αβ

(kλµϕ,λµαβ + pλ,αϕ,λβγ γ + pλ,βϕ,λαγ γ ) = 0; (79)

∂2ϕ∂5ϕ :
∂Lc

∂ϕ,αβ

pκϕ,καβµµ = 0. (80)

By substituting solutions (63)–(66) and (66)–(71) in the above equations, one may find the following
additional constraints:

∂2 f

∂xα∂xβ

= 0, (81)
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hα = 0, (82)

kαβ = 0, (83)

pα = 0. (84)

Thus, the variational invariant transformations are1

ξ1 = a1x1 − a2x2 + a3, (85)

ξ2 = a2x1 + a1x2 + a4, (86)

η = (a5x1 + a6x2 + a7) + a1ϕ, (87)

where ai are arbitrary constants. Note that Equations (85) and (86) may be written as ξα = a1xα +
a2εαβ xβ + bα , with b1 = a3 and b2 = a4.

When ν = 1/2 for plane strain case, we have additional inversion transformations

ξ1 = a8
(
x2

1 − x2
2

) + 2a9x1x2, (88)

ξ2 = 2a8x1x2 − a9
(
x2

1 − x2
2

)
, (89)

η = (2a8x1 − 2a9x2)ϕ. (90)

Note that a similar solution can be obtained when ν = 1 for plane stress. Since Poisson’s ratio cannot
be greater than 1/2, an invariant solution at ν = 1 is not realistic.

Therefore, the Lie group of variational invariant transformation, i.e., the tangent vector fields, is

X1 = −x2
∂

∂x1
+ x1

∂

∂x2
, X2 = x1

∂

∂x1
+ x2

∂

∂x2
+ ϕ

∂

∂ϕ
,

X3 = ∂

∂x1
, X4 = ∂

∂x2
, X5 = x1

∂

∂ϕ
, X6 = x2

∂

∂ϕ
, X7 = ∂

∂ϕ
. (91)

When ν = 1/2, there are two additional invariant vector fields for plane strain state

X8 = (
x2

1 − x2
2

) ∂

∂x1
+ 2x1x2

∂

∂x2
+ 2x1ϕ

∂

∂ϕ
,

X9 = −2x1x2
∂

∂x1
+ (

x2
1 − x2

2

) ∂

∂x2
− 2x2ϕ

∂

∂ϕ
.

3.3. DIVERGENCE SYMMETRY

The variational symmetry group found is only a subgroup of point transformation, as shown in (91).
However, the generalized transformations, or Lie–Bäcklund transformations, can have divergence sym-
metry. There exist functions, Bα , such that the Noether theorem holds in the following Bessel–Hagen
form,

prv(Lc) + (Dαξα)Lc = Dα Bα. (92)

In the following, several divergence symmetric transformations are found.

1There may exist some higher-order variational symmetry.
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i) Divergence symmetry I
Consider the following proper Lie–Bäcklund transformation, which is admitted by the biharmonic

equation,

ξα = 0, and η = ψ(x1, x2), (93)

where the function ψ is an arbitrary solution of biharmonic equation. Choose

Bα = hβϑ,γ γαϕ,β (94)

where hβ is a constant vector and ϑ is another solution of the biharmonic equation, i.e. ϑ,ααββ = 0.
Consequently,

Dα Bα = hβϑ,γ γαϕ,αβ . (95)

Hence, by Noether identity (42), one may find that

ψ,αβ = Eαβλµhµϑ,γ γ λ, (96)

or vice versa,

hβϑ,γ γα = Cαβλµψ,λµ, (97)

Bα = Cαβλµψ,λµϕ,β, (98)

where Eαβλµ and Cαβλµ are the elastic stiffness tensor and elastic compliance tensor defined in Equations
(2) and (3).

It is worth verifying that indeed,

ψ,ααββ = hµ

(
E

1 + ν
+ 2Eν

1 − ν2

)
ϑ,γ γµββ = 0. (99)

A tangent vector field with divergence symmetry is found to be

X I = ψ(x1, x2)
∂

∂ϕ
, (100)

with ψ,ααββ = 0.
ii) Divergence symmetry II

Let

ξα = 0, and η = bI Iγ ϕ,γ , (101)

where {bI Iγ } is a constant vector. It can be readily shown that

prv(Lc) + (Dαξα)Lc = η
(2)
αβ

∂Lc

∂ϕ,αβ

= bI Iγ
∂

∂xγ

{
Cαβλµϕ,αβϕ,λµ

}
. (102)
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Choose

Bα = 1

2
bI IαCλµγ δϕλµϕγ δ. (103)

The divergence symmetric tangent vector field is

X I I 1 = ϕ,1
∂

∂ϕ
, (104)

X I I 2 = ϕ,2
∂

∂ϕ
. (105)

This divergence symmetry is equivalent to the variational symmetry due to coordinate translation.
iii) Divergence symmetry III

Let

ξα = 0 and η = bI I I (ϕ − xγ ϕ,γ ), (106)

where bI I I is an arbitrary constant. It is straightforward to verify that

Dα Dβη = −bI I I (ϕ,αβ + xγ ϕ,γαβ) (107)

prv(Lc) + (Dαξα)Lc = −bI I I

2

∂

∂xγ

{Cαβλµϕ,αβϕ,λµxγ }. (108)

Choose Bα = −aI I Lcxγ . The following vector field is divergence symmetric,

X I I I = (ϕ − xγ ϕ,γ )
∂

∂ϕ
. (109)

This divergence symmetry is equivalent to the variational symmetry due to scaling.
iv) Divergence symmetry IV

Let

ξα = 0, and η = bI V ελµxλϕ,µ. (110)

One may find that

η
(2)
αβ

∂Lc

∂ϕ,αβ

= bI V

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,γ γ δαβ

)
(ελµxλϕ,µαβ)

= bI V

2

d

dxµ

{
1 + ν

E
(ελµxλϕ,αβϕ,αβ) − ν

E

(
ελµxλϕ

2
,γ γ

)}
. (111)

Choose

Bα = −bI V

2

{
1 + ν

E

(
εαβ xβϕ,λµϕ,λµ

) + ν

E

(
εαβ xβϕ2

,γ γ

)}
. (112)
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The divergence symmetric tangent vector field is

X I V = εαβ xβϕ,α

∂

∂ϕ
. (113)

Again, this vector field belongs to the equivalent class of a variational symmetry due to coordinate
rotation.
v) Divergence symmetry V

Let

ξα = 0, and η = bV ϕ,λλ. (114)

Subsequently

η
(2)
αβ = bV ϕ,λλαβ, (115)

and

η
(2)
αβ

∂Lc

ϕ,αβ

= bV
1 + ν

E

∂

∂xα

(ϕ,βϕ,λλαβ). (116)

Choose

Bα = bV
1 + ν

E
ϕ,λλαβϕ,β . (117)

The divergence symmetric tangent vector field is

XV = ϕ,λλ

∂

∂ϕ
. (118)

vi) Divergence symmetry VI
Let

ξα = 0, and η = bV Iλϕ,λµµ, (119)

where {bV Iλ} is a constant vector. Hence

η
(2)
αβ = bV Iλϕ,λµµαβ. (120)

Consequently,

η
(2)
αβ

∂Lc

ϕ,αβ

= bV Iλ
1 + ν

E

∂

∂xα

(ϕ,βϕ,λµµαβ). (121)

Choose

Bα = bV Iλ
1 + ν

E
ϕ,βϕ,λµµαβ. (122)
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The corresponding divergence invariant vector field is

XV I 1 = ϕ,1µµ

∂

∂ϕ
, (123)

XV I 2 = ϕ,2µµ

∂

∂ϕ
. (124)

vii) Divergence symmetry VII
Let

ξα = 0 and η = bVIIεκγ xγ ϕ,κµµ. (125)

It can be readily shown that

η
(2)
αβ

∂Lc

ϕ,αβ

= bVII
1 + ν

E

∂

∂xα

{2[εκβϕ,µµκαϕ,β] + [εκγ xγ ϕ,λµµαβϕ,β]}. (126)

Choose

Bα = bVII
1 + ν

E
{2[εκβϕ,µµκαϕ,β] + [εκγ xγ ϕ,λµµαβϕ,β]}. (127)

The divergence invariant vector field is

XVII = εκγ xγ ϕ,κµµ

∂

∂ϕ
. (128)

Remark 3.1.
• The above calculation is demonstrative; we have not exhausted, in any way, the possibilities of

divergence symmetry.
• There could be a confusion regarding the relationship between null Lagrangian and natural boundary

conditions. In our problem, prescribed stress function on the boundary will mean Dirichlet boundary
condition, even though it is stress type of boundary condition in physics. In other words, there is
a difference between the Neumann boundary condition in mathematics and the ‘natural boundary
condition’ in physics.

4. Dual Conservation Laws

There are two groups of dual conservation laws:
• The genuine variational-symmetric conservation laws:

P (var)
α = Lcξα − 1

E
(η − ξγ ϕ,γ )ϕ,ββα + Dβ(η − ξγ ϕ,γ )

∂Lc

∂ϕ,αβ

; (129)

• The generalized (divergence-symmetric) conservation laws:

P (div)
α = Lcξα − 1

E
(η − ξγ ϕ,γ )ϕ,ββα + Dβ(η − ξγ ϕ,γ )

∂Lc

∂ϕ,αβ

− Bα. (130)
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4.1. VARIATIONAL-INVARIANT CONSERVATION LAWS

Variational dual conservation laws in planar elasticity are listed as follows.

1) Scaling.

Let a1 = 1, and ai = 0, i �= 1 in variational symmetric transformations (85)–(90). One then has

ξα = xα, η = ϕ; (131)

ξα,β = δαβ, ηβ = ϕ,β. (132)

Denote

Sα := P (var)
α

∣∣∣∣
{a1 �=0}

. (133)

One may find that

Sα = Lcxα − 1

E
(ϕ − xλϕ,λ)ϕ,ββα − xγ ϕ,γβ

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
. (134)

2) Coordinate rotation.

Let a2 = 1 and ai = 0 (i �= 2) in Equations (85)–(90). One has

ξα = εαβ xβ, η = 0; (135)

η − ξγ ϕ,γ = −εγλxλϕ,γ , Dβ(η − ξγ ϕ,γ ) = −εγβϕ,γ − εγλxλϕ,γβ . (136)

Denote

Rα := P (var)
α

∣∣∣∣
{a2 �=0}

. (137)

One may find that

Rα = Lcεαβ xβ + 1

E
εγλxλϕ,γ ϕ,ββα

− (εγβϕ,γ + εγλxλϕ,γβ)

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
. (138)

3) Coordinate translation.

Let a3 = δ1κ , a4 = δ2κ , and ai = 0, i �= 3, 4 in transformations (85)–(90). Consequently,

ξα = δακ, η = 0. (139)
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Define

Tα(κ) := P (var)
α

∣∣∣∣
{a3,a4 �=0}

. (140)

It follows that

Tα(κ) = Lcδακ + 1

E
ϕ,κϕ,ββα − ϕ,κβ

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
(141)

where α, κ = 1, 2.

Remark 4.1. The divergence-free second-order tensor Tα(κ) may be called the dual-Eshelby tensor.
The following integral

J ∗
κ =

∫
∂


(
Lcnκ + 1

E
ϕ,κϕ,ββαnα − ϕ,κβ

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
nα

)
dS, (142)

may be called the dual J -integral.

4) Compatibility identities.

Let a5 = a6 = 1 and ai = 0, i �= 5, 6. We may assume that

ξα = 0, η = δακ xα, (143)

where κ is a fixed number.
Let

Cα(κ) := P (var)
α

∣∣∣∣
{a5=a6=1, and ai =0, i �=5,6}

. (144)

We have the dual conservation law,

Cα(κ) = 1

E
xκϕ,ββα + δβκ

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
, (145)

where α, κ = 1, 2.

5) Gauss theorem (divergence theorem).
Assume a7 = 1 and ai = 0, i �= 7. Then

ξα = 0; η = 1. (146)

Let

Gα := P (var)
α

∣∣∣∣
{a7=1}

. (147)
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We recover the Gauss (divergence) theorem

Gα = 1

E
ϕ,ββα. (148)

6) Inversion.

When ν = 1/2 for plane strain state, additional conservation laws is valid. Assume a8 = δ1κ , a9 = δ2κ

for a fixed κ , and ai = 0, i �= 8, 9. The infinitesimal generators have the forms

ξα = 2xαxκ − δακ xλxλ, (149)

η = 2xκϕ. (150)

Subsequently,

η − ξγ ϕ,γ = 2xκϕ − (2xγ xκ − δγ κ xλxλ)ϕ,γ , (151)

Dβ(η − ξγ ϕ,γ ) = 2δβκϕ − 2(δβκ xγ − δγ κ xβ)ϕ,γ

−2(2xγ xκ − δγ κ xλxλ)ϕ,γβ . (152)

Define

Iα(κ) := P (var)
α

∣∣∣∣
{a8 �=0,a9 �=0}

. (153)

It then follows that

Iα(κ) = (2xαxκ − δακ xλxλ)Lc

− (1 − ν2)

E
(2xκϕ − (2xκ xγ − δγ κ xλxλ))ϕ,γ ϕ,ββα

+ (1 + ν)

E
{2δβκϕ − 2(δβκ xγ + δγ κ xβ)ϕ,γ

− (2xγ xκ − δγ κ xλxλ)ϕ,βγ }(ϕ,αβ − νϕ,ττ δαβ), (154)

where α, κ = 1, 2.

4.2. BESSEL–HAGEN TYPE CONSERVATION LAWS

The dual conservation laws in this category involve a term, Bα , which can be introduced by a null
Lagrangian. A few examples of Bessel–Hagen type conservation laws are presented in the following.

1) Reciprocal formula of Betti–Rayleigh type.

Let

ξα = 0, η = ψ, and Bα = Cαβλµψ,λµϕ,β, (155)
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where ψ is a solution of biharmonic equation, i.e. ψ,µµλ = 0. We then have the following Betti–Rayleigh
type reciprocal formula,

H(I )
α = − 1

E
ψϕ,ββα + ψ,β

(
1 + ν

E
ϕ,αβ − ν

E
ϕ,ττ δαβ

)
− ϕ,β

(
1 + ν

E
ψ,αβ − ν

E
ψ,ττ δαβ

)
. (156)

2) Higher-order conservation law (II)

Let

ξα = 0, η = ϕ,γ γ . (157)

Hence ηβ = ϕ,γ γβ . Choose

Bα = Cαβλµϕ,βϕ,γ γ λµ. (158)

It then follows

H(I I )
α = − 1

E
ϕ,γ γ ϕ,ββα + Cαβλµϕ,λµϕ,γ γβ − Cαβλµϕ,γ γ λµϕ,β . (159)

3) Higher-order conservation law (III).

Let

ξα = 0, η = δλκϕ,λµµ = ϕ,κµµ, (160)

for a fixed number κ: 1 or 2. Therefore η,β = ϕ,µµβκ . The corresponding null divergence is

Bα(κ) = Cαβλµϕ,λµγ γ κϕ,β . (161)

We have the following conservation law

H(III)
α(κ) = − 1

E
ϕ,λλκϕ,ββα + Cαβλµϕ,λµϕ,µµβκ − Cαβλµϕ,λµγ γ κϕ,β . (162)

4) Higher-order conservation law (IV).

Let

ξα = 0, and η = εκγ xγ ϕ,κµµ. (163)

Choosing

Bα = 1 + ν

E
(2[εκβϕ,µµκαϕ,β] + [εκγ xγ ϕ,λµµαβϕ,β]), (164)
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we have the higher-order conservation law

H(I V )
α = − 1

E
εκγ xγ ϕ,κµµϕ,ββα + Cαβλµϕ,λµ(εκβϕ,κµµ + εκγ xγ ϕ,λλκβ)

− 1 + ν

E
(2[εκβϕ,µµκαϕ,β] + [εκγ xγ ϕ,κµµαβϕ,β]). (165)

5. Closure

Most dual conservation laws derived in this paper are new, except the conservation laws corresponding
to Gauss (divergence) theorem and Betti–Raylaigh reciprocal formula.

Using stress function formalism to derive conservation laws has practical interests. It is well known
that the Airy stress function can be expressed by two analytical functions, a fact guaranteed by Goursat’s
theorem (see Muskhelishvili [26]). In fact, the stress function related complex variable formulation has
been a primary method used to solve many engineering problems such as crack problems, and the
success of fracture mechanics owes a great deal to it. The dual conservation laws obtained in this paper
may allow us to make an easy link between invariant path-integrals and Muskhelishvili’s complex
potentials.

The same procedure can be readily extended into three-dimensional (3D) elasticity. Dual conservation
laws can be derived based on general Maxwell–Morera stress function formalism. The 3D extension of
this paper will be discussed in a separate paper.
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