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Abstract

In this part of the work, a globally compatible CnðXÞ triangular element hierarchy is constructed in the framework of

reproducing kernel element method (RKEM) for arbitrary two dimensional domains. In principle, the smoothness of

the globally conforming element can be made arbitrarily high ðnP 1Þ. The triangle interpolation field can interpolate

the derivatives of an unknown function up to arbitrary mth order, (Im), and it can reproduce complete kth order

polynomials with kPm. This is the first interpolation hierarchical structure that has ever been constructed with both

minimal degrees of freedom and higher order smoothness and continuity over discretizations of a multiple dimensional

domain. The performance of the newly constructed compatible element is evaluated in solving several Kirchhoff plate

problems.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the early series of this work [6,7], a hybrid meshfree/finite element method is proposed, and it is

termed reproducing kernel element method (RKEM). The main advantage and application of this new

method is to build smooth interpolation field on any mesh of an arbitrary domain, so that it can be used in:

(1) general curved surface fitting in multiple dimension with high demand in smoothness; (2) Galerkin weak

formulations that contain higher order derivatives, such as simulations of plate and shell structures and

computations of gradient elasticity and gradient plasticity.

The main technical ingredient of RKEM is combining meshfree reproducing kernel shape functions

[5,8,9] with a special partition of unity––the global partition polynomials to form a high quality ‘‘ultra finite

element’’ interpolant that possesses arbitrary smoothness and satisfies higher order Kronecker-d property.

Apparently, to construct such globally conforming shape functions on an arbitrary, multi-dimensional
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mesh is not a trivial task. In this part of the work, a detailed technical account on how to construct RKEM
shape functions on general triangle meshes is presented, which includes (1) how to construct the so-

called global partition polynomials on general triangle meshes, and (2) how to program RKEM computer

code.
2. Globally compatible RKEM triangle

The general structure of an RKEM formulation is a hybrid or a combination between the so-called
global partition polynomials and the meshfree reproducing kernel functions. Precisely speaking, an RKEM

interpolation field is defined as
If ðxÞ ¼
X
e2KE

Z
Xe

Kqðx
"

� y; xÞdy
X
i2Ke

we;iðxÞfe;i

 !#
; ð2:1Þ
where f ðxÞ is the unknown function,Kq is the meshfree kernel function, and we;iðxÞ are the so-called global

partition polynomials, and I is the interpolation operator. The set KE is the index set for all the elements,

and the set Ke is the index set for the nodal points in an element. For detailed discussions on RKEM

formulation, readers are referred to Parts I and II of this work [6,7].

We first present a general formulation for a particular family of global partition polynomials suitable for
use in generating RKEM triangular elements. For convenience, we only consider its applications in solving

scalar type partial differential equations. Specifically, we shall present numerical solution of thin plate

problems by using the newly proposed elements.

Unlike the construction of high order finite element shape functions on triangle meshes, the RKEM

interpolant on a triangle mesh does not need any extra degrees of freedom either on the sides of a triangle or

in the interior of a triangle. The requirement on degrees of freedom is absolutely minimum. Each node of a

triangle element has a number of nodal degrees of freedom (DOF), which are related to the primary

unkown and its various derivatives. For each DOF, we have to construct an associated global partition
polynomial. One of the objectives of this paper is to show how to construct these global partition poly-

nomials.

Using multiple index notation, one may write the global partition polynomials for each element as
we;1ðxÞ ¼

wð00Þ1

wð10Þ1

wð01Þ1

..

.

2
666664

3
777775 we;2ðxÞ ¼

wð00Þ2

wð10Þ2

wð01Þ2

..

.

2
666664

3
777775 we;3ðxÞ ¼

wð00Þ3

wð10Þ3

wð01Þ3

..

.

2
666664

3
777775; ð2:2Þ
where e 2 KE and 1; 2; 3 represents the three nodes in an triangle, such that the primary scalar variable can

be interpolated by the formula
Ifemwðx; yÞ ¼ wT
1 wT

2 wT
3

� �
wI ; 8x 2 Xe; ð2:3Þ
where the superscript T denotes transpose, and wI is a vector of all the nodal unknowns:
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wI ¼

wðx1; y1Þ
w;xðx1; y1Þ
w;yðx1; y1Þ

..

.

wðx2; y2Þ
w;xðx2; y2Þ
w;yðx2; y2Þ

..

.

wðx3; y3Þ
w;xðx3; y3Þ
w;yðx3; y3Þ

..

.

2
666666666666666666666664

3
777777777777777777777775

: ð2:4Þ

It may be noted that in (2.2) the conventional multiple index notation is used (see [6,7] for explanation).

There are two systematic approaches that one can take to construct the global partition polynomials,

each having advantages and disadvantages. The first is to work completely in the geometric (physical)

domain, and determine the global partition polynomials directly. We call this approach the direct ap-

proach. In the second approach one first finds parametric global partition polynomials and then map a

general triangle to a unit triangle (parent), as shown in Fig. 1. We call the second approach the parametric

approach. We demonstrate the first approach with the T12P3I(4/3) triangle element, the parametric

approach is demonstrated in construction of T9P2I1 and T18P4I2 triangle elements. The relative merits
will be noted as we proceed.

2.1. Direct approach

Following Bell [1], we define an interpolation field using as many terms from Pascal�s triangle, Fig. 2, as
are necessary to match the total number of unknowns in an element. In the event that the number of

unknowns does not coincide with a complete set of monomial terms from Pascal�s triangle, symmetric

combinations are used to approximate higher order terms. Examples will be shown in later sections. We
depart from Bell [1], however, in that we do not define any side nodes, we only have corner nodes and all

unknowns are at the corner nodes. This eliminates the need for static condensation, while it keeps the

requirement on the number of degrees of freedom at each node absolutely minimal. It may be noted that the

inter-element non-comformities will be assuaged by the meshfree reproducing kernel function. Therefore,
Fig. 1. Arbitrary triangle and its map into a unit triangle.



Fig. 2. Pascal�s triangle.
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this is a globally compatible interpolation field. Its continuity is up to the smoothness of the compact

supported window function embedded in meshfree reproducing kernel (see: discussions in [6,7,9]).

The element interpolation provided by the global partition polynomials can be written as a vector

equation

wðx; yÞ ¼ UTðx; yÞc; ð2:6Þ
where

cT :¼ c1 c2 c3 c4 c5 c6 � � �½ �1�ndof ;

UTðx; yÞ :¼ 1 x y x2 xy y2 � � �
� �1�ndof ð2:7Þ

and ndof is the total number of degrees of freedom in an element.

We can determine the coefficients c in terms of the nodal unknowns wI , by solving a set of linear

equations

wðx1; y1Þ ¼ UTðx1; y1Þc
w;xðx1; y1Þ ¼ UT

;xðx1; y1Þc
w;yðx1; y1Þ ¼ UT

;yðx1; y1Þc

..

.

wðx2; y2Þ ¼ UTðx2; y2Þc
w;xðx2; y2Þ ¼ UT

;xðx2; y2Þc
w;yðx2; y2Þ ¼ UT

;yðx2; y2Þc

..

.

wðx3; y3Þ ¼ UTðx3; y3Þc
w;xðx3; y3Þ ¼ UT

;xðx3; y3Þc
w;yðx3; y3Þ ¼ UT

;yðx3; y3Þc

..

.

Denote the resulting coefficient matrix A, then

c ¼ A�1wI ð2:8Þ
and

wðx; yÞ ¼ UTA�1wI ; ð2:9Þ
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where

AT ¼ ½AT
ij�

ndof�ndof

¼ ½Uðx1; y1Þ;U;xðx1; y1Þ;U;yðx1; y1Þ; . . . ;Uðx2; y2Þ;U;xðx2; y2Þ;U;yðx2; y2Þ; . . . ;Uðx3; y3Þ;

U;xðx3; y3Þ;U;yðx3; y3Þ; . . .�: ð2:10Þ

The desired nodal shape functions can now be determined by comparing Eqs. (2.3) and (2.9).

The direct approach has as its advantage that no mapping is required. This allows any number of DOF

per node, e.g. the T12P3I(4/3) triangle. The disadvantage of the direct approach is that the Amatrix is likely

too cumbersome to invert analytically, resulting in a numerical inversion for every element. While on

modern computers inversion of 12 · 12 or 18 · 18 matrices are pedestrian, the cost may not be insignificant

when they are done for many elements. Furthermore, the A matrix may even be singular for certain ori-
entation of a given triangle, which will result in an obvious disaster.
2.2. Parametric approach

We now consider the parametric approach. The only difference in this approach from the first approach

is that the geometric (physical) triangle is mapped to a parent triangle.

We choose the parent triangle to be the unit triangle with vertices ð0; 0Þ, ð1; 0Þ and ð1; 1Þ in the s–t
parametric coordinate system (see Fig. 1). The reason for this choice of unit triangle will be explained
below.

The area coordinate shape functions for this triangle are:

N1ðs; tÞ ¼ 1� s; ð2:11Þ

N2ðs; tÞ ¼ s� t; ð2:12Þ

N3ðs; tÞ ¼ t: ð2:13Þ
Let the transformed nodal unknowns be denoted ~wI , which is related to the original unknowns wI by

~wI ¼ KwI :

Since w is a scalar, it is unchanged by the transformation. However, derivatives must be transformed since

the interpolation over the parent triangle correctly interpolates ~w, ~w;s, ~w;t, etc. We compute the transfor-

mation through the use of Eqs. (2.11)–(2.13) and note that the Jacobian is constant.

In terms of the nodal coordinates, the Jacobian and its inverse are

J ¼

ds
dx

ds
dy

dt
dx

dt
dy

2
664

3
775 ¼ 1

x21y32 � y21x32

y32 x23
y12 x21

� �
; ð2:14Þ

J�1 ¼
dx
ds

dx
dt

dy
ds

dy
dt

2
64

3
75 ¼ x21 x32

y21 y32

� �
; ð2:15Þ

where the notation xij :¼ xi � xj, and yij :¼ yi � yj, i; j ¼ 1; 2; 3.
We can now write down an expression for K. First, partition the matrix into blocks that act only on

values at a particular node, let
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K :¼
k1 0 0

0 k2 0

0 0 k2

2
4

3
5; ð2:16Þ

where 0 is a matrix of all 0�s, and the ki are matrices that operate on the function value and derivatives at

node i. Explicit expressions will be given in the two parametric examples below.
An interpolation field is now computed for the unit triangle using Eqs. (2.6)–(2.8), but all variables are

expressed in the s–t parametric coordinate system. The interpolation can be written as a vector equation

~wðs; tÞ ¼ UTðs; tÞc; ð2:17Þ
where

cT :¼ c1 c2 c3 c4 c5 c6 � � �½ �;

UTðs; tÞ :¼ 1 s t s2 st t2 � � �
� �

:

For the unit triangle, we can determine the coefficients c in terms of the nodal unknowns ~wI , by solving

the set of linear equations

~wð0; 0Þ ¼ UTð0; 0Þc

~w;sð0; 0Þ ¼ UT
;sð0; 0Þc

~w;tð0; 0Þ ¼ UT
;t ð0; 0Þc

..

.

~wð1; 0Þ ¼ UTð1; 0Þc

~w;sð1; 0Þ ¼ UT
;sð1; 0Þc

~w;tð1; 0Þ ¼ UT
;t ð1; 0Þc

..

.

~wð1; 1Þ ¼ UTð1; 1Þc

~w;sð1; 1Þ ¼ UT
;sð1; 1Þc

~w;tð1; 1Þ ¼ UT
;t ð1; 1Þc

..

.

Denote the resulting coefficient matrix ~A, then

c ¼ ~A�1~wI ð2:18Þ
and define global partition polynomials in the parent domain by

~w ¼ ~wT
1

~wT
2

~wT
3

h i
~wI ; ð2:19Þ

~wðs; tÞ ¼ UT ~A�1~wI : ð2:20Þ
The ~wi can be determined by comparing Eqs. (2.19) and (2.20). Since the interpolation is in the parent

domain, we have to transform the derivatives back to the geometric domain, so the results are
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wðs; tÞ ¼ K�1UT ~A�1~wI ¼ K�1UT ~A�1KwI ¼ K�1 ~wT
1

~wT
2

~wT
3

h i
KwI : ð2:21Þ

The desired nodal global partition polynomials are determined from Eq. (2.21).

The reason for the particular choice of unit triangle is that the linear system Eq. (2.18) is singular for

other common choices of unit triangle, and this choice is reasonably well-conditioned.

The parametric approach requires all the derivatives of a given order be DOF�s at the nodes so that

the transformation to the parent domain and back can succeed. This means that there is a restriction on the

number of DOF per node: all derivatives of a given order must be present so that the transformations of

the derivatives in K work properly. In particular, the T12P3I(4/3) element cannot be implemented in the

parametric approach because of this restriction. Nonetheless, the advantages of the parametric approach

are that the matrix ~A is inverted once and the global partition polynomials in the parent domain can be

determined analytically, and hence it is much more efficient. Second, the parent domain is chosen so ~A is

invertible. Since any non-degenerate triangle has an invertible map to the parent triangle, this method is

guaranteed to work, regardless of element shape or orientation, at least in determining the global partition

functions.

2.3. Regularity requirement on meshes

As discussed in Part II of this work [6], there is a requirement on the aspect ratio and gradation of the

triangles that can be in a mesh suitable for RKEM computations. The issue lies in the necessity of the

RKEM shape functions having enough overlap at every point to ensure a partition of unity, but not to

overlap too much and lose the Kronecker-d properties. This is illustrated in Fig. 3. In the triangular meshes

considered in this paper, the requirements translate into the radius of support for node iðqiÞ satisfying
1

2
max
j2Ki

dij 6 qi 6 min
j2Ki

dij; ð2:22Þ

where Ki is the set of all node indices sharing an edge with node i, and dij is the distance from node i to node

j. Larger values of qi tend to work better. All examples in the work used
Fig. 3. How to choose support size?
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qi ¼ 0:95min
j2Ki

dij:

We call the meshes satisfying the condition (2.22) quasi-uniform meshes.
3. Element I: the T9P2I1 triangle

The first triangle element constructed is the T9P2I1 element (see Fig. 4). In Fig. 4, the solid circle at each
nodal point represents the degree of freedom corresponding to the unknown function at the node, and the

hollow circle at each nodal point represents the first derivatives of the unknown function at the nodal point.

Therefore, each nodal point has 3 degrees of freedom, the element has 9 degrees of freedom (T9), it can

reproduce complete second order polynomials (P2), and it interpolates an unknown function up to the first

order derivatives (I1).

The parametric approach outlined in Section 2.2 will be applied to generate the global partition poly-

nomials. Further, this construction is minimal in the sense that it only requires 3 degrees of freedom at each

nodal point, displacement and first derivatives, to reproduce the complete quadratic polynomials. As
mentioned before, the smoothness or continuity of the global RKEM shape function is determined by the

continuity of the window function in the reproducing kernel. In most examples presented in this paper,

a fifth order spline is used as the window function of the meshfree kernel. Therefore, the element is a glo-

bal C4 compatible element.
3.1. Global partition polynomials

This element has 9 degrees of freedom, so we construct the global partition polynomials by using the
following parametric variables:

cT :¼ c1 c2 c3 c4 c5 c6 c7 c8 c9½ �;

UTðs; tÞ :¼ 1 s t s2 st t2 s3 s2t þ st2 t3
� �

:

Note that a complete set of cubic monomials have cardinality 10, but we only have nine unknowns, so

two terms of the cubic monomials have been summed in a symmetric way. Quadratic polynomials are
Fig. 4. The 9 degrees of freedom triangle: T9P2I1.
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reproduced. The linear system Eq. (2.18) is a set of nine linear equations. The transformation matrix
Eq. (2.16) now has diagonal block matrices that are 3 · 3

ki ¼
1 0 0

0 x;s x;t

0 y;s y;t

2
64

3
75:

The final results for the parent domain global partition polynomials are:

~wð00Þ1 ¼ 2s3 � 3s2 þ 1; ð3:23Þ

~wð10Þ1 ¼ s3 � 2s2 þ s; ð3:24Þ

~wð01Þ1 ¼ 1
2
ðst2 þ s2t � t2 � 3stÞ þ t; ð3:25Þ

~wð00Þ2 ¼ 2t3 � 3t2 � 2s3 þ 3s2; ð3:26Þ

~wð10Þ2 ¼ 1
2
ðt2 þ st � st2 � s2tÞ þ s3 � s2; ð3:27Þ

~wð01Þ2 ¼ t3 � 1
2
ðst2 þ s2t þ 3t2 � 3stÞ; ð3:28Þ

~wð00Þ3 ¼ 3t2 � 2t3; ð3:29Þ

~wð10Þ3 ¼ 1
2
ðst2 þ s2t � t2 � stÞ; ð3:30Þ

~wð01Þ3 ¼ t3 � t2: ð3:31Þ

3.2. Global RKEM shape functions

Using nodal integration to integrate meshfree kernel function (2.1), the global RKEM interpolation field

is constructed based on the following formula,

Ihf ðxÞ ¼ A
e2KE

X
j2Ke

Kqðx
"

� xe;j; xÞDVe;j
X
i2Ke

we;iðxÞf ðxe;iÞ
 !#

; ð3:32Þ

where DVe;j is the nodal integration weight, which can be easily assigned for each nodal point based on

Lobatto quadrature rule (see [4,6]).

The shapes and the profiles of the global RKEM shape functions of T9P2I1 triangle element is displayed
in Fig. 5. It is important to note that each plot is scaled for visibility, thus relative magnitudes cannot be

determined from the plots. The shape of the global interpolation function depends upon the mesh and

node, whether it is on the boundary or it is in the interior of the domain. These shape functions plotted

in Fig. 5 are computed for the middle node of the mesh shown in Fig. 12.



Fig. 5. The global shape functions of T9P2I1 element: (a) Wð00ÞI , (b) Wð10ÞI , (c) Wð01ÞI .
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4. Element II: the T12P3I(4/3) triangle element

In the second example, we use the direct approach to construct the so-called T12P3I(4/3) element (see

Fig. 6). In this element, each nodal point has 4 degrees of freedom: a nodal value of a unknown scalar

function, wI , represented by the solid circle, the nodal values of the two first derivatives of the unknown

function, ow
ox jI and ow

oy jI , which are represented by the hollow circle, and the nodal value of the second order

mixed derivative o2w
oxoy jI , which is represented by a cross at the nodal point in Fig. 6.

Therefore, there are 12 degrees of freedom in this element (T12); it can reproduce complete third order

polynomials (P3); since the interpolation order is greater than one, and is below two, we denote the

interpolation order as Ið4=3Þ.

4.1. Global partition polynomials

This element has 12 degrees of freedom, so we define the associated global partition polynomials by

choosing the following vectors:

cT :¼ ½c1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12�; ð4:33Þ

UTðx; yÞ :¼ ½1; x; y; x2; xy; y2; x3; x2y; xy2; y3; x2ðx2 þ xy þ y2Þ; y2ðx2 þ xy þ y2Þ�; ð4:34Þ
so that

wðx; yÞ ¼ UTðx; yÞc ¼ WTðx; yÞwI : ð4:35Þ
Fig. 6. The 12 degrees of freedom triangle element: T12P3I(4/3).



Fig. 7. The global shape functions of T12P3I(4/3) element: (a) Wð00ÞI , (b) Wð10ÞI , (c) Wð01ÞI , (d) Wð11ÞI .
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The vectors c and wI are related by

c ¼ A�1wI ; ð4:36Þ

where the matrix A is given in Eq. (4.37).
The T12P3I(4/3) element can reproduce complete cubic polynomials. The linear system Eq. (2.8) is a set

of 12 equations that may be too cumbersome to invert analytically, so they are inverted numerically in this

work.
4.2. Global RKEM shape functions

In this section we provide plots of the global RKEM shape functions and their derivatives. There are not

explicit expressions for the global partition polynomials, since they are determined by numerically solving
a linear system at each evaluation point. The same caveats as in Section 3.2 apply. These shape functions

were all computed for the middle node of the mesh in Fig. 12 (Fig. 7).
5. Element III: the T18P4I2 triangle

The third example is the so-called T18P4I2 element. It is an 18 degree of freedom triangle (T18) that can

reproduce complete fourth order polynomials (P4) and interpolates the derivatives of an unknown function
up to the second order (I2). At each nodal point, it has 6 degrees of freedom: nodal function value, first, and

second derivatives (see Fig. 8).

Again, the parametric methodology outlined in Section 2 is applied to generate RKEM shape functions

that globally interpolate quartic polynomials. In our construction, a fifth
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AT ¼

1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y21 y31 x21ðx21 þ x1y1 þ y21Þ y21ðx21 þ x1y1 þ y21Þ
0 1 0 2x1 y1 0 3x21 2x1y1 y21 0 x1ð4x21 þ 3x1y1 þ 2y21Þ y21ð2x1 þ y1Þ
0 0 1 0 x1 2y1 0 x21 2x1y1 3y21 x21ðx1 þ 2y1Þ y1ð4y21 þ 3x1y1 þ 2x21Þ
0 0 0 0 1 0 0 2x1 2y1 0 3x21 þ 4x1y1 3y21 þ 4x1y1

1 x2 y2 x22 x2y2 y22 x32 x22y2 x2y22 y32 x22ðx22 þ x2y2 þ y22Þ y22ðx22 þ x2y2 þ y22Þ
0 1 0 2x2 y2 0 3x22 2x2y2 y22 0 x2ð4x22 þ 3x2y2 þ 2y22Þ y22ð2x2 þ y2Þ
0 0 1 0 x2 2y2 0 x22 2x2y2 3y22 x22ðx2 þ 2y2Þ y2ð4y22 þ 3x2y2 þ 2x22Þ
0 0 0 0 1 0 0 2x2 2y2 0 3x22 þ 4x2y2 3y22 þ 4x2y2

1 x3 y3 x23 x3y3 y23 x33 x23y3 x3y23 y33 x23ðx23 þ x3y2 þ y23Þ y23ðx23 þ x3y3 þ y23Þ
0 1 0 2x3 y3 0 3x23 2x3y3 y23 0 x3ð4x23 þ 3x3y3 þ 2y23Þ y23ð2x3 þ y3Þ
0 0 1 0 x3 2y3 0 x23 2x3y3 3y23 x23ðx3 þ 2y3Þ y3ð4y23 þ 3x3y3 þ 2x23Þ
0 0 0 0 1 0 0 2x3 2y3 0 3x23 þ 4x3y3 3y23 þ 4x3y3

�������������������������������

�������������������������������
ð5:37Þ

order spline is used as the window function. Therefore, the construction example shown in this paper is

actually global C4 in terms of smoothness. To achieve all these properties, 18 is the minimal number of

degrees of freedom that one needs to construct such an interpolant.

5.1. Global partition polynomials

The element has 18 degrees of freedom,

cy :¼ c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18½ �;

Uyðs; tÞ :¼ 1 s t s2 st t2 � � � s4 s3t s2t2 st3 t4 s4ðsþ tÞ s2t2ðsþ tÞ t4ðsþ tÞ
� �

;

where � � � stand for the complete cubic terms. Again, note the symmetric combinations of quintic terms to

achieve 18 terms.

The linear system Eq. (2.18) now is a set of 18 linear equations. The transformation matrix Eq. (2.16)

now has diagonal block matrices that are 6 · 6
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ki ¼

1 0 0 0 0 0

0 x;s x;t 0 0 0

0 y;s y;t 0 0 0

0 0 0 x2;s x2;t 2x;sx;t

0 0 0 y2;s y2;t 2y;sy;t

0 0 0 x;sy;s x;ty;t x;sy;t þ x;ty;s

2
6666666664

3
7777777775
:

The final results for the parent domain global partition polynomials are:

~wð00Þ1 ¼ �6st3 þ 3t3 � 6s2t2 þ 3st2 þ 3s2t2ðt þ sÞ � 6s4ðt þ sÞ þ 12s3t � 6s2t þ 15s4 � 10s3 þ 1; ð5:38Þ

~wð10Þ1 ¼ �3st3 þ 3t3

2
� 3s2t2 þ 3st2

2
þ 3s2t2ðt þ sÞ

2
� 3s4ðt þ sÞ þ 6s3t � 3s2t þ 8s4 � 6s3 þ s; ð5:39Þ

~wð01Þ1 ¼ 3st3 � 3t3

2
þ 3s2t2 � 3st2

2
� 3s2t2ðt þ sÞ

2
þ 2s3t � 3s2t þ t; ð5:40Þ

~wð20Þ1 ¼ � st3

2
þ t3

4
� s2t2

2
þ st2

4
þ s2t2ðt þ sÞ

4
� s4ðt þ sÞ

2
þ s3t � s2t

2
þ 3s4

2
� 3s3

2
þ s2

2
; ð5:41Þ

~wð02Þ1 ¼ st3

2
� t3

4
þ s2t2 � 5st2

4
þ t2

2
� s2t2ðt þ sÞ

4
; ð5:42Þ

~wð11Þ1 ¼ st3 � t3

2
þ s2t2 � st2

2
� s2t2ðt þ sÞ

2
þ s3t � 2s2t þ st; ð5:43Þ

~wð00Þ2 ¼ 21t4 þ 12st3 � 22t3 � 6s2t2 þ 6st2 � 6t4ðt þ sÞ þ 6s4ðt þ sÞ � 12s3t þ 6s2t � 15s4 þ 10s3; ð5:44Þ

~wð10Þ2 ¼ �4st3 þ t3 � 9s2t2 þ 6st2 þ 3s2t2ðt þ sÞ � 3s4ðt þ sÞ þ 6s3t � 3s2t þ 7s4 � 4s3; ð5:45Þ

~wð01Þ2 ¼ 11t4 � 9t3 � 9s2t2 þ 6st2 � 3t4ðt þ sÞ þ 3s2t2ðt þ sÞ � 2s3t þ 3s2t; ð5:46Þ

~wð20Þ2 ¼ st3 � t3

2
þ s2t2 � st2

2
� s2t2ðt þ sÞ

2
þ s4ðt þ sÞ

2
� s3t þ s2t

2
� s4 þ s3

2
; ð5:47Þ

~wð02Þ2 ¼ 2t4 � 2t3 � 2s2t2 þ 2st2 � t4ðt þ sÞ
2

þ s2t2ðt þ sÞ
2

; ð5:48Þ

~wð11Þ2 ¼ st3 � t3 � 2s2t2 þ 2st2 þ s3t � s2t; ð5:49Þ

~wð00Þ3 ¼ �21t4 � 6st3 þ 19t3 þ 12s2t2 � 9st2 þ 6t4ðt þ sÞ � 3s2t2ðt þ sÞ; ð5:50Þ

~wð10Þ3 ¼ st3 þ t3

2
þ 6s2t2 � 9st2

2
� 3s2t2ðt þ sÞ

2
; ð5:51Þ

~wð01Þ3 ¼ 10t4 þ 3st3 � 17t3

2
� 6s2t2 þ 9st2

2
� 3t4ðt þ sÞ þ 3s2t2ðt þ sÞ

2
; ð5:52Þ
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~wð20Þ3 ¼ � st3

2
þ t3

4
� s2t2

2
þ st2

4
þ s2t2ðt þ sÞ

4
; ð5:53Þ

~wð02Þ3 ¼ � 3t4

2
� st3

2
þ 5t3

4
þ s2t2 � 3st2

4
þ t4ðt þ sÞ

2
� s2t2ðt þ sÞ

4
; ð5:54Þ

~wð11Þ3 ¼ � t3

2
� 2s2t2 þ 3st2

2
þ s2t2ðt þ sÞ

2
: ð5:55Þ
5.2. Global shape functions

The global RKEM shape functions are plotted in Fig. 9. The same caveats as in Section 3.2 apply.

According to the proposed construction procedure, as the order of the interpolant increases, the support

size of the global shape function remain the same, as long as the mesh remains the same. This is in contrast

with the popular moving least square reproducing kernel interpolant (MLS) [3,5,8,9]. For the MLS in-

terpolant, as the reproducing capacity increases, the support size of the kernel function increases as well.
Fig. 9. The global shape functions of T18P4I2 element: (a) Wð00ÞI , (b) Wð10ÞI , (c) Wð01ÞI , (d) Wð20ÞI , (e) Wð02ÞI , (f) Wð11ÞI .
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Consequently, the nature of the meshfree interpolation field becomes more and more non-local, whereas the
nature of an RKEM interpolation field resembles to that of FEM interpolation field.
6. Implementation and computer programming

6.1. RKEM shape function pseudo code

The following is a pseudo-code sketch of the steps required to calculate an RKEM shape function. Of
course, for a Galerkin solution, various derivatives are also required, they are computed via differentiation.

To compute the RKEM shape function for node I :

FOR i ¼ 1 TO number of elements

dv volume of elementi

FOR j ¼ 1 TO number of nodes per element

/ compute window function

sum sumþ 1
3
dv/

END FOR

END FOR

b 1
sum

FOR i ¼ 1 TO number of elements node I is a member

dv volume of elementi

w  nodal global partition polynomial

FOR j ¼ 1 TO number of nodes per element

/ compute window function

FOR k ¼ 1 TO number of RKEM shape functions per node

WðkÞ  WðkÞ þ 1
3
/ b

q2 dvwðkÞ
END FOR

END FOR

END FOR

6.2. Quadrature

The computation of the stiffness and load vectors requires integration of the shape functions and

products of shape functions, or their derivatives. The meshfree kernel functions are not polynomials,

therefore the global RKEM shape functions are not polynomials, although they are able to reproduce

polynomials based on their designed properties. As can be seen in the plots of the shape function in Section

5.2, the strong oscillation makes integration difficult.

Even though the RKEM shape functions are not polynomials, Gauss quadrature is used anyway. This

may not be the best integration scheme, but it may be the most expedient. Higher order integration over
triangles is presented in the work of Stroud and co-workers [2,11]. Currently, we are able to use 64

quadrature points per element to integrate T12P3I(4/3) elements, 576 quadrature points per element were

used for the other two elements, though fewer may have been acceptable.

The main reason causing high order quadrature is probably the oscillatory nature of the RKEM shape

functions. An efficient way to smooth the RKEM shape functions is to adopt the following partition

of unity condition by using Guass quadrature instead of using nodal integration to construct meshfree

kernel functions,
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A
e2KE

X
k2Kge

½Kqðx� xkg; xÞwkg�
X
i2Ke

we;iðxÞ
 !

¼ 1; ð6:56Þ

where the set Kge is the index set for the element quadrature points, and wkg are the Gauss quadrature

weights in an element. If Eq. (6.56) were used in construction meshfree reproducing kernel, the number of

quadrature points might decrease to under 100 points per element while maintaining accurate computa-

tions.

6.3. Suggestions for computer coding and debugging

Here we share our experience in implementing the RKEM method. These are truly meant as suggestions
and by no means do we assure the reader that our way is necessarily the best. We assume the reader is

familiar with implementing the standard finite element method, as formulated in books such as [4] or [12].

First, the RKEM shape functions are truly global, though they do have compact support. Thus,

assembly of the stiffness matrix involves more nodes than the ones connected to a particular element. The

standard procedure of computing element stiffness matrices and assembling them is no longer as attractive.

In the implementation used for this paper, the global stiffness matrix was assembled directly. Since the

RKEM shape functions are compactly supported, there is a sparse structure to the stiffness matrix, but it is

not as easy to determine apriori. For this reason, it is suggested that, initially, all loops should involve all
nodes, shape functions that should not participate are guaranteed to be zero, and hence contribute nothing.

Once an initial implementation works, a localization procedure should be implemented to reduce the

runtime.

We found it convenient to have a data structure that is the dual of the connectivity matrix, i.e. we stored

a list of element numbers that each node was a member of.

Some of us found our intuition lacking on what the shape functions should look like. This makes it

harder to debug and makes unit testing of individual subprograms all the more important. Here are things

that one can absolutely count on to give confidence in their code:

1. Verify that the global partition polynomials interpolate all the required terms. Be sure to test various

element shapes and orientations.

2. Verify the RKEM interpolation properties at a random point in the domain. Verify that the Kronecker-d
properties are satisfied at all nodes. If not, check the radius of support.

3. Always verify the mesh satisfies the regularity conditions to ensure the Kronecker-d properties.

4. Verify that the integration over the element actually integrates to the order expected. The very high order

Gauss quadrature used involved hand entering many data points from published tables––an error-prone
process.

5. Once these conditions are satisfied, one should have a working code. If not, start to look at other parts of

the code.
7. Numerical examples

In this section, several numerical example problems are solved using the described method in order to
assess its performance and robustness.

Since the Galerkin weak formulation of a Kirchhoff plate involves second derivatives, a best test for the

proposed interpolant is solving various Kirchhoff plate problems for different geometries. Moreover, the

boundary conditions of Kirchhoff plate problems involve interpolating boundary data of both the first
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order derivative (slopes) and the second order derivative (curvatures), it provides a severe test to the newly
proposed RKEM triangle interpolants. For more information on how to impose boundary conditions for

finite element computation of thin plates, readers are referred to Hughes� finite element book [4, pp. 324–

327].

We mainly consider three problems: the clamped rectangular Kirchhoff (thin) plate under uniform load,

a simply supported rectangular thin plate under uniform load, and a clamped circular plate under uniform

load.

The strong form of the equilibrium equation for a Kirchhoff plate is

r4w ¼ p
D
8ðx; yÞ 2 X; ð7:57Þ

where X is the domain of the problem. To solve this equation using a Galerkin method, we use the weak

form. The general weak form reads asI
n̂ � $ðr2wÞdwdS �

I
ðr2wÞð$dw � n̂ÞdS þ

Z
ðr2wÞðr2dwÞdX ¼

Z
p
D
dwdX; ð7:58Þ

where dw is an arbitrary variation, and dS is differential boundary surface. In all the examples chosen,
p
D ¼ 1.

For a clamped plate, the essential boundary conditions are

w ¼ 0 8ðx; yÞ 2 oX;

w;n ¼ 0 8ðx; yÞ 2 oX;

w;s ¼ 0 8ðx; yÞ 2 oX:

For a Galerkin solution, these boundary conditions require the arbitrary variation dw to also satisfy

dw ¼ 0 8ðx; yÞ 2 oX;

dw;n ¼ 0 8ðx; yÞ 2 oX;

dw;s ¼ 0 8ðx; yÞ 2 oX;

hence, the two boundary integrals in Eq. (7.58) are zero. The weak form specific to a clamped plate then

becomesZ
ðr2wÞðr2dwÞdX ¼

Z
dwdX: ð7:59Þ

For a simply supported plate, the essential boundary conditions are

w ¼ 0 on oX:

For a Galerkin solution, these boundary conditions require the arbitrary variation dw to also satisfy

dw ¼ 0 on oX

hence, the first boundary integral in Eq. (7.58) is zero. Since there are no applied moments, this implies that
r2w ¼ 0, so the second boundary integral in Eq. (7.58) is also zero. The weak form specific to this problem

again becomes Eq. (7.59).

7.1. Clamped square plate

The first problem tested is a clamped unit square Kirchhoff plate, as depicted in Fig. 10. The deformed

shape of the plate and the L2 convergence rate are depicted in Fig. 11.



Fig. 10. Example 1: problem domain and triangle mesh.

Fig. 11. Displaced shape and convergence of example 1.
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The exact solution to the plate of dimensions a� b is given in [13] as:

wðx; yÞ ¼
XM
m�1

XN
n¼1

wmn 1

�
� cos

2mpx
a

�
1

�
� cos

2npy
b

�
;

where the coefficients wmn are computed using the method in [13].

7.2. Simply supported square plate

We next solve the simply supported unit square Kirchhoff plate, as depicted in Fig. 12.

The exact solution for a plate of dimension a� b is given in [14] as:

wðx; yÞ ¼ 16p
p6D

X1
m¼1

X1
n¼1

sin
mpx
a

sin
npy
b

mn½ðm=aÞ2 þ ðn=bÞ2�2
ðm; n ¼ 1; 3; 5; . . .Þ

The L2, H1 and H2 errors were computed and are plotted along with the displaced shape in Fig. 13. The
slopes of the lines as determined by regression are presented in Table 1.



Fig. 12. Example 2: problem domain and triangle mesh.

Fig. 13. Computation results for example 2: (a) deflection profile, and (b) convergence results.

Table 1

Rates of convergence for simply supported square plate

L2 H1 H2

4.4506 3.712 2.5041
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7.3. Clamped circular plate

We now solve a clamped unit diameter circular Kirchhoff plate, as depicted in Fig. 14.

The exact solution is given in [14] for a plate of radius a as

wðx; yÞ ¼ p
64D
ða2 � x2 � y2Þ2:

The deformed shape of the circular plate is juxtaposed with the convergence results depicted in Fig. 15.

The L2, H1 and H2 errors were computed and are plotted in Fig. 15. The slopes of the lines as determined

by regression are presented in Table 2.



Fig. 14. Example 3: problem domain and triangle mesh.

Fig. 15. Computation results for example 3: (a) deflection profile, and (b) convergence results.

Table 2

Rates of convergence for clamped circular plate

L2 H1 H2

2.6812 2.6495 1.4606
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7.4. Simply supported triangular plate

Finally, we present the performance of the T12P3I(4/3) element in solving the unit height equilateral

simply supported Kirchhoff plate with uniform loading. The problem geometry and mesh used are depicted

in Fig. 16.

The exact solution for this problem with triangle height a is given in [1] as

wðx; yÞ ¼ p
64aD

x3
�
� 3y2x� aðx2 þ y2Þ þ 4

27
a3
�

4

9
a2

�
� x2 � y2

�
: ð7:60Þ

The deformed shape of the triangular plate is juxtaposed with the convergence results depicted in Fig. 17.



Fig. 16. Problem domain and mesh for simply supported triangular plate: (a) problem domain (b) 28 node.

Fig. 17. Computation results for example 3: (a) deflection profile, and (b) convergence results.

Table 3

Rates of convergence for clamped circular plate

L2 H1 H2

2.8028 2.9498 1.7216
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The L2, H1 and H2 errors were computed and are plotted in Fig. 17. The slopes of the lines as determined
by regression are presented in Table 3.
8. Concluding remarks

In this paper, a globally conforming Im=Cn=Pk triangle element interpolation hierarchy is constructed

under the framework of RKEM.
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Two systematic approaches are presented to construct the so-called global partition polynomials under
various designs. The proposed interpolants have been used in numerical computations of several Kirchhoff

plate problems. It has been shown that the newly constructed interpolants are very efficient and robust

in the Galerkin type approximations that are involved with higher order derivatives in the weak forms or

in the boundary conditions.

It may be observed that the higher order RKEM interpolants are very flexible in both construction and

computation and they are suitable to many different meshes, structured or non-structured. As shown in

Part III of this work [10], one can construct the optimal or minimal interpolation fields by utilizing

incomplete interpolation sequence. Further study is needed to examine their performance in computations
of shear deformable plate problems as well as linear and non-linear shell problems.
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