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SUMMARY 
This paper explores a Reproducing Kernel Particle Method (RKPM) which incorporates several attractive 
features. The emphasis is away from classical mesh generated elements in favour of a mesh free system which 
only requires a set of nodes or particles in space. Using a Gaussian function or a cubic spline function, 
flexible window functions are implemented to provide refinement in the solution process. It also creates the 
ability to analyse a specific frequency range in dynamic problems reducing the computer time required. This 
advantage is achieved through an increase in the critical time step when the frequency range is low and 
a large window is used. The stability of the window function as well as the critical time step formula are 
investigated to provide insight into RKPMs. The predictions of the theories are confirmed through 
numerical experiments by performing reconstructions of given functions and solving elastic and elastic- 
plastic one-dimensional (1-D) bar problems for both small and large deformation as well as three 2-D large 
deformation non-linear elastic problems. Numerical and theoretical results show the proposed reproducing 
kernel interpolation functions satisfy the consistency conditions and the critical time step prediction; 
furthermore, the RKPM provides better stability than Smooth Particle Hydrodynamics (SPH) methods. In 
contrast with what has been reported in SPH literature, we do not find any tensile instability with RKPMs. 

KEY WORDS smooth particle hydrodynamics; wavelets; elastic-plastic large deformation; tensile instability; correction 
function; aliasing control 

1. INTRODUCTION 

There is always a drive to find new, more advantageous ways to analyse problems using 
numerical methods. Typical finite elements use linear or quadratic shape functions to define the 
response within each element. For large deformation or high frequency problems, the elements 
must be very small to predict accurately the characteristic response. To avoid these problems, the 
Reproducing Kernel Particle Method (RKPM) advantages are exploited. 

There is no explicit mesh, so mesh creation time is saved. Since a mesh is not required, there is 
no problem due to mesh entanglements allowing for large deformations and unrestrained 
movement of nodes. No t  only is mesh creation time saved, but mesh recreation time is eliminated 
since to refine the problemin an area of interest one needs only to add points in the interesting 
region. Nayroles et al.' developed a meshless method called diffuse element method with 
application to heat conduction. Belytschko et a1.2-4 developed an Element Free Galerkin Method 
(EFGM) based on the moving least-squares interpolant of Lancaster and Salkauskas' which 
satisfies the patch test. The Smooth Particle Hydrodynamics (SPH) method, developed by 
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Gingold and Monaghan,6 Monaghan7 and others, also provides a mesh free environment but it 
has some difficulties creating accurate solutions on the boundaries or when a small number of 
particles is used.' The SPH method is similar in basic construction to the RKPM to be presented 
here, but it lacks key features of the RKPM. 

In this reproducing kernel particle method, the approximate solution is constructed by a 
continuous reproducing kernel function. It can also be viewed as a continuous least-squares 

However, by exploiting the moment definitions of the flexible window 
function, the reproducing kernel can be reduced to a simplified form so its properties can be 
investigated. Second, a localized flexible window function is incorporated by translating the 
function across the entire domain to reproduce the response. The window function which 
generates the shape function is controlled by two parameters. The two parameters allow a greater 
problem-solving ability than typical finite elements which only have one. The flexible window 
allows for response frequencies or wave numbers to be selectively reproduced in the numerical 
approximation. Essential to the development of this method is an understanding of the stability 
limits of the flexible window function, as well as the critical time step in dynamic analyses. The 
aforementioned properties of the flexible window function and reproducing kernel create interest- 
ing characteristics for the kernel stability. Explicit criteria are developed for both of these stability 
limits. 

The reproducing kernel in this derivation is also similar to the SPH Lagrangian particle 
method' with one major difference: the development of a correction function for boundary 
effects. With this correction function, the so-called tensile instability, which has recently been 
explained by Attaway et al.,' Libersky et a l l 4  and Johnson,15 has been completely eliminated. 
The primary motivation behind the correction function is to provide accurate solutions at the 
boundaries, but by careful integration techniques it is also possible for the correction function to 
provide stability to the solution. SPH Lagrangian methods provide accurate solutions in the 
interior of the problem when the number of particles is large, but they do not provide a means to 
get an accurate solution near the boundary. The correction functions of RKPMs are relatively 
dormant in the interior and then provide correction on demand at the boundaries. 

Through the implementation of a window function and the exploitation of the Fourier 
transform, it is possible to develop a new type of shape function that can still be used in the usual 
Galerkin formulation. The derivative of the shape function, and thus reproducing kernel, can be 
obtained by direct differentiation. The development of the proposed shape function will be 
derived in detail later, but for now we describe its characteristics. The two parameters in the shape 
function provide the ability to translate and dilate the window function. Translation is required to 
move the window function around the domain since the window functions themselves have 
a compact support. The ability to translate replaces the need to define elements. The dilation 
parameter is used to provide refinement. The larger the dilation parameter, the smaller the 
frequency band is in the solution, and the larger the critical time step becomes in dynamic 
analyses. The refinement parameter transformation between the time and frequency domain (or 
space and wave number) controls the solution space. This introduces the ability to choose the size 
of the frequency or wave number range in the calculation. 

2. DEVELOPMENT OF THE REPRODUCING KERNEL 

There are many examples of reproducing kernels; the most noteworthy may be the Fourier 
transform. The Fourier transform motivates this study since it originates the concept of analysing 
specific frequency bands. This capability is also incorporated in this reproducing kernel method. 
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A reproducing kernel is a class of operators that reproduce the function itself through 
integration over the domain. The Fourier transform is an excellent example of a reproducing 
kernel. The Fourier transform f(o), of a function, f(x) is defined by 

m 

f ( w )  = e-i""f(x)dx 
- m  

and the inverse Fourier transform is defined by 

Bounds of the transform can be easily prescribed if the spectrum of interest is limited to a single 
frequency band, - SZ < w < Q. The bounds of the Fourier transform,f(w), are given by 

It is now shown that the inverse transform on the transform modified by equation (3) is 
a reproducing kernel representation iff(x) # 0 only in the domain x E [0, L]:  

1 1 
f(x) = - j" eixo [ jm e-'Y"f(y)dy d o  

2n -n -m 

This example of a reproducing kernel using a sinc function is presented by Chui16 and Liu et al." 
In Liu's analysis, the multiple scale analysis predicts a critical time step according to the following 
equation: 

2n 
At <- A 0  (5) 

This is used as a guideline since equation (5) bounds the sampling rate needed to prevent aliasing 
when using the reproducing kernel for a given frequency band, Am. It is believed that after 
discretizing the continuous reproducing kernel, a similar form exists for the stability condition of 
the reproducing kernel in space (see Section 4). 

2.1. Window ,function selection 

The ideal window function, @(x), is chosen such that the following two conditions are satisfied. Its 
integral over the domain, R,, must be unity, and @(x) must also be orthogonal. 
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Possibility for window functions includes splines, wavelets, or Gaussian functions, but none of 
them satisfy both of these conditions. The integration of orthogonal wavelets does not produce 
unity over the entire domain, rather the value is zero. Furthermore, most wavelets cannot exactly 
reproduce constant or linear terms, i.e. they cannot reproduce the simplest functions very well. 
For these reasons, only scaling functions, which are used to generate wavelets, are considered 
here, and the appealing characteristics from the wavelet are used. Splines are always 
an option since we can custom tailor them, but they can produce undesirable irregularities. The 
Gaussian function is not orthogonal, but it is used in this analysis because of its special properties. 
It is also important to keep in mind that the integral on the interior of the domain will be less than 
the integral near the boundaries. 

2.2. Development of window function 

Like the Fourier transform pair, we want to be able to reconstruct any function u(x )  by a series 
of window functions, @(x). Since @(x) is a localized function, it is necessary to translate the 
function to represent the entire response. This is performed by inserting the argument s - x in the 
function. Now u(x )  is presented by the following integral: 

JRx E(s,  x) @(s - x)dR, = 1 (8) 

where E(s, x) is the correction function to be defined later in the construction, Section 2.4. Or it 
could be an arbitrary constant as in SPH methods.” 

To the window function argument, it is also necessary to add the dilation or refinement 
parameter, r. This is incorporated by dividing the window function argument by this refinement 
parameter. For notational purposes this definition is used for the window function: 

E(s, X)@&)dR, = E(s,  X)@(X)dR, = 1 

When the Gaussian distribution is used for the window function, an intuitive sense of the 
refinement parameter can be revealed as the standard deviation. The additional constant, r - ’, 
scales the window function so that integral over the domain window equals one according to 
equation (lo).” It is also useful to derive the moment equations in Section 2.4.1. 

This completes the development of the window function to be used in this 1-D analysis. 

2.3. The reconstruction equation 

initiates the analysis. Starting with the following definition 
The concept that any function can be represented as a sum of linearly independent functions 

U(X) = P(x)d (12) 
where P(x) = [Pl(x),P,(x), . . , ,P,(x)] which is any number of linearly independent functions 
and dT = [ d , ,  d 2 , ,  . . , d , ]  is the same number of unknown coefficients. For a linear one-dimen- 
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sional case, P(x) = [l, XI, or for a quadratic one-dimensional case, P(x) = [l ,  x, x'], etc. This 
moving least-squares interpolant type of reconstruction5 has been used by Nayroles et al.' and 
Belytschko et u I . * - ~  for the element free Galerkin method. 

It is possible to solve for the unknown coefficients d by using the window function. The variable 
x is changed to s in equation (12), and then both sides are premultiplied by PT(s) and the integral 
window transform is applied." Both sides of equation (12) are multiplied by the window function, 
Or,, and then integrated over the domain. 

PT(s) U ( S )  Qrs ds = PT(s) P(s) Qrs ds d 

C(X) = PT(s)P(s) Qrx ds 6. (14) 

Equation (14) is used in the next section to complete the construction of the correction function. 
(In that section the merits of C are discussed which shows why the term is sometimes referred to 
as the boundary correction function.) By this definition for C, the solution ford can be substituted 
back into (12), obtaining the reconstruction equation in (16) which can also be written as one 
integral (1 7): 

r 

d = C-'(x)J PT(s)u(S)Qr,ds 
RX 

U ( X )  = P(x)C-'(x) PT(s) U(S) Qr,ds 
f R .  

2.4. Correction function 

Comparing the reconstruction equation in (17) to the SPH method reveals that the only 
difference is the appearance of the P(x)C- '(x) PT(s) term in the RKPM. This term is defined as 
the correction function E(x,s), and its merits are analysed in this section. For simplicity, the 
characteristics of this function are derived here in one dimension for linear polynomials P(x), but 
it can be shown to be valid for multiple dimensions as well." Expanding equation (14) gives the 
following: 

The inverse of this matrix will be computed along with P(x) and PT(s) from the reconstruction 
formula in equation (17) to form the correction function. The entire term, the P(x)C-'(x)P'(s) 
function, simplifies to a scalar regardless of the number of terms used for P(x) and PT(s). 

2.4.1. DeJnition of moments. In order to evaluate equation (18) moments are defined in the 
following manner: 

(19) 
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m , ,  = J z 2  O(z)dz 
B(x)  

These moment equations are integrated over the region B(x), where B(x)  is the region where the 
window function is non-zero. The calculation could be performed over the entire domain; 
however, many unnecessary calculations are involved. In order to estimate these moments for the 
Gaussian function, a truncated three standard deviation criterion is enforced which ensures the 
inclusion of 99.7 per cent of the total area. The values of the moment are given in Table I. It will be 
shown that these characteristics lead to a correction function that provides an accurate solution 
near the boundary, and lies relatively dormant in the interior. 

Because the correction function is unity in the interior, it can be concluded that it plays no role 
in the interior. It is now known that in numerical implementation, the correction function and its 
inverse function can have a profound effect on the stability of the kernel, see Figures 3 and 4. It is 
noted that the stabilization effect is much more pronounced in the data when the number of nodes 
is relatively small. In addition, with the correct construction of the antisymmetric moment ml 
(equation (20)), the so-called tensile in~tabi l i ty’~ -15 associated with SPH methods is completely 
eliminated. 

2.4.2. Final correction functionform. The expression for P(x)C-’(x)PT(s) can be written in the 
simplified form shown below through manipulation. Equation (1 8) can be inverted and sub- 
stituted back into the reconstruction in equation (1 7) to reveal a continuous reproducing kernel 
for the function u(x ) .  This is the final reconstruction equation to be used in this analysis. It is 
noted that the correction function, E ( x ,  s) is simplified into the sum of the two terms which are 
defined in the following manner: 

E ( x , s )  u(s) - 0 ( “ r s ) d s  - 
r 

E ( x ,  s)  = c, (x) + C,(x) - (7) 

Table I. The differences of moments between 
interior region and near boundaries 

Interior region Near boundaries 
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The discretized form of the reconstruction equation can be used to reveal certain properties of 
the RKPM. The discretized form is given by 

C,(x) + C,(x) (" - : x J ) ] i @ ( " + ) U ( X ~ ) A X ~  
J =  1 

The discretized reconstruction equation can also be written in a more familiar form in terms of 
a shape function N j ( x )  in equation (27): 

NP 

U h ( X ) =  1 NJ(x)uJ (27) 
J =  1 

The characteristics of this new shape function must be carefully analysed to avoid erroneous 
results. The most apparent difference is that the shape function does not meet the Kronecker delta 
indentity since each node is influenced by several shape functions. However, the shape function 
will meet the consistency condition. This can be proven by the following equation where the 
reconstruction equation can be substituted to reproduce itself: 

P(x)C-'(x)PT(s)@ - ") P(s) ds (" 
1 s - x  
r = P(x) C - PT(s) P(s) - @ ( r-) ds 

= P(x) (29) 

It is also pointed out that the integration method used to calculate C and C-'  must be similar in 
order to meet this condition. It is also proposed by Liu et al." that by using the trapezoidal rule 
to integrate the moments defined within C, the stability of the kernel is increased. The shape 
functions will meet the following isoparametric shape function properties. 

By analysing the properties of the moments, in a continuous case the values for C1 and C2 are 
found to equal 1 and 0 respectively in the interior of a domain (assuming a sufficiently large 
number of particles), but definitely not equal to these values on the boundary. In the continuous 
case, the RKPM will be identical to the SPH only in the interior. 

However, in the discretized form, the effect of the correction function will depend on the 
integration technique used as well as the number of particles in the integration domain. These 
factors will determine whether the correction function will only act on the boundaries or enhance 
the stability of the solution throughout the entire domain. In this paper the trapezoidal rule is 
used to calculate the moments of which the discretized forms are given in the following: 

NP 
*O(X) = C a - 1 0  ("'i - x ) A x J  

J 
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It is noted that the above moments mo, Ftil and Tiill possess the approximate characteristics given 
in Table I. 

2.5. Gaussian reproducing kernel formulation 

It is important at this point to define the Gaussian function used in this analysis at this time. 
The refinement parameter is defined to contain a measure of normalization so that a given 
dilation of the window function always contains the same number of nodes, regardless of particle 
density. The refinement parameter, r can also be recognized as the standard deviation in the 
Gaussian equation: 

r = 2jAx $ (35) 

Defining the Gaussian function in this way has the advantage of maintaining the same number of 
nodes for support while changing the distance between nodes, but the window and shape 
functions will change while changing nodal co-ordinates as well as the j refinement. The 
parameterj can be any real number but stability limits are set in Section 5, In prior analyses, the 
definition in Section 5 was found to be optimal: so it is chosen as a starting point for this analysis. 
In this paper, the Gaussian window function and cubic spline functions are presented in Section 6. 

2.6. Cubic spline reproducing kernel formulation 

Spline functions have been widely used for window-like kernel functions in many particle 
methods because it is easy to determine the range of support of window function and they lessen 
the computing time.I4 The cubic spline functions are defined below: 

for 1 < z < 2  (37) 
1 
6 

@(z) = - (2 - z)3 

IY - XI z=- 
a 
a 

Ax 
in which the dilation parameter is - = 2'. 

2.7. Dynamic frequency analysis 

One of the interesting aspects of this method is its ability to predetermine the frequency range 
studied in the analysis. The frequency range captured can be determined from the Fourier 
transform of the window function." The window function's shape can be changed by the 
refinement parameter, r, allowing for adaptability in the solution process. Even though the 
Fourier transform of the window function is also bell shaped, the cutoff frequency for the banded 
window has been found to be l/r." This method matches the area under the window function 
with the area of the straight box created by the cutoff frequency. The approximation for the 
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highest accurately reconstructed frequency inside the window function, 1 / I ,  enables an under- 
standing of the limitations of this method in its straight form. 

Unfortunately for this preliminary implementation of the method, the frequency window is 
always centred around o = 0. This means that we cannot selectively consider only higher 
frequency bands; it is necessary to capture all frequencies below the highest frequency of interest. 
The ability of this method to capture high frequencies is also limited by the stability of the 
reproducing kernel itself. Although the number of nodes is any one window function is variable, 
there must be at least two nodes in the domain of the window functions for stability. This is 
necessary in order to have connectivity between window functions. Unless the variable connect- 
ivity is always greater than two, the response cannot be translated along to the adjacent nodes. 

It is hoped that the multiple scale methods of Liu et al." can be included in subsequent 
analyses to shift the interested frequency bands away from the origin, removing the unnecessary 
calculation of frequencies between the interesting areas. Another approach is to use wavelets to 
capture the high frequency bands, which is being investigated by Liu et aL9 

2.8. Multiple-dimensional analysis 

and 3-D analysis, 
The extension of the RKPM to multiple dimensions (2-D and 3-D) is straightforward. For 2-D 

WX) = { 1, xi1 X Z }  

WX) = (1, xi, XZ, XJ} 

(2-D) 

(3-D) 
are employed and the reproducing kernel approximation becomes 

where E ( x ,  y) is shown to be 

in which Cl(x, y)  and Cz(x, y)  are functions of moments and given by Liu et al." Generally the 
window function Q, (x - y) has elliptic support, depending on the dilation parameters of each 
spatial co-ordinate. For rectangular geometry, a product of 1-D window function can be used for 
simplicity and efficiency. 

3. FUNCTION RECONSTRUCTION 

The reproducing kernel is first used to reconstruct a given function as a demonstration and 
evaluation technique. This is done by using the discretized form of the reconstruction equation 
(17) to reproduce a known function. The trapezoidal rule is used here for integration. The dilation 
parameter has a profound effect on the shape function. Examples of shape functions for several 
values of the dilation parameter are shown below. Note that for j = - 2 the window function 
approaches the ordinary finite element shape function. 

Figure 1 portrays that as the dilation parameter decreases in magnitude, the Gaussian window 
function approaches a Dirac delta function. If it were possible to reproduce the Dirac delta 
function, all frequencies of a function would be reproduced. Unfortunately, without additional 
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Figure 1. Gaussian shape function dilations for j = - 2,0, 1,2 

tools this is not easily possible without a large number of particles, due to the stability limit of the 
window function itself requiring a minimum of two nodes in its support, Section 5.1. 

These reconstructions shown in Figures 2-7 illustrate the intricacies. Notably, it shows the 
difference between RKPM and SPH methods. The difference arises from the correction function, 
which enables an accurate approximation throughout the entire domain of the response as well as 
as increased range of stable operation, expecially for a small number of particles. The accuracy of 
the correction function can be analysed by using a simple reconstruction of a known function. 

It is readily seen in Figure 2 that the SPH reconstruction is not even able to reproduce a simple 
sinusoidal wave near the boundaries while the RKPM solution is almost identical to exact 
solution. 

-02 - 

-06 - 
-08 - 

0 1 2 3 4 5 6 7 

Figure 2. Reconstruction of sin(ox) where w = 1 with 21 nodes, demonstrating the advantage of the RKPM over SPH 
near the boundaries 



KERNEL PARTICLE METHODS 1665 

Figure 3. sin(x) reconstruction using the RKPM, 21 nodes. 

Figure 4. SPH reconstruction for sin(x) using 21 nodes 

Figure 5. sin(x) reconstruction using the RKPM, 201 nodes 
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Figure 7. The 

0 2 4 6 10 12 time 

reconstruction of a sine wave with increasing frequency and damped oscillations for several 
201 nodes 

values ofj with 

In order to provide a feel for the performance of the dilation parameter, Figures 3 and 4 depict 
a sinusoidal reconstruction with and without the correction function. Figure 4, which does not 
contain the boundary correction function, provides an evaluation of the SPH method. The 
instability of the SPH method proves that the RKPM correction function enhances stability in 
addition to correcting the reconstruction near the boundaries. 

It is important to note thatj = - 2 was not plotted in Figure 4 since the instability of the SPH 
method would have required a much larger scale. This occurs because the SPH kernel does not 
satisfy the consistency condition for a small number of nodes; however, for large numbers of 
nodes the SPH method performs adequately (Figure 6). 
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Knowing the behaviour or the dilation parameter, namely the effect of the j parameter, our 
discussion is turned toward a brief look at the frequency content of the window function. By 
dilating the Gaussian window function (Figure l), it is easily seen how the function changes shape 
with the parameterj. It is this dilation that enables the types of analyses discussed in Section 2.7. 

A reconstruction is now performed on a sinusoidal wave that has been augmented to increase 
its frequency as well as dampen its amplitude: 

(43) 

The results in Figure 7 clearly shows the ability of the window function to capture the frequency 
content. The larger the values for the refinement parameter, the more quickly the reconstruction 
attempt fails. 

4. GALERKIN FORMULATION FOR REPRODUCING 
KERNEL PARTICLE METHODS 

The reproducing kernel can be implemented into a Galerkin formulation in a similar way as 
typical finite elements. The major difference in construction is the loop which occurs over nodes 
instead of elements, but the formulation is almost identical, beginning from the weak form of the 
momentum equation. The following variables are used t is the traction, b is the body force, B is 
the stress tensor, and ii denotes acceleration: 

r r r r 

The element matrices are 

f i " ' ( x , ~ ) e = ( ( f : " ' ) ' } = ~ ~ ~ ~ ~ ' N a , x d R ~ ~ ,  a =  l , . .  . , N E N  

fb(x, b)'= {(f;j'} = { N.b'dR:}, a = 1 , .  . . ,NEN 
R: 

(47) 

NatedT: , a = 1, .  . . ,NEN (48) I1 aR: aR: I f'(x, t ) '=  {(fb)'} = 

including a row sum lumped mass matrix (cf. equation (30), xy N,(x) = 1 ), but it is important to 
keep in mind that the matrices have a variable connectivity depending on the number of nodes in 
the support of the window function, NEN. 

The natural boundary conditions are simply entered into the force vector; however, it is difficult 
to implement the essential boundary conditions since several shape functions can be present at 
the node dictating the necessary response. In this analysis the essential boundary condition is 
satisfied by substituting a sum on all the shape functions in place of the row in the stiffness matrix 
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that corresponds to the constrained nodes. The shape function and its derivative are derived with 
the correction function in the next two $ections. 

In a large deformation formulation, the internal force matrix is discretized as below: 

where NG is the total number of Gaussian quadrature points. The integration weight Axk is 
replaced by A x k  = A M k / p k  in which A M k  and P k  are respectively the nodal mass and density 
associated with an integration point x k .  Prior to updating A x k  and xk, the nodal spatial 
co-ordinate is updated via 

(50) xj = X j  + uJ, J = 1,. . . ,NP 

and the shape functions (Equation 27)) are used to update the Gaussian quadrature points and 
the mass densities P k  as 

NP 

xk = 1 NJ(Xk)XJ,  k = 1,. . . , NG 
3 = 1  

NP 

The nodal densities pJ are computed using the continuity equation. 

4.1.  Shape function derivatives 

Unlike the moving least-squares methods, diffuse element methods and element free Gaierkin 
methods, the derivative of the RKPM shape function (Equation (28)) can simply be obtained by 
direct differentiation. It is necessary to consider the correction terms as well as the window 
function itself to obtain the derivative of the shape function: 

+ C , ( x ) +  C , ( x )  (" 7 - x ~ ) )  -@' (" - x ~ )  A x J  I (53) 

m; 
mom11 -"I 

- ml(mbmll + mom;l - 2mlm;) 
(mom11 - m y  c; = 2 

If a Gaussian window function is considered, the derivative of the window function is 

(55) 

Now it is necessary to calculate the derivatives of the moments which can be combined with 
derivative of the Gaussian window function to reveal the final derivative in equation (60): 
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5. STABILITY ANALYSIS 

It is interesting to note that the stability of this type of analysis is twofold. First there is the 
stability of the reproducing kernel itself, and then there is the stability of the time integration 
method. In this analysis an explicit Newmark beta predictor/corrector algorithm is imple- 
mented. O 

5.1. Reproducing kernel stability 

The stability of the kernel is mainly a function of the number of nodes encompassed by the 
window function. (Theoretically the number of nodes covered is the number of nodes in the 
analysis, since the function has an infinite domain.) The number of significant nodes in a shape 
function is controlled by the refinement parameter, r. From the aforementioned definitions for the 
shape of the window function the following equation can be derived to estimate the number of 
nodes under any given window function. If the radius of a given window function, A x c ,  is defined 
as the distance from the centre to the edge of the window's significant support, then a ratio can be 
defined to relate the height of the window function at the peak to the small value where it is safely 
approximated to be zero. For a Gaussian window function, 

exp( - A x , 2 / r Z )  
exp( - A x ; / r 2 )  

R =  

n - 1  
A x c  = A x  

Using these definitions it is possible to derive the kernel stability stated in equation (63) where the 
variables are as follows: n is the number of nodes covered by the Gaussian function, j is the 
parameter controlling the dilation and R is the ratio between the value at a node in the tails of the 
function to the significance of the peak of the Gaussian function. 

Theoretically the number of nodes should be at least two in order to maintain the variable 
connectivity window arrays. This is verified analytically through solutions that were run with 
values as low as -2.5 for j when the entire domain is used as the support of the Gaussian 
function, and as low as -2.2 when the support of the Gaussian function is limited. Solutions for 
the number of nodes in the support of a window function for various height ratios are shown in 
the Table 11. 
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Table 11. The numbers of nodes in the support 
of a Gaussian window function 

- 2.2 1.69 2-04 
- 2  1.80 2-20 
- 1  2.60 3.39 

0 4-19 5.79 
1 7.38 1057 
2 13.77 20.1 5 
3 26.53 39.30 

Note: 20 and 30 correspond to R = 1-83E - 2 and 
R = 1.23E - 4 respectively 

If we examine equations (31)-(33) carefully, the stability condition is governed by the determi- 
nant of C 

Det=moEll  - $ > O  (64) 

Det = EoRll - Rf < 0 (65) 

Therefore, when the trapezoidal rule is used to integrate the moments, instability occurs when 

Equations (64) and (65) provide a very non-linear stability relationship between I and Ax. Our 
numerical experiments have confirmed these stability conditions. The numerical values of Ax also 
coincide with those predicted from equation (5 )  which is explained by Liu et a1." 

5.2. Critical time step 

In order to perform analyses on the structural dynamic class of problems, it is very important 
to understand the relationship between this new shape function and the critical time step. This is 
determined here by performing the standard eigenvalue analysis, solving the determinant of 
[K - AM]. This calculation only needs to be performed for each quadrature point since the 
eigenvalue of a matrix sum is bounded by the eigenvalues of the constituent matrices. The critical 
time step was found to depend on several parameters including the dilation parameter and the 
boundary correction function. 

Using symbolic manipulation this determinant was solved for RKPM shape functions contain- 
ing several different numbers of nodes. By evaluating the determinant at each Gaussian point it 
was found that there is only one non-zero eigenvalue, regardless of the number of nodes in the 
support of the shape function. It was possible to simplify the result for equally spaced nodes to the 
following terms: 

D(x ,s )  = C , ( X )  + C,(X)  - ("I") 
D'(x,  S )  = C ( x )  + C; ( x )  ( " ; S )  - I c z y  

NP 
c2 Ax [D& + D&]2 

= ( p ) y  DiaXi  AX; 
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Table 111. The critical time steps calculated using equation 
(70) for cubic spline window functions 

i A t  (boundary) At (interior) A t  (Numeric) 

0.0 0.89 1 0 - 5  1-51 10-5 2.7 x 10-5 
0.5 089 10-5 2.78 10-5 3.3 x 10-5 
1 .o 1.75 10-5 3.89 1 0 - 5  4.2 x 10-5 
1.5 2.73 1 0 - 5  5.55 x 1 0 - 5  5.7 x 10- 

where A x  is the length between nodes, A x i  is the integration weight using trapezoidal rule and NP 
is the number of nodes in the shape function's support. The critical time step is shown for a central 
difference time integration scheme in equation (69). By substituting the maximum eigenvalue 
corresponding to the maximum frequency, the critical time step can be calculated: 

2 
At < - 

%ax 

Results for the critical time step were calculated using equation (70) for cubic spline window 
functions. The results are shown in Table 111 for the problem in Figure 8 with 21 equispaced 
nodes. The critical time steps obtained near boundaries are approximately half of those asso- 
ciated with interior because of the correction function D(x,x j ) .  The finite element critical time 
step for a linear displacement element is A t  < l / c  is 2.455 x 

The discretized form of the critical time step was perceived to have a simple translation to the 
continuous form. The discretized form contains the derivative of the reproducing kernel squared. 
Then the largest eigenvalue and thus the critical time step is as follows: 

s. 

where k(x,  y) is the reproducing kernel defined by equation (73): 

6. NUMERICAL EXPERIMENTS 

A one-dimensional wave propagation problem was analysed using the reproducing kernel 
particle method, The problem is shown in Figure 8 with material properties (for steel) 
E = 3 x lo' psi, p = 7-24 x slugs/in3 and A = 1 in2. 
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Figure 8. 1-D bar problem with step input 

The solution for the linear elastic deforming rod was obtained with the Gaussian shape 
function and an explicit Newmark beta predictor/corrector algorithm. The results correspond 
accurately to the closed form solution. For non-linear and large deformation problems, the cubic 
spline function was selected as the window function. 

In order to visualize the effect of the dilation parameter, the shape functions are plotted in 
Figure 10 along with the nodes which depict the number of significant nodes providing the 
support of each shape function in each dilation (technically every node is in the support of 
a Gaussian shape function). This is shown directly in Figure 11 of the plot for velocity versus time 
which incorporated the shape functions in Figure 10 to obtain this response. Figure 9 also shows 
the displacements for the node 11 for different values ofj. Figures 9 and 11 are obtained when the 
external load is compression; 21 nodes were used for the elastic problem. For completeness the 
stresses for the case of tensile load rather than compression are also plotted in Figures 12 and 13. 
For the results of the RKPM, the stress is calculated at the midpoint of the element 10. 

Although the high frequency components of the solution in Figure 14 are filtered away, it is 
interesting to note that the problem was run at 1.35 times the FEM critical time step. 

Time (s) 

Figure 9. Displacement for node 11 (centre node) showing a range for the dilation parameter and the exact solution for 
the elastic problem 
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Figure 10. Gaussian shape functions used to calculate the wave propagation, with nodal support 

" "."V I V.VVU 

Time (s) 

Figure 11. Velocity for node 11 (centre node) showing a range for the dilation parameter and the exact solution for the 
elastic problem 

Time (s) 

Figure 12. The axial stress at element 10 is plotted versus time for tensile load 
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Length (4 

Figure 13. Axial stress at the tenth time step as a function of position for tensile load 

-10 I I 
0.001 0.002 0.003 

Time (s) 

Figure 14. The RKPM run with j = 0 and a time step of 3.32 x 10- which is 1-35 times the FEM critical time step for the 
elastic problem 

Figures 15 and 16 depict the stress at x = 49-375 ins. of the bar which is modelled 
with the elastic/plastic materials under compression: yield stress by = 3 x lo4 psi; E = 3 x lo7 psi; 
p = 7.24 x slugs/in3; E ,  = E/4; bo = 5 x lo4 psi. It is also shown in Figure 16 that the 
RKPM can run with a larger time step (1.0 x lO-’s), 1.626 times the critical time step of FEM 
(0.615 x s). For the elastic-plastic problem, the cubic spline functions are selected for the 
window functions as given in equations (36)-(38) withj = 0 0  (Figure 15) and j  = 1.0 (Figure 16). 

For the large deformation problem, do = 2-5 x 10’ (psi) replaces the previous external stress 
distribution while other data remain the same. Due to movement of the nodes, a flexible window 



KERNEL PARTICLE METHODS 

- 

1675 

\ 
Exact 
RKPM : j = 1.0 \ 

i 

. -. 
I 

3 
i 

Exact 
RKPM : j = 0.0 
FEM 

..-.-.-... ----- - -2000 

a - -3000 
67 

0.0000 0.0002 0.0004 0.0006 0.0008 0.00 t 0 0.00 I2  

time (sec) 

Figure 15. Stress of the elastic-perfectly elastic bar with time step A t  = 0.6E - 5 (s) 
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Figure 16. The RKPM with a larger time step A t  = 1.OE - 5 (s) which is 1.626 times the FEM critical time step 
(Ar = 0.615E - 5 )  

based on the average nodal space is employed for j = 05 .  Figures 17 and 18 show the stress 
responses at x = 49.375 ins. of RKPM using 81 nodes with a time step of 0.5 x s for the cases 
of compression and tension respectively. FEM results using 641 nodes are included for referential 
data to compare with. 

Two-dimensional large deformation examples are illustrated in Figures 19-21. The materials 
for the 2-D problems are Mooney-Rivlin rubber materials. An explicit Runge-Kutta method is 
employed for the time integration. Figure 19 shows results of selected time steps when a 2-D 
Mooney-Rivlin rubber bar is compressed with a pressure of 200 psi while Figure 20 simulates the 
bar subject to a tension of 100 psi. For both compression and tension examples, a time step of 
0 4  x 10-6(s) is used and the domain [ x o , x L ]  x [ y o , y L ]  is [0.0,8.0] x [ - 05,0.5]. In these 
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Figure 17. Stress response of RKPM and FEM for the large deformation compression problem of a 1-D bar 

LARGE DEFORMATION (TENSION) 

120 

Figure 18. Stress responses of RKPM and FEM for the large deformation tension problem of a 1-D bar 

figures, the solid dots depict the positions of the particles. Similar to the 1-D example, we do not 
observe any tensile instability. Figure 21 is the tunnel-like structure problem subjected to 
a distributed load of 1OOOpsi on the top portion of the structure. The time step used is 
0.5 x (s). The upper portion of the structure experiences compression while the lower 



t = 4.8 10-4 

t = 8.4 10-4 . 
: : :: z t : : : : : : :::: : 8 :::::::::::::::::: 

: t t t : t : : : : : : : : : : : : '  

2:. 
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I:::::::::::::::::: I [ ]  m .  1. 
: : : : :: t : 8 : : : t ::: :: i . 
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Figure 19. Compression of Mooney-Rivlin rubber bar: 37 x 10 nodes; C1 = 2000.59 (psi); C2 = 200.367 (psi); 
1 = 2.0 x lo6 (psi); p = 2.4 x (slug) ......................... ......................... ......................... ......................... ......................... ......................... 

t =  1.2 x ll+(see) ........................ .......................... ......................... ......................... 
t=48xIfl(ss) ....................... ....................... . 0 0 . 0  0 0 0 0 .  0 0 0 0 0 0 .+ ..................... **a- ........................ 8.  . 
t = 8 4 x 1 0 - 4 ( ~ )  ....................... ....................... 8 . 0 0 .  0 0 + 0 *. 0 .  0 0 0 0 0 .  0 ........................ ....................... .. ....................... 
t = 1.2 10-3 

........................ 
Figure 20. Tension of Mooney-Rivlin rubber bar 41 x 10 nodes; C1 = 1800.35 (pi); Cz = 146.8 (psi); 1 = 1-468 x lo6 

(pi); p = 14089 x (slug) 
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y .... .... .... .... .... .... 
0 0 . .  
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Figure 21. Compressibn of tunnel structure of Mooney-Rivlin rubber materials: 186 nodes; C, = 1835 (psi); Cz = 1464 
(psi); 1 = 1.468 x lo6 (psi); p = 1.4089 x (slug) 

portion is in tension. This example demonstrates that, with the correction function, the tensile 
instability phenomenon of SPH methods has been eliminated. 

7. CONCLUSIONS 

The theory for reproducing kernel particle methods is presented here with numerical experiments 
performed to confirm the derived equations. The RKPM is proven here to possess the ability to 
solve a dynamic problem. Results are also presented to verify the supposition that the correction 
function can provide both boundary correction and reproducing kernel stability. Furthermore 
the implementation of the flexible window function as frequency control has been initiated. 

The results from the numerical experiments not only verified the theory presented, but it 
produced several encouraging results. Among the most important is the ability of the RKPM to 
perform at time steps larger than the critical time step for standard finite elements, as predicted by 
a simple formula derived in this paper. It is also important that results for the correction function 
proved that it provided boundary correction as well enhancing the stability of the reconstruction 
equation. The increased stability of the reconstruction equation enables the ability to use very few 
particles and obtain good accuracy. The correction function increased the stable range of the 
dilation parameter over the SPH method. In addition, the RKPM removes the so-called tensile 
instability associated with SPH methods is a large deformation analysis. 
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