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Abstract

In this paper and its sequels, we introduce and analyze a new class of methods, collectively called the reproducing

kernel element method (RKEM). The central idea in the development of the new method is to combine the strengths of

both finite element methods (FEM) and meshfree methods. Two distinguished features of RKEM are: the arbitrarily

high order smoothness and the interpolation property of the shape functions. These properties are desirable especially

in solving Galerkin weak forms of higher order partial differential equations and in treating Dirichlet boundary con-

ditions. So unlike the FEM, there is no need for special treatment with the RKEM in solving high order equations.

Compared to meshfree methods, Dirichlet boundary conditions do not present any difficulty in using the RKEM. A

rigorous error analysis and convergence study of the method are presented. The performance of the method is illus-

trated and assessed through some numerical examples.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Interests in constructing versatile finite element interpolants, meshfree interpolants, or general partition

of unity shape functions is the current trend in improving the state-of-the-art finite element technology (see

[3]) and meshfree technology (see [2,19,24,25,31]). In a coming series of papers, we introduce and analyze a

new class of methods, collectively called the reproducing kernel element method (RKEM), which are

constructed by combining the virtues of finite element approximations and reproducing kernel particle

approximations (RKPM, [7,21–23]). This is the first paper (Part I) of a series devoted to RKEM.
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In these new methods, we patch the global partition polynomials together by associating them with
compactly supported functions defined through a kernel to satisfy the required reproducing conditions. The

proposed RKEM enjoys some distinguished features:

1. The smoothness of the global basis functions is solely determined by that of the kernel function, and is

not limited by the smoothness of the finite elements.

2. The global basis functions of RKEM have the Kronecker delta property at the associated nodes, pro-

vided that some conditions on the support size of the kernel function are met.

In finite element methods (FEM), the smoothness of FEM shape functions is limited by the inter-element

boundary continuities. For example, to solve fourth-order differential equations, one needs C1 elements in a

standard conforming method. However, as it is well-known, it is not practical to use C1 elements for

problems over two or higher dimensional domains. The proposed RKEM eliminates this difficulty and can

be used as a smoothing technique to obtain consistent solution in derivative in the framework of FEM [27].

On the other hands, for most of meshfree methods, the treatment of Dirichlet boundary conditions is

problematic due to the loss of the Kronecker delta property of meshfree shape functions. In the literature, a

variety of techniques were proposed and analyzed for enforcing Dirichlet boundary conditions, e.g.,
Lagrangian multiplier technique [2], transformation technique [6], hierarchical enrichment technique

[13,29], reproducing kernel interpolation technique [5], singular kernel function technique [6,17], colloca-

tion technique [30], window or correction function [10], and use of D�Alembert�s principle [9]. Nevertheless,

most of these techniques do not have good scalability in parallel computations.

On the contrary, for the proposed RKEM, the Kronecker delta property is kept as long as certain

conditions on the support size of the kernel function are satisfied. Thus the treatment of Dirichlet boundary

conditions in RKEM is straightforward. Moreover, as was noted in [12], most of the available techniques

for imposing Dirichlet boundary conditions have optimal convergence rate only when the polynomial
reproducing order is one for two or higher dimensional problems. Numerical results reported in Section 5

shows RKEM maintains optimal numerical convergence rates when it is used to solve a Dirichlet boundary

value problem with any polynomial reproducing degree higher than one for multiple dimensional problems.

Similar ideas were explored in Hao et al. [16], and Hao and Liu [14,15], where the so-called moving

particle finite element methods were introduced. These methods tried to achieve the following objectives: (1)

no numerically induced discontinuity between elements; (2) no special treatment required for enforcing

essential boundary conditions; and (3) efficiency in implementation and computation. However, numerical

results based on the nodal/particle integration scheme in [14–16] shows numerical oscillations, especially for
coarse finite element meshes. The framework for the development of RKEM is different from that of the

moving particle finite element methods.

As the first paper in the series, the main objective is to provide a solid theoretical foundation to the

method. The outline of the paper is as follows: In Section 2, the reproducing kernel element method,

RKEM, is introduced as a hybrid of the traditional finite element approximation and the more recent

reproducing kernel approximation technique. We show that the polynomial reproducing property of the

finite element functions is maintained by the reproducing kernel element functions without additional ef-

fort. Moreover, under some provisions, the reproducing degree can be increased by including additional,
minimal number of terms associated with the reproducing kernel. In Section 3, we investigate two prop-

erties of RKEM. The first is the interpolation property of the reproducing kernel element functions at the

nodes. This is equivalent to the Kronecker delta property of the related global basis functions. This

property is useful in imposing Dirichlet boundary conditions. The second property is the smoothness of the

reproducing kernel element functions, which is shown to be solely determined by the smoothness of the

kernel function. Thus, functions with a good approximation property and any degree of smoothness can be

constructed with ease. In Section 4, we give a detailed error analysis of the method in the case of the linear
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reproducing property. Error estimation is done through an extension of the arguments given in [11,18,23]
for RKPM. Numerical examples are included in Section 5 to demonstrate the effectiveness and efficiency of

the proposed method. Finally, some concluding remarks are given in Section 6.

We now introduce some notations that will be used throughout the paper. The letter d is a positive

integer and is used for the spatial dimension, d 6 3 for most applications. A generic point in Rd is denoted

by x ¼ ðx1; . . . ; xdÞT, or y ¼ ðy1; . . . ; ydÞT or z ¼ ðz1; . . . ; zdÞT. The length of a vector is measured by the

Euclidean norm

kxk ¼
Xd
i1

jxij2
 !1=2

;

or the maximum norm

kxk ¼ max
16 i6 d

jxij:

With the latter choice, a circle or a sphere is represented by an ordinary square or cube, and the support of

the window function used in the method will be a square or cube. In contrast, with the choice of the
Euclidean norm, the support of the window function will be an ordinary circle or sphere. Our description

and analysis of the method are valid for any choice of the vector norm.

It is convenient to use the multi-index notation for partial derivatives. A multi-index is an ordered

collection of d non-negative integers, a ¼ ða1; . . . ; adÞ. The quantity jaj ¼
Pd

i¼1 ai is said to be the length of

a. For z ¼ ðz1; . . . ; zdÞT 2 Rd and a ¼ ða1; . . . ; adÞ, we write za ¼ za11 ; . . . ; z
ad
d .
2. Reproducing kernel element interpolant

Let X � Rd be an open, bounded domain with a Lipschitz continuous boundary C ¼ oX. Let there be a
subdivision fXngNn1 of the domain X ¼ X [ C, i.e.:

1. Each Xn is a closed set with a non-empty interior.

2. X ¼
SN

n¼1 Xn.

3. For m 6¼ n, X
�
m \ X

�
n ¼ ;, where X

�
m denotes the interior of Xm.

On each subdomain Xn, we assume that for some integer In P 1, there are linearly independent functions

fwn;ig
In
i¼1 and corresponding nodes fxn;igIni¼1 � Xn, such that the following reproducing property of order k

holds:XIn
i¼1

wn;iðxÞxc
n;i ¼ xc 8c : jcj6 k 8x 2 X: ð2:1Þ

We call the basis functions, fwn;ig
In
i¼1, the global partition polynomials. They are essentially C1 functions,

whose properties will be further examined in the Part II [20] of this work.

As an example that will be considered in detail later in the paper, we can take the subdivision fXngNn¼1 as

a finite element partition of the domain X into triangular or tetrahedral elements, and use the associated

linear elements. Then for each element Xn, we take In ¼ d þ 1, fxn;igdþ1
i¼1 to be the vertices, and fwn;ig

dþ1
i¼1 the

natural extension of the linear basis functions to the whole space Rd . For instance, for a one-dimensional

setting, with Xn ¼ ½xn�1; xn�, we let

wn;1ðxÞ ¼
xn � x

xn � xn�1

; wn;2ðxÞ ¼
x� xn�1

xn � xn�1



Fig. 1. Global partition polynomials in 1-D and 2-D: (a) 1-D linear global partition polynomials; and (b) 2-D bilinear global partition

polynomials.
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defined for any x 2 R. Linear global partition polynomials in 1-D and bilinear global partition polynomials

in 2-D are plotted in Fig. 1(a) and (b), respectively.

In the new method studied in this paper, we patch the local approximation functions together by

associating them with compactly supported functions defined through kernel functions of special forms.

For this purpose, let us introduce a kernel function Kqðz; xÞ such that it is non-zero only when kzk < q. The
positive number q represents the support size of the kernel function with respect to its first argument. Later
on, we will be more specific on the form of the function Kqðz; xÞ. Then we define the following

(quasi)interpolation operator on a continuous function v 2 CðXÞ:

IvðxÞ ¼
XN
n¼1

Z
Xn

Kqðy
"

� x; xÞdy
XIn
i¼1

wn;iðxÞvðxn;iÞ
#
: ð2:2Þ

Note that it is possible to use a different support size on a different subdomain, and this will be the topic in a

forthcoming paper. Voronoi diagram can be used as a reference to model refinement and support size

choice [26] in an irregular discretization. As shown in Fig. 2, the nodes involved in the evaluation of IvðxÞ
at a point x depend on the support size q.

For the interpolation operator I, we have the following result on its polynomial reproducing property.

Proposition 2.1. Assume the reproducing property (2.1) for each subdomain. Then the interpolation operator
I defined in (2.2) has the reproducing property of order k:

Ixc ¼ xc 8c : jcj6 k; x 2 X ð2:3Þ

if and only if it has the reproducing property of order 0:

I11: ð2:4Þ

Proof. We only need to show that (2.4) implies (2.3). Let c be such that jcj6 k. Then using the assumption

(2.1), we have

Ixc ¼
XN
n1

Z
Xn

Kqðy
"

� x; xÞdy
XIn
i1

wn;iðxÞxc
n;i

#
¼
XN
n1

Z
Xn

Kqðy
�

� x; xÞdyxc

�
¼ xcI1:

Since I11, we conclude Ixc ¼ xc. h



Fig. 2. A reproducing kernel element approximation with a different support size for evaluation point x: (a) IvðxÞ ¼ WI�1ðxÞvI�1 þ
WI ðxÞvI , q¼ 0:25h, (b) IvðxÞ¼WI�2ðxÞvI�2þWI�1ðxÞvI�1þWI ðxÞvI þWIþ1ðxÞvIþ1, q¼ 0:75h, and (c) IvðxÞ¼WI�2ðxÞvI�2þWI�1ðxÞvI�1þ
WI ðxÞvI þWIþ1ðxÞvIþ1þWIþ2ðxÞvIþ2, q¼ 1:5h.

W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 933–951 937
The condition (2.4) can be more conveniently restated asZ
X
Kqðy� x; xÞdy ¼ 1 8x 2 X: ð2:5Þ

For some integer mP k, we require the interpolation operator I defined in (2.2) to have a reproducing

property of order m. By Proposition 2.1, this is equivalent to the conditions

Ixa ¼ xa 8a : jaj0; k þ 1; . . . ;m 8x 2 X: ð2:6Þ



938 W.K. Liu et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 933–951
From now on, we will focus on the following particular choice for the kernel function

Kqðz; xÞ ¼
1

qd
/

z

q

� �
p

z

q

� �T

bðxÞ; ð2:7Þ

where

pðzÞ ¼ ð1; zkþ1
1 ; zk1z2; . . . ; z

kþ1
d ; zkþ2

1 ; . . . ; zmd Þ
T

is the vector of constant 1 and the monomials of degree between ðk þ 1Þ and m: za for jaj ¼ k þ 1; . . . ;m.
The variable vector b has the same dimension as the vector p. The function / is the window function, and has
a support size 1. The interpolant of a continuous function v 2 CðXÞ can then be written as

IvðxÞ ¼
XN
n1

Z
Xn

1

qd
/

y� x

q

� �
p

y� x

q

� �T

bðxÞdy
XIn
i1

wn;iðxÞvðxn;iÞ
" #

: ð2:8Þ

Use this form of the kernel function, the conditions (2.6) can be rewritten as a linear system for the un-

known variable coefficient vector bðxÞ:XN
n1

Z
Xn

1

qd
/

y� x

q

� �
p

y� x

q

� �T

dy
XIn
i1

wn;iðxÞxa
n;i

" #
bðxÞ ¼ xa 8a : jaj0; k þ 1; . . . ;m: ð2:9Þ

Equivalently, the system can be rewritten asXN
n¼1

Z
Xn

1

qd
/

y� x

q

� �
p

y� x

q

� �T

dy
XIn
i¼1

wn;iðxÞ
x� xn;i

q

� �a
" #

bðxÞ ¼ djaj;0 8a : jaj ¼ 0; k þ 1; . . . ;m:

ð2:10Þ
The discussion on solvability of a higher order RKEM system will be deferred in a sequel paper.

In this paper, we first illustrate, in detail, the procedure to construct the global RKEM shape function

with the first-order polynomial reproducing capacity. Consider a 1-D example of RKEM interpolant with
the first-order reproducing condition and linear global partition polynomials. Since the basis function

satisfies linear consistency, by Proposition 2.1, we need only to reproduce a constant to satisfy the first-

order reproducing conditions. In this case, pðzÞ ¼ 1 and bðxÞ ¼ b0ðxÞ. By (2.7), the kernel function is

Kqðy� x; xÞ ¼ b0ðxÞ
1

q
/

y� x

q

� �
; ð2:11Þ

while the interpolation function (2.2) becomes

IvðxÞ ¼
XN
n¼1

Z
Xn

b0ðxÞ
1

q
/

y� x

q

� �
dy
XIn
i¼1

wn;iðxÞvðxn;iÞ
" #

: ð2:12Þ

The coefficient function b0ðxÞ is determined by the zeroth consistency condition

1 ¼
XN
n¼1

Z
Xn

b0ðxÞ
1

q
/

y� x

q

� �
dy;

and we have

b0ðxÞ ¼
Z
X

1

q
/

y� x

q

� �
dy

� ��1

: ð2:13Þ

The proposed approximation can be explicitly expressed as

IvðxÞ ¼
XN
n¼1

b0ðxÞ
Z
Xn

1

q
/

y� x

q

� �
dy
XIn
i¼1

un;iðxÞvðxn;iÞ
" #

¼
X
I

WIðxÞvI : ð2:14Þ



Fig. 3. A reproducing kernel element interpolation with a quadratic basis function for evaluation point x: IvðxÞ ¼ WI�2ðxÞvI�2 þ
WI�1ðxÞvI�1 þWI ðxÞvI þWIþ1ðxÞvIþ1 þWIþ2ðxÞvIþ2 with quadratic basis function.
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Reproducing kernel element approximation for evaluation point x in a 1-D uniform partition with
different support sizes and a linear basis function are constructed as shown in Fig. 2, and a reproducing

kernel element interpolation for evaluation point x in a 1-D uniform partition with quadratic basis function

is constructed as shown in Fig. 3.
3. Some properties

In this section, we assume the system (2.9) or (2.10) is uniquely solvable at any x 2 X. This assumption
for the general case, together with rigorous error analysis of the method, will be given in detail in another

paper. For various particular cases, such as the one with m ¼ k1 to be considered in Section 4, the unique

solvability of the linear system is straightforward.

We now examine two properties of the reproducing kernel element method introduced in Section 2. The

first is the Kronecker delta property of the global basis functions associated with the interpolation operator

I. We will denote the collection of the nodes of the method by fxjgJj1. For each j1; . . . ; J , the node xj equals

xn;i for some n and some i, 16 i6 In, 16 n6N . Some of the nodes xj belong to more than one subdomain

(element). For the node xj, we denote Bðxj; qÞ the ball of radius q centered at xj, and denote XðxjÞ the union
of the subdomains that contain xj as a node.

Proposition 3.1. Assume the basis function fwn;ig
In
i1 are nodal basis functions, i.e., they satisfy

wn;iðxn;jÞ ¼ di;j; 16 i; j6 In: ð3:1Þ

Also assume

Bðxj; qÞ � XðxjÞ; 16 j6 J : ð3:2Þ
Then the interpolation operator I defined in (2.2) enjoys the interpolation condition: for any continuous
function v 2 CðXÞ,

IvðxjÞ ¼ vðxjÞ; 16 j6 J : ð3:3Þ
Proof. We have

IvðxjÞ ¼
XN
n1

Z
Xn

Kqðy
"

� xj; xjÞdy
XIn
i1

wn;iðxjÞvðxn;iÞ
#
:
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Note that Kqðy� xj; xjÞ is non-zero only if ky� xjk6 q. Using the assumptions (3.2) and (3.1), we find

IvðxjÞ ¼
Z
XðxjÞ

Kqðy� xj; xjÞvðxjÞdy ¼ vðxjÞ
Z
X
Kqðy� xj; xjÞdy:

By the zeroth order reproducing property (2.5), we then obtain the interpolation property (3.3). h

The condition (3.2) imposes a restriction on the size of q: it has to be small enough. In the case of

linear elements and only vertices of the elements are used as the nodes, then q must be smaller than a

constant times min16 n6N hn. The constant depends on the shape regularity of the finite element partition.

If side mid-points are used as the nodes (quadratic elements), then q should be smaller than the constant
times 0:5min16 n6N hn. Now if we like to have the Kronecker delta property only for the global basis

functions associated with the nodes on the Dirichlet boundary, then min16 n6N hn can be replaced by

min16 n6N0
hn, where X1; . . . ;XN0

denote the elements on the boundary that contain Dirichlet boundary

nodes. To be specific, in the 1-D case with a uniform partition and linear reproducing, the condition is

q6 h.
The second property is on the differentiability of the interpolation function Iv, i.e., the differentiability

of the global basis function associated with the interpolation operator I.

Proposition 3.2. Assume the basis functions wn;i 2 Ck1ðXÞ, 16 i6 In, 16 n6N . Assume the window function
/ 2 Ck2ðRdÞ. Here, k1 and k2 are two non-negative integers. Then for any continuous function v 2 CðXÞ, its
interpolant Iv 2 Cminðk1;k2ÞðXÞ.

Proof. From (2.10), we see that each component of b is a Cminðk1;k2ÞðXÞ function. The result of the propo-

sition follows immediately from the representation formula (2.8). h

We notice that in the context of triangular finite elements, the basis functions wn;i are polynomials, and
are thus infinitely smooth. Then the regularity of the global basis functions of the new method is the same

as that of the window function /.
A set of global basis functions and its derivative for 1-D case with support size q0:95h, and the linear

basis function and cubic B-spline kernel are plotted in Fig. 4(a) and (b), respectively. The Kronecker delta

property and continuity of the global basis functions are clearly illustrated.
Fig. 4. A set of global basis functions and their derivative in 1-D domain: (a) RKEM global basis function; and (b) the 1st derivative of

RKEM global basis function.
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Note that based on the definition, the RKE interpolation formula (2.2) is involved with an integral.
There are several ways to evaluate this integral to obtain the explicit expression for a RKE shape function,

WIðxÞ, see Eq. (2.14). The RKE shape functions and their derivatives shown in Fig. 4(a) and (b) are

constructed based on a nodal integration scheme proposed in Part II of this series (see [20]). The advantage

of using nodal integration to evaluate the integral is that it can provide an explicit expression of RKE

interpolant. Nonetheless, the RKE shape functions used in the numerical examples of this paper are all

constructed by evaluating the integral via Gauss quadrature.
4. Error analysis of the method with linear reproducing property

In this section, we give a detailed analysis of the method with m ¼ k1 and when linear finite elements are

used for the local approximations. To simplify the exposition, we let d 6 3. The method for more general

cases is being analyzed. Throughout the section, c denotes a generic constant that does not depend on the

discretization parameters and functions under consideration. We first list various assumptions.

We assume that ffXngNn1g is a family of quasiuniform finite element partition of the domain X into

triangular or tetrahedral elements. For a mesh fXngNn1 in the family, we let h be the mesh size, and let hn be
the diameter of Xn. Since the mesh family is quasiuniform, we have a constant c > 0 such that

ch6 hn 6 h; 16 n6N : ð4:1Þ

Associated with each mesh fXngNn1, we define a parameter q, intended for the support size of the

reproducing kernel function. We assume that there exists a constant cP 1 such that

c�1h6 q6 ch: ð4:2Þ
For the window function /, we assume

suppð/ÞB1;

/ðxÞ > 0 for kxk < 1;

/ 2 ClðRdÞ for some lP 1:

8><>: ð4:3Þ

Here, B1 ¼ fx 2 Rd j kxk6 1g is the unit ball.

For a continuous function v 2 CðXÞ, the interpolant is (cf. (2.8))

I1vðxÞ ¼
XN
n1

Z
Xn

1

qd
/

y� x

q

� �
dy
Xdþ1

i1

wn;iðxÞvðxn;iÞ
" #

b0ðxÞ; ð4:4Þ

where the coefficient function b0ðxÞ is determined by the zeroth reproducing condition

b0ðxÞ ¼
Z
X

1

qd
/

y� x

q

� �
dy

� ��1

: ð4:5Þ

Note that by Proposition 2.1, we have

I1vðxÞ ¼ vðxÞ
for any linear function v.

From the formula (4.5) and assumptions (4.3), (4.2), it is readily verified that

max
x2X

jb0ðxÞj þ hmax
x2X

max
16 i6 d

joib0ðxÞj6 c: ð4:6Þ
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Now let u 2 H 2ðXÞ and let us bound the interpolation error u�I1u. By the Sobolev embedding theo-
rem, we have u 2 CðXÞ and so I1u is well defined. We first bound the interpolation error on a typical

element Xj. Define

eXj ¼ fx 2 Xjdistðx;XjÞ6 qg:

We denote wj;iðxÞ, 16 i6 d þ 1, the natural extensions of the linear element shape functions corresponding

to the d þ 1 vertices of the element Xj. Note that fwj;iðxÞg
dþ1
i1 are linear functions defined on the whole space

Rd. Using (4.1), we find that

max
16 i6 dþ1

kwj;ikCð~XjÞ þ h max
16 i6 dþ1

kwj;ikC1ð~XjÞ 6 c: ð4:7Þ

Introduce the linear interpolation function

I1;juðxÞ ¼
Xdþ1

i1

wj;iðxÞuðxj;iÞ:

By a standard scaling argument (cf. [4,8]), we have the error estimate

ku�I1;jukL2ð~XjÞ þ hku�I1;jukH1ð~XjÞ þ hd=2ku�I1;jukL1ð~XjÞ 6 ch2jujH2ð~XjÞ: ð4:8Þ

Since I1 reproduces linear functions, we have

I1ðI1;juÞ ¼ I1;ju:

Write

u�I1u ¼ u�I1;ju�I1ðu�I1;juÞ: ð4:9Þ

By the definition (4.4),

I1ðu�I1;juÞðxÞ ¼
XN
n1

Z
Xn

1

qd
/

y� x

q

� �
dy
Xdþ1

i1

wn;iðxÞðu
"

�I1;juÞðxn;iÞ
#
b0ðxÞ:

Note that for x 2 Xj, the term with the index n in the summation is possibly non-zero only if Xn \ eXj 6¼ ;.
Using the bounds (4.6) and (4.7), we then have

kI1ðu�I1;juÞkH1ðXjÞ 6 ch�1ku�I1;jukL1ð~XjÞjeXjj1=2:

Here, jeXjj denotes the volume of the region eXj, jeXjj6 chd . Applying the estimate (4.8), we obtain

kI1ðu�I1;juÞkH1ðXjÞ 6 chjujH2ð~XjÞ: ð4:10Þ

A similar argument show that

kI1ðu�I1;juÞkL2ðXjÞ 6 ch2jujH2ð~XjÞ: ð4:11Þ

From the decomposition (4.9), the error estimates (4.8), (4.10) and (4.11), we obtain

ku�I1ukL2ðXjÞ þ hku�I1ukH1ðXjÞ 6 ch2jujH2ð~XjÞ; 16 j6N :

Then we have the following global interpolation error estimates:

ku�I1ukL2ðXÞ þ hku�I1ukH1ðXÞ 6 ch2jujH2ðXÞ: ð4:12Þ
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Theorem 4.1. Consider a spatial discretization satisfying the assumptions (4.1) and (4.2). Construct the
RKEM interpolant with a window function satisfying condition (4.3). Then for any u 2 C0ðXÞ \ H 2ðXÞ, the
interpolation error estimate (4.12) holds.

Consider solving a linear second-order elliptic boundary value problem. The weak formulation is:

Find u 2 V ; such that aðu; vÞ ¼ ‘ðvÞ 8v 2 V ; ð4:13Þ

where V � H 1ðXÞ. The bilinear form að�; �Þ is continuous and V -elliptic, and the linear form ‘ is continuous
on V . In the setting described at the beginning of the section, we define Xh to be the space of functions of the

form

XN
n1

Z
Xn

1

qd
/

y� x

q

� �
dy
Xdþ1

i1

wn;iðxÞnn;i

" #
b0ðxÞ;

where the coefficient function b0ðxÞ is given in (4.5), nn;i 2 R, and if xn1;i1 ¼ xn2;i2 is a node common to

two elements, then nn1;i1 ¼ nn2;i2 . Then we let Vh ¼ V \ Xh and approximate the continuous problem (4.13)

by

Find uh 2 Vh; such that aðuh; vhÞ ¼ ‘ðvhÞ 8vh 2 Vh: ð4:14Þ

By the Lax–Milgram theorem (see [4]), both (4.13) and (4.14) have unique solutions. To estimate error,

we can use C�ea�s inequality,

ku� uhkH1ðXÞ 6 c inf
vh2Vh

ku� vhkH1ðXÞ:

Suppose the boundary condition is of Neumann or Robin type, or of Dirichlet type in the one-

dimensional case. Then we can replace the term

inf
vh2Vh

ku� vhkH1ðXÞ

by ku�I1ukH1ðXÞ in C�ea�s inequality, and conclude that

ku� uhkH1ðXÞ 6 cku�I1ukH1ðXÞ 6 chjujH2ðXÞ

if the exact solution u 2 H 2ðXÞ. Furthermore, the standard duality argument can be employed to show that

ku� uhkL2ðXÞ 6 ch2jujH2ðXÞ:

In a sequel paper, we will extend the error analysis above to the more general cases. Loosely speaking,

under similar assumptions on the finite element partitions and kernel functions, if the reproducing degree is

m and the regularity index l in (4.3) is not smaller than m, then for the reproducing interpolant defined in

(2.8), we have the error estimates

kv�IvkHjðXÞ 6 chmþ1�jkvkHmþ1ðXÞ; j ¼ 0; 1; . . . ;m 8v 2 Hmþ1ðXÞ:
5. Numerical examples

In this section, we report numerical results for the performance of the proposed RKEM in solving

various boundary value problems of the differential equations with special features.
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5.1. A problem with rough solution

To validate the method, a special 1-D benchmark problem is solved first by using the proposed method.

This problem was originally proposed by Rachford and Wheeler [28] to test the convergence property of the

H 1-Galerkin method, and was used again by Babu�ska et al. [1] to test the mixed-hybrid finite element

method, and by Liu et al. [23] to test the meshfree reproducing kernel particle method. The boundary value

problem is

�u00 þ u ¼ f ðxÞ; x 2 ð0; 1Þ; ð5:1Þ

u0ð0Þ ¼ a=ð1þ a2�x2Þ; ð5:2Þ

u0ð1Þ ¼ �½arctanðað1� �xÞÞ þ arctanða�xÞ�: ð5:3Þ
The right side function in (5.1) is chosen as

f ðxÞ ¼ 2a½1þ a2ð1� �xÞðx� �xÞ�
½1þ a2ðx� �xÞ2�2

þ ð1� xÞ½arctanðaðx� �xÞÞ þ arctanða�xÞ�

so that the exact solution of this problem is

uðxÞ ¼ ð1� xÞ½arctanðaðx� �xÞÞ þ arctanða�xÞ�:
The solution changes its roughness as the parameter a varies. It becomes smoother as the parameter a gets

smaller, and the graph of the solution has a sharp knee at location x ¼ �x when a is very large. For the
numerical example here, a and �x are chosen as 50.0 and 0.40, respectively. The comparison of an exact

solution and numerical solution with 80 nodes is plotted in Fig. 5.

Convergence rates of the numerical solutions are first examined for global RKEM interpolants satisfying

a linear consistency condition. A cubic B-spline kernel function is used to construct the reproducing kernel

function. Different spatial discretizations, in which the number of nodes uniformly varies from 11 to 2561,

are analyzed. Convergence rates in terms of L2 and H 1 interpolation error norm for different support sizes

are plotted in Fig. 6(a) and (b), respectively. Although the interpolation solutions are more accurate for

normalized support size from 0.8 to 1.5 than that of FEM, the convergence rates are 2 and 1 in L2 and H 1

interpolation error norm respectively. When the optimal support size 1:99h is chosen, convergence rate 2 in

both L2 and H 1 interpolation error norm is observed for this problem.

The same spatial discretizations are used to test the convergence rates of the proposed method. As shown

in Fig. 7(a), for this example the numerical solution in the L2 error norm is improved compared with the FEM
Fig. 5. Comparison between exact and numerical solutions of the benchmark problem: (a) the exact and numerical solution; and (b)

the derivative of exact and numerical solution.



Fig. 6. Convergence rates of interpolation with different support sizes: (a) convergence rate in L2 error norm; and (b) convergence rate

in L2 error norm with first derivative.

Fig. 7. Convergence rates of Galerkin solutions with different support sizes: (a) convergence rate measured in L2 error norm; and (b)

convergence rate measured in L2 error norm with the first derivative.
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solution even though they have roughly the same convergence rate index 2. The improvement in the H 1 error
norm is more dramatic due to the high order continuity of global basis functions as illustrated in Fig. 7(b).

5.2. An example of a fourth-order differential equation

We consider a boundary value problem of a one-dimensional fourth-order partial differential equation in

this example. For conforming approximations, we need C1 shape functions. It is difficult to construct a C1

shape function for FEM in two or higher dimension domain. However, shape functions with any

smoothness degree can be easily constructed in any dimension for RKEM. To show the performance of
RKEM on solving fourth-order problems, we apply it to the following problem:

uð4Þ þ u ¼ f in ð0; 1Þ; ð5:4Þ

uð2Þð0Þ ¼ uð3Þð0Þ ¼ 1; ð5:5Þ

uð2Þð1Þ ¼ uð3Þð1Þ ¼ e; ð5:6Þ
where f ðxÞ2ex. The exact solution of this problem is uðxÞ ¼ ex.
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Quadratic element is used to construct the basis function. Several uniform discretizations with quadratic
elements are chosen in convergence study. The L2 norms of the error in the Galerkin solution, its first and

second derivatives are plotted in Figs. (8a), (9a) and (10a), respectively. The corresponding interpolation L2

error norms in primary variable and its first and second derivatives are given in Figs. 8(b), 9(b) and 10(b).

The theoretical convergence orders for the RKEM interpolation errors in L2, H 1 and H 2 are 3, 2, and 1. For

RKEM solutions, the convergence rate in H 2 norm is 1. The convergence rate of numerical solutions match

the theoretical results.

5.3. A two-dimensional Dirichlet boundary value problem

The purpose of this example is to show that for Dirichlet boundary value problems, the proposed

RKEM (i) can be applied directly; and (ii) maintains the optimal convergence order for any problem

dimension and reproducing degree. We solve the following two-dimensional example by RKEM:

�Duþ u ¼ f in X; ð5:7Þ
Fig. 8. L2 norm errors for Galerkin solution and interpolation: (a) L2 norm errors for Galerkin solution; and (b) L2 norm errors for

interpolation.

Fig. 9. L2 norm errors for the 1st derivative of Galerkin solutions and interpolations: (a) L2 norm errors for the 1st derivative of

Galerkin solutions; and (b) L2 norm errors for the 1st derivative of interpolations.



Fig. 10. L2 norm errors for the 2nd derivative of a Galerkin solution and interpolation: (a) L2 norm errors for the 2nd derivative of

Galerkin solution; and (b) L2 norm errors for the 2nd derivative of interpolation.
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u ¼ g on oX; ð5:8Þ
where X ¼ ð0; 1Þ2, f ðx; yÞ ¼ ð1� x2 � y2Þexy , and gðx; yÞ ¼ exy .

The exact solution of this problem is uðx; yÞ ¼ exy . A set of three spatial discretizations consisting 4 · 4,
8 · 8 and 16 · 16 quadratic rectangular/square elements is used in convergence study. Denote h the side of

the corresponding square element. We consider two cases depending on the support size of the kernel

function.

Case 1. When the support size is less than 0:5h, the RKEM interpolant enjoys the Kronecker delta
property. The numerical solution of the new method is compared with that of FEM. As shown in Figs.

11(a) and 12(a), almost the same convergence rate is observed for both methods. Unlike meshfree inter-

polant with quadratic basis, the convergence rate of RKEM solution in H 1 error norm is around 2.

Case 2. When the support size is larger than 0:5h, RKEM interpolant losses the Kronecker delta

property. To enforce the boundary conditions, a similar technique used in meshfree methods is adopted. As

shown in Figs. 11(a) and 12(a), the accuracy of the numerical solution via RKEM in this case is actually

improved compared with that of FEM.
Fig. 11. L2 norm errors for Galerkin solutions and interpolations: (a) L2 norm errors for Galerkin solutions; and (b) L2 norm errors for

interpolations.



Fig. 12. L2 norm errors for the 1st derivative of Galerkin solutions and interpolations: (a) L2 norm errors for the 1st derivative of

Galerkin solutions; and (b) L2 norm errors for the 1st derivative of interpolations.

Fig. 13. Problem statement of a cantilever beam.
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The comparison of interpolation results in L2 and H 1 error norm for RKEM and FEM is given in Figs.

11(b) and 12(b).

5.4. Cantilever beam problem

Consider a linear elastic cantilever beam with external load P acting on its right end. The cantilever beam
has a depth D1 and length L4 as shown in Fig. 13. Using RKEM, we solve it numerically as a plane strain

problem with material properties: Young�s modulus E ¼ 3:0� 107 and Poisson�s ratio m ¼ 0:3. The traction
boundary conditions at x ¼ 0 and x ¼ L are prescribed according to an exact solution. Three uniformly

spatial discretizations, with 85, 297 and 1105 nodes, respectively as shown in Fig. 14(a)–(c) are used for

convergence study. A bilinear basis was adopted for FEM and for RKEM as well to generate RKEM

interpolants with a cubic B-spline kernel function. For comparison, the numerical results of FEM and

RKEM, numerical errors are measured by both L2 norm in displacement and energy norm, which are

displayed in Fig. 15(a) and (b), respectively. Based on numerical results, the RKEM solution is more
accurate than the FEM solution, especially in derivatives, with comparable computational cost.

In the analysis of almost incompressible materials, locking behavior will be observed in the numerical

methods with the pure displacement formulation. In RKPM, however locking behavior is reduced or even

avoided by choosing a proper dilation parameter. The beam problem with m ¼ 0:4999 is analyzed by FEM,

RKEM and RKPM. The comparison among the numerical results by using these different methods for

solving the cantilever beam with almost incompressible material is made in a table (see Table 1).



Fig. 14. Model discretizations: (a) spatial discretization I (85 nodes); (b) spatial discretization II (297 nodes); and (c) spatial dis-

cretization III (1105 nodes).

Fig. 15. Error norms for Galerkin solutions of FEM and RKEM: (a) L2 error norm in displacement for Galerkin solutions; and (b)

error norm in energy of Galerkin solutions.

Table 1

Tip deflection accuracy (%) for FEM, RKEM and RKPM in solving beam problem with incompressible material

Methods 5· 17 nodes (%) 9 · 33 nodes (%) 17 · 65 nodes (%)

FEM 23.6 27.1 27.6

RKEM (with q ¼ 2:0h) 36.2 66.0 87.7

RKEM (with q ¼ 2:9h) 72.7 87.3 95.0

RKPM (with q ¼ 2:0h) 40.8 78.7 89.5

RKPM (with q ¼ 2:9h) 89.0 95.7 96.6
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6. Concluding remarks

This is the first paper in a series devoted to a new class of partition of unities, collectively called RKEM.

In the development of RKEM, we remove the smoothness limitation of the finite element method, while at

the same time, we maintain the polynomial reproducing property and function interpolation property.

Unlike most meshfree interpolants, RKEM interpolants do not need special treatment to enforce Dirichlet

boundary conditions. Numerical examples illustrate the satisfactory performance of the new method in

solving boundary value problems of higher order differential equations over domains of any dimension, and
of arbitrary boundary conditions. This new method also eliminates a major weakness of meshfree inter-

polants, which lose optimal convergence rates while enforcing Dirichlet boundary conditions when the

problem is posed over a multiple dimensional domain and when the polynomial reproducing order is larger

than one. In conclusion, unlike most FEM shape functions, RKEM interpolants do not need special

treatment in solving high order differential equations, and unlike most meshfree interpolants, an RKEM

interpolant can satisfy Dirichlet boundary conditions without any difficulties.
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