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On dual conservation laws in planar elasticity
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Abstract

Dual conservation laws of linear planar elasticity theory have been systematically studied based on stress

function formalism. By employing generalized symmetry transformation or Lie–B€acklund transformation,

a class of new dual conservation laws in planar elasticity have been discovered based on Noether theorem

and its Bessel–Hagen generalization. These dual conservation laws represent variational symmetry prop-

erties of complementary potential energy, which stems from the symmetry properties of compatibility

conditions––a biharmonic equation in two dimension. The physical implications of these dual conservation
laws are discussed briefly. In particular, a dual-Eshelby tensor is constructed and compared with the

Eshelby’s energy momentum tensor.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The conservation law of elasticity has been well studied in past thirty years, though the origin of
its intellectual inspiration may be traced back to Eshelby’s seminal work in 1950s [7,8]. Since Rice
[29] linked J -integral with the energy release rate of a crack, the subject has then become part of
the theoretical foundation of fracture mechanics. Landmark contributions on conservation laws
of elasticity include: G€unther [14], Knowles and Sternberg [15], Budiansky and Rice [2], Eshelby
[10], Fletcher [12], Edelen [6], Olver [25,26,28], Suhubi [30] and among others.

Classical elasticity is a perfect embodiment of duality, in which strain representation and stress
representation complement each other to describe a complete image of equilibrium-deformation
*
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process. On variational level, the duet are: the minimal potential energy principle and the minimal
complementary energy principle. Since conservation laws of elasticity are manifestation of sym-
metry properties of variational principles in elasticity, naturally, conservation laws of elasticity
ought to come as dual pairs, and they should be displayed with equal footing. Indeed, some
authors have studied conservation laws based on complementary variational principle. Several
dual invariant integrals or dual conservation laws have been derived. Among them, the dual J
integral derived by Bui [3] is the earliest contribution. Other notable contributions include Sun
[31] and Li [21].

The early studies on dual conservation laws are mainly based on physical observation or
intuition via direct divergence-free inspection. The path integrals derived are invariant indeed.
However, most early studies are not only incomplete, but also do not match the standard of
elegance and rigor that are usually expected in continuum mechanics. Part of the reason may be
attributed to lack of serious attention on the subject. Probably the lack of proper physical
interpretation of dual conservation laws is another reason attributed for such public oblivion. In
fact, most of dual conservation laws published in literature are trivial in the sense that they can be
easily obtained by integration by parts from the conservation laws of the potential energy vari-
ational principle, which may give an impression that the conservation laws of the Navier equa-
tions may have exhausted all the possible symmetry properties of linear elasticity. The dual
conservation laws may be just repetition of the conservation law derived from the minimal po-
tential energy principle, and no more non-trivial conservation laws undiscovered in linear elas-
ticity theory.

Apparently, this is a false impression. Over the years, additional conservation laws of two-
dimensional elasticity have been discovered, e.g. conservation laws derived by Christiansen et al.
[4,5], Falvin [11], Horgan et al. [16,17], and Miller and Horgan [22]. In fact, these conservation
laws are very useful as theoretical apparatuses in estimating energy bounds, justifying the Saint-
Venant principle, and possibly in convergence study of finite element methods.

As well understood, the variational symmetry group of the minimal potential energy principle is
a subgroup of the symmetry transformation group of the Navier equations (See [25,26]), which
characterize the symmetry properties of equilibrium equations, or equation of motion. Following
the same logic, the variational symmetry group of minimal complementary energy principle
should be the subgroup of symmetry transformation group of compatibility equations, which
characterize the intrinsic symmetry properties of deformation. Eshelby [9] remarked: The natural
arguments of the complementary energy are the stress. To fit the formalism I presented, the stress
would have to be written as the gradient of something. I dare say that if this were done in detail

something interesting might come out. . . Following Eshelby’s suggestion, dual conservation laws in
planar elasticity are studied in this paper based on stress function formalism.
2. Preliminary

2.1. Planar elasticity

To fix the notation, we start with reviewing some basic facts of planar elasticity. For plane
stress state, linear two-dimensional (2D) elastic constitutive relations can be written,
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eab ¼ Cabklrkl or rab ¼ Eabklekl; ð2:1Þ
where eab, rab are the usual strain, stress tensor respectively; and Cabkl, Eabkl are the elastic
compliance, and stiffness tensor respectively. Note that the Einstein summation convention is
implicitly assumed throughout the paper.

For isotropic, homogeneous elastic materials, 2D elastic compliance tensor can be expressed as
Cabkl :¼
1þ m
E

dakdbl �
m
E
dabdkl; ð2:2Þ
and the 2D elastic stiffness modulus tensor has the form
Eabkl :¼
E

1þ m
dakdbl þ

Em
1� m2

dabdkl; ð2:3Þ
where E is Young’s modulus; and m is Poisson’s ratio.
The above elastic stiffness tensor and compliance tensor are only valid in plane stress state. To

find elastic stiffness tensor and compliance tensor in plane strain state, one can replace Young’s
modulus and Poisson’s ratio by
E ) E
1� m2

; m ) m
1� m

; ð2:4Þ
and the corresponding tensors in plane strain state are:
Cabkl ¼
1þ m
E

dakdbl �
ð1þ mÞm

E
dabdkl; ð2:5Þ

Eabkl ¼
E

1þ m
dakdbl þ

Em
ð1þ mÞð1� 2mÞ dabdkl: ð2:6Þ
In the rest of paper, we mainly deal with the plane stress description, with the understanding that
all the results are valid for plane strain as well, unless it is indicated otherwise.

In absence of body force, one may introduce the Airy stress function, such that
rab ¼ �ak�blu;kl; or u;ab ¼ �ak�blrkl; ð2:7Þ
where �ab are the 2D permutation tensor, i.e.
½�ab� ¼
0 1

�1 0

� �
: ð2:8Þ
An useful identity of the 2D permutation tensor is self-contraction,
�ca�cb ¼ dab: ð2:9Þ
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For plane stress state, the density of the complementary energy is
Lcðr; xÞ ¼
1

2E
½ð1þ mÞrabrab � mrkkrll�: ð2:10Þ
In terms of the Airy stress function, the complementary energy density in plane stress state can be
written as
LðseÞ
c ðo2u; xÞ ¼ 1

2E
½ð1þ mÞu;abu;ab � mu;kku;ll�; ð2:11Þ
where o2u ¼ fu;abg, a, b ¼ 1, 2, and the complementary energy density in plane strain state is
LðsaÞ
c ðo2u;xÞ ¼ ð1þ mÞ

2E
½u;abu;ab � mu;kku;ll�: ð2:12Þ
Assume that the stress function is prescribed over the whole boundary. The total comple-
mentary potential energy is
Pcðu; xÞ ¼
Z Z

X
Lcðo2u; xÞdX: ð2:13Þ
The Euler–Lagrangian Equation of the complementary energy functional is the biharmonic
equation, i.e.
oLc

ou
� o

oxa

oLc

ou;a

þ o2

oxaoxb

oLc

ou;ab

¼ 0 ) u;aabb ¼ 0; ð2:14Þ
which carries different information other than the 2D Navier equations. In specific, the bi-
harmonic equation satisfied by stress function, u, characterizes the compatibility constraint of
2D elasticity.

Given linear operator L ¼ Labklea � eb � ek � el; and a ¼ aaea 6¼ 0, b ¼ baea 6¼ 0; a; b 2 R2. Let
A :¼ a� b. We say that L is strongly elliptic if
A : L : A ¼ Labklaabbakbl > 0: ð2:15Þ
It is not difficult to verify the positive definite condition for complementary potential energy,
1þ m
E

> 0;
1� 2m

E
> 0; ðplane stressÞ; ð2:16Þ

1þ m
E

> 0;
ð1þ mÞð1� 2mÞ

E
> 0; ðplane strainÞ: ð2:17Þ
Therefore for a two-dimensional elastic solid, elastic compliance tensor being positive definite is
equivalent to E > 0 and �1 < m < 1=2, which is the same as for three dimensional elastic solids
(see [13]).
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2.2. One parameter group of invariant transformation

Lie group analysis of partial differential equations has been a triumph in mathematics, physics,
and engineering science. For contemporary expositions, readers may consult monographies by
Ibragimov [19,20], Olver [27]. In this section, we shall briefly summarize the main technical
ingredients of generalized symmetry transformation, or Lie–B€acklund transformation, and Noe-
ther theorem. The notation adopted in this paper mainly follows Olver [27] and Ibragimov [20]. In
this paper, we are only interested in the partial differential equation of a scalar function and its
associated variational problem.

Let
x ¼ ðx1; x2; . . . ; xnÞ 2 Rn; ð2:18Þ
where Rn is the n-dimensional Cartesian space and
ou ¼ ou
oxi

� �
; . . . ; osu ¼ osu

oxsi

� �
; . . . ; 1 < s; 16 i6 n: ð2:19Þ
The space Z is a direct product,
Z ¼ Rn � V ; ð2:20Þ
where V is an infinite dimensional vector space with component
y ¼ ðu; ou; . . . ; osu; . . .Þ 2 V ; ð2:21Þ
The point z ¼ ðz1; z2; . . .Þ 2 Z can be written as
z ¼ ðx; yÞ ¼ ðx1; x2; . . . ; xn; u; ou; . . . ; osu; . . .Þ: ð2:22Þ
Denote the vector space of all differential functions of finite order m as A and any finite
sequence of z as ½z�. Then elements of A may be written as f ð½z�Þ 2 A.

Consider a formal one-parameter Lie group G of generalized transformation of following type,
x�i ¼ expð�niÞxi; ð2:23Þ

u� ¼ expð�gÞu; ð2:24Þ
where
ni :¼
dx�i
d�

����
�¼0

; ð2:25Þ

g :¼ du�

d�

���� : ð2:26Þ

�¼0
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The transformation is generalized in a sense that its infinitesimal generators have the form
ni ¼ niðx; u; ou; . . . ; osu; . . .Þ ¼ niðzÞ; 16 i6 n ð2:27Þ

g ¼ gðx; u; ou; . . . ; osu; . . .Þ ¼ gðzÞ: ð2:28Þ
Definition 2.1 [27]. A generalized vector field is a formal expression of the following form
v ¼ niðzÞ
o

oxi
þ gðzÞ o

ou
: ð2:29Þ
Theorem 2.1 (Prolongation Formula [19,27]). An infinite prolongation (or prolongation for short)
formula of the generalized (Lie–B€acklund) vector field v is
prv ¼ vþ
X
16 s

gðsÞi1;...;is

o

oui1;...;is
; ð2:30Þ
where
gðsÞi1;...;is ¼ Di1 ; . . . ;Dis g
�

� nju;j
�
þ nju;ji1;...;ıs ; s ¼ 1; 2; . . . ð2:31Þ
and
Di :¼
o

oxi
þ u;i

o

ou
þ � � � þ u;ii1;...;is�1

o

ou;i1;...;is
þ � � � ð2:32Þ
A pth order prolongation formula of generalized vector field v is
prðpÞv ¼ vþ
X

16 s6 p

gðsÞi1;...;is

o

oui1;...;is
ð2:33Þ
where p is the maximal order of non-vanishing derivatives, and
gðsÞi1;...;is ¼ Di1 ; . . . ;Dis g
�

� nju;j
�
þ nju;ji1;...;ıs ; 16 s6 p ð2:34Þ

Di ¼
o

oxi
þ u;i

o

ou
þ � � � þ u;ii1;...;ip�1

o

ou;i1;...;ip
: ð2:35Þ
Consider a qth order scaler partial differential equation (PDE) denoted by
F ¼ F ð½z�Þ ¼ F ðx; u; ou; . . . ; oquÞ; ð2:36Þ
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where qP 1 is some positive integer. Define the differential manifold
½F � : F ¼ 0; . . . ;D11 ; . . . ;DikF ¼ 0; k ¼ p þ q: ð2:37Þ
We have the following theorem.

Theorem 2.2 (e.g. [27]). Let G be a group of the Lie–B€acklund transformation, with tangent vector
field prv. The differential manifold ½F � is invariant under G, if and only if
prvF j½F � ¼ 0: ð2:38Þ
Note that
prvF ¼ 0 ) prðqÞvF ð½z�Þ ¼ 0: ð2:39Þ
Eq. (2.39) is often referred to as the determining equation.

Define the Euler–Lagrangian operator
E :¼ o

ou
þ
X
16 s

ð�1ÞsD11 ; . . . ;Dis

o

oui1;...;is
; ð2:40Þ
and the Noether operator
Ni ¼ ni þ ðg� n‘u;‘Þ
o

ou;i

(
þ
X
16 s

ð � 1ÞsDj1 ; . . . ;Djs

o

ou;ij1;...;js

)

þ
X
16 r

Dk1���krðg� n‘u;‘Þ
o

ou;ik1;...;kr

(
þ
X
sP 1

ð � 1ÞsDj1 ; . . . ;Djs

o

ou;ik1;...;krj1;...;js

)
: ð2:41Þ
The celebrated Noether theorem (Noether [24]) can be stated as follows.

Theorem 2.3 [18]. Given a formal Lie–B€acklund transformation group with Lie–B€acklund operator
prv, the following identity
prvþ Dini ¼ ðg� nju;jÞE þ DiNi ð2:42Þ
holds.

Consequently, for y satisfying the Euler–Lagrangian equation
EðLð½z�ÞÞ ¼ 0; ð2:43Þ
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the prolongation equation equals to a divergence form
prvðLÞ þ LDivn ¼ DivNðLÞ ¼ 0: ð2:44Þ
Taking into account null Lagrangians, there exist functions fBiðzÞg such that
prvðLÞ þ LDivn ¼ DivB; ð2:45Þ
then the following conservation laws yield
DivPðLÞ ¼ 0; ð2:46Þ
where PiðLÞ ¼ NiðLÞ � Bi, or PðLÞ ¼ NðLÞ � B.

Remark 2.1. The divergence term, DivB, can be taken into consideration if proper boundary
conditions are prescribed on the whole boundary of the domain of the variational problem.
Otherwise, improper boundary conditions specification may affect the original boundary data,
and subsequently change the variational problem (See [6] for detail).
3. Symmetry and invariant group

3.1. Lie–B€acklund symmetry

For planar elasticity, the Euler–Lagrangian equation of complementary energy potential is a
biharmonic equation satisfied by the Airy stress function u. Since the variational symmetry group
is a subgroup of invariant transformation admitted by its Euler–Lagrangian equation, we begin
with finding the Lie–B€acklund symmetry admitted by biharmonic equations. It should be men-
tioned that the Lie group of point transformation admitted by biharmonic equation has been
studied by Bluman & Gregory [1]. Here, we are looking for more general symmetry––the Lie–
B€acklund symmetry admitted by the biharmonic equation.

Let x ¼ ðx1; x2Þ and u ¼ uðx1; x2Þ.
x� ¼ expð�nÞx; ð3:1Þ

u� ¼ expð�gÞu: ð3:2Þ
The generalized vector field is given as
v ¼ na
o

oxa
þ g

o

ou
: ð3:3Þ
Consider the infinitesimal generators of the following forms
na ¼ naðxÞ; ð3:4Þ

g ¼ f ðxÞ þ gðxÞuþ hcðxÞu;c þ kklðxÞu;kl þ pkðxÞu;aak; ð3:5Þ
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where f ðxÞ, gðxÞ are the unknown scalar functions; naðxÞ, haðxÞ; kklðxÞ, and pkðxÞ are the un-
known vector or tensorial functions.

By the Theorem 2.2, the invariant conditions, or the determining equations, are
prð4Þv
o4u

oxaoxaoxboxb

� 	
¼ 0; ð3:6Þ
where
prð4Þv ¼ na
o

oxa
þ g

o

o/
þ gð1Þa

o

ou;a

þ � � � þ gð4Þabkl

o

ou;abkl

: ð3:7Þ
This leads to an algebraic equation for the fourth order extensions,
gð4Þaabb ¼ 0: ð3:8Þ
The determining equation can be written as follows,
gð4Þabab ¼ f;abab þ g;ababu



þ 4g;abbu;a þ 2g;aau;bb þ 4g;abu;ab þ 4g;au;abb

�
þ ðhc;abab



� nc;ababÞu;c

þ 4ðpc;aab � nc;aabÞu;cb þ 4ðhc;ab � nc;abÞu;cab þ 2ðhc;aa � nc;aaÞu;cbb þ 4ðhc;a � nc;aÞu;cabb

�
þ kkl;ababu;kl



þ 4kkl;aabu;klb þ 2kkl;aau;klbb þ 4kkl;abu;klab þ 4kkl;bu;klabb þ kklu;klabab

�
þ pk;aabbu;cck



þ 4pk;abbu;ccka þ 4pk;abu;cckab þ 2pk;aau;cckbb þ 4pk;au;cckbb þ pku;cckaabb

�
¼ 0: ð3:9Þ
Let �nj :¼ nj � hj. The determining equation can be split into a set of coupled differential
equations among unknown functions, f ðxÞ, gðxÞ, hjðxÞ, kklðxÞ, pjðxÞ, and njðxÞ:
u0 : f;aabb ¼ 0; ð3:10Þ

u1 : g;aabb ¼ 0; ð3:11Þ

ou : 4g;abbu;a � �nj;aabbu;j ¼ 0; ð3:12Þ

o2u : 4g;abu;ab þ 2g;aau;bb � �nj;abbu;ja þ kkl;aabbu;kl ¼ 0; ð3:13Þ

o3u : 4g;au;abb � 4�nj;abu;jab � 2�nj;aau;jbb þ 4kkl;abbu;kla þ pj;aabbu;jdd ¼ 0; ð3:14Þ

o4u : �4�nj;au;jabb þ 4kkl;abu;klu;klab þ 2kkl;aau;klbb þ 4pj;abbu;jadd ¼ 0; ð3:15Þ

o5u : 4kkl;au;klabb þ 4pj;abu;jabll ¼ 0: ð3:16Þ
A set of special solutions of above differential equations are obtained:
pjðxÞ ¼ pð2Þj xaxa þ pð1Þ�jcxc þ pð0Þj ; ð3:17Þ

kklðxÞ ¼ kð2Þdklxaxa þ ðkð1Þk xl þ kð1Þl xkÞ þ kð0Þkl ; ð3:18Þ
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naðxÞ ¼ P 1
aklxkxl þ h1abxb þ d1

a ; ð3:19Þ

haðxÞ ¼ P 2
aklxkxl þ h2abxb þ d2

a : ð3:20Þ
The superscript, (i) in a coefficient indicates the order of polynomial that the coefficient proceeds.
The superscript, a ¼ 1, 2, indicates different sets of coefficients. The free parameter tensors P i

akl

and hiab satisfy the conditions
P i
akl ¼ P i

alk; i ¼ 1; 2 ð3:21Þ

P i
akl ¼ �P i

kal; a 6¼ k; i ¼ 1; 2 ð3:22Þ

hiabh
i
bc ¼ dac det jhij; and detjhij ¼ hi11h

i
22 � hi12h

i
21; i ¼ 1; 2: ð3:23Þ
Denote DPakl :¼ P 1
akl;�P 2

akl, Dhab :¼ h1ab � h2ab, Dda ¼ d1
a � d2

a . Then
�naðxÞ ¼ DPaklxkxl þ Dhabxb þ Dda

gðxÞ ¼ 1

2
�na;a þ c ¼ DPaalxl þ

1

2
Dhaa þ c

ð3:24Þ

f ðxÞ ¼ f ðxÞ; ð3:25Þ
where f ðxÞ can be any function that satisfies biharmonic equation, i.e. f;aabb ¼ 0.

3.2. Variational symmetry

The symmetry group admitted by the Euler–Lagrangian equation may not necessarily yield
variational symmetry. A simple procedure to find variational symmetry group is to test all
invariant solutions admitted by the Euler–Lagrangian equation and to select those that indeed
satisfy both determining equation and prolongation equation, i.e.
prvLc þ ðDanaÞLc ¼ gð2Þab

oLc

ou;ab

þ Danað ÞLc ¼ 0

) DaDbðg
�

� n;cu;cÞ þ ncu;cab

� oLc

ou;ab

þ nc;cLc

¼ oLc

ou;ab

n
f;ab:þ g;abu

�
þ g;au;b þ g;bu;a þ gu;ab

�
þ hju;jab � �nj;abu;j

�
þ �nj;au;jb þ �nj;bu;ja


þ
�
þ kkl;au;klb þ kkl;bu;kla þ kklu;klab

�
þ pj;abu;jcc

�
þ pj;au;jbcc þ pj;bu;jacc þ pju;jabcc

�o
ð3:26Þ

þ 1

2E
ð1
�

þ mÞu;aau;aa � mu;aau;bb

�
nc;c ¼ 0; ð3:27Þ
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where
1 T
oLc

ou;ab

¼ 1þ m
E

u;ab

�
� m
E
u;ssdab

	
: ð3:28Þ
Consequently, it yields the following Killing’s equations,
o2u :
oLc

ou;ab

f;ab ¼ 0; ð3:29Þ

uo2u :
oLc

ou;ab

ðug;abÞ ¼ 0; ð3:30Þ

ouo2u :
oLc

ou;ab

g;au;b

�
þ g;bu;a � �nj;abuj


¼ 0; ð3:31Þ

o2uo2u :
oLc

ou;ab

gu;ab

�
� �nj;au;jb � �nj;bu;ja þ

1

2
nc;cu;ab

	
¼ 0;

o2uo3u :
oLc

ou;ab

hju;jab

�
þ kkl;au;klb þ kkl;bu;kla þ pj;abu;jcc

�
¼ 0;

ð3:32Þ

o2uo4u :
oLc

ou;ab

kklu;klab

�
þ pk;au;kbcc þ pk;bu;kacc

�
¼ 0; ð3:33Þ

o2uo5u :
oLc

ou;ab

pju;jabll ¼ 0: ð3:34Þ
By substituting solutions (3.17)–(3.20) and (3.20)–(3.25) into the above equations, one may find
the following additional constraints:
o2f
oxaoxb

¼ 0; ð3:35Þ

ha ¼ 0; ð3:36Þ

kab ¼ 0; ð3:37Þ

pa ¼ 0: ð3:38Þ
Thus, the variational invariant transformations are 1
n1 ¼ a1x1 � a2x2 þ a3; ð3:39Þ

n2 ¼ a2x1 þ a1x2 þ a4; ð3:40Þ
here may exist some higher order variational symmetry.
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g ¼ ða5x1 þ a6x2 þ a7Þ þ a1u; ð3:41Þ
where ai are arbitrary constants. Note that Eqs. (3.39) and (3.40) may be written as
na ¼ a1xa þ a2�abxb þ ba, with b1 ¼ a3 and b2 ¼ a4.

When m ¼ 1=2 for plane strain case, we have additional inversion transformations
n1 ¼ a8ðx21 � x22Þ þ 2a9x1x2; ð3:42Þ

n2 ¼ 2a8x1x2 � a9ðx21 � x22Þ; ð3:43Þ

g ¼ ð2a8x1 � 2a9x2Þu: ð3:44Þ
Note that similar solution can be obtained when m ¼ 1 for plane stress. Since Poisson’s ratio can
not be greater than 1/2, invariant solution at m ¼ 1 is not realistic.

Therefore, the Lie group of variational invariant transformation, i.e., the tangent vector fields,
are
X1 ¼ �x2
o

ox1
þ x1

o

ox2
;

X2 ¼ x1
o

ox1
þ x2

o

ox2
þ u

o

ou
;

X3 ¼
o

ox1
; X4 ¼

o

ox2
;

X5 ¼ x1
o

ou
; X6 ¼ x2

o

ou
; X7 ¼

o

ou
:

ð3:45Þ
When m ¼ 1=2, there are two additional invariant vector fields for plane strain state
X8 ¼ ðx21 � x22Þ
o

ox1
þ 2x1x2

o

ox2
þ 2x1u

o

ou
;

X9 ¼ �2x1x2
o

ox1
þ ðx21 � x22Þ

o

ox2
� 2x2u

o

ou
:

Remark 3.1. It would be interesting to compare the current results with the variational symmetry
group of the Navier equation. For the Navier equation, the inversion symmetry occurs when
7lþ 3k ¼ 0, i.e. m ¼ 7=8 [26]. The inversion symmetry discovered in this paper is realistic, because
it is right at incompressible limit.

3.3. Divergence symmetry

The variational symmetry group found is only a subgroup of point transformation as shown in
(3.45). However, the generalized transformations, or the Lie–B€acklund transformations, can have
divergence symmetry. There exist functions, Ba, such that the Noether theorem holds in the
following the Bessel–Hagen form,
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prvðLcÞ þ ðDanaÞLc ¼ DaBa: ð3:46Þ
In the following, several divergence symmetric transformations are found.

3.3.1. Divergence symmetry I
Consider the following proper Lie–B€acklund transformation, which is admitted by the bihar-

monic equation,
na ¼ 0; and g ¼ wðx1; x2Þ; ð3:47Þ
where the function w is an arbitrary solution of biharmonic equation. Choose
Ba ¼ hb#;ccau;b; ð3:48Þ
where hb is a constant vector and # is another solution of biharmonic equation, i.e. #;aabb ¼ 0.
Consequently,
DaBa ¼ hb#;ccau;ab: ð3:49Þ
Hence, by Noether identity (2.42), one may find that
w;ab ¼ Eabklhl#;cck; ð3:50Þ
or vice versa,
hb#;cca ¼ Cabklw;kl; ð3:51Þ

Ba ¼ Cabklw;klu;b; ð3:52Þ
where Eabkl and Cabkl are the elastic stiffness tensor and elastic compliance tensor defined in Eqs.
(2.2) and (2.3).

It is worth verifying that indeed,
w;aabb ¼ hl
E

1þ m

�
þ 2Em
1� m2

	
#;cclbb ¼ 0: ð3:53Þ
A tangent vector field with divergence symmetry is found to be
XI ¼ wðx1; x2Þ
o

ou
; ð3:54Þ
with w;aabb ¼ 0.



1228 S. Li / International Journal of Engineering Science 42 (2004) 1215–1239
3.3.2. Divergence symmetry II

Let
na ¼ 0; and g ¼ bIIcu;c ð3:55Þ
where fbIIcg is a constant vector. It can be readily shown that
prvðLcÞ þ ðDanaÞLc ¼ gð2Þab

oLc

ou;ab

¼ bIIc
o

oxc
Cabklu;abu;kl

� �
: ð3:56Þ
Choose
Ba ¼
1

2
bIIaCklcduklucd: ð3:57Þ
The divergence symmetric tangent vector field is
XII1 ¼ u;1

o

ou
; ð3:58Þ

XII2 ¼ u;2

o

ou
: ð3:59Þ
This divergence symmetry is equivalent to the variational symmetry due to coordinate translation.

3.3.3. Divergence symmetry III
Let
na ¼ 0; and g ¼ bIIIðu� xcu;cÞ; ð3:60Þ
where bIII is an arbitrary constant. It is straightforward to verify that
DaDbg ¼ �bIIIðu;ab þ xcu;cabÞ ð3:61Þ

prvðLcÞ þ ðDanaÞLc ¼ � bIII
2

o

oxc
Cabklu;abu;klxc

� �
ð3:62Þ
Choose Ba ¼ �aIILcxc. The following vector field is divergence symmetric,
XIII ¼ ðu� xcu;cÞ
o

ou
: ð3:63Þ
This divergence symmetry is equivalent to the variational symmetry due to scaling.

3.3.4. Divergence symmetry IV
Let
na ¼ 0; and g ¼ bIV�klxku;l: ð3:64Þ
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One may find that
gð2Þab

oLc

ou;ab

¼ bIV
1þ m
E

u;ab

�
� m
E
u;ccdab

	
ð�klxku;labÞ

¼ bIV
2

d

dxl

1þ m
E

�klxku;abu;ab

� ��
� m
E

�klxku2
;cc

� �
: ð3:65Þ
Choose
Ba ¼ � bIV
2

1þ m
E

�abxbu;klu;kl

� ��
þ m
E

�abxbu2
;cc

� �
: ð3:66Þ
The divergence symmetric tangent vector field is
XIV ¼ �abxbu;a

o

ou
: ð3:67Þ
Again, this vector field belongs to the equivalent class of a variational symmetry due to coordinate
rotation.

3.3.5. Divergence symmetry V

Let
na ¼ 0; and g ¼ bVu;kk: ð3:68Þ
Subsequently
gð2Þab ¼ bVu;kkab; ð3:69Þ
and
gð2Þab

oLc

u;ab

¼ bV
1þ m
E

o

oxa
u;bu;kkab

� �
: ð3:70Þ
Choose
Ba ¼ bV
1þ m
E

u;kkabu;b: ð3:71Þ
The divergence symmetric tangent vector field is
XV ¼ u;kk

o

ou
ð3:72Þ
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3.3.6. Divergence symmetry VI

Let
na ¼ 0; and g ¼ bVIku;kll; ð3:73Þ
where fbVIkg is a constant vector. Hence
gð2Þab ¼ bVIku;kllab: ð3:74Þ
Consequently,
gð2Þab

oLc

u;ab

¼ bVIk
1þ m
E

o

oxa
u;bu;kllab

� �
: ð3:75Þ
Choose
Ba ¼ bVIk
1þ m
E

u;bu;kllab: ð3:76Þ
The corresponding divergence invariant vector field are
XVI1 ¼ u;1ll

o

ou
; ð3:77Þ

XVI2 ¼ u;2ll

o

ou
: ð3:78Þ
3.3.7. Divergence symmetry VII
Let
na ¼ 0; and g ¼ bVII�jcxcu;jll: ð3:79Þ
It can be readily shown that
gð2Þab

oLc

u;ab

¼ bVII
1þ m
E

o

oxa
2 �jbu;lljau;b


 ��
þ �jcxcu;kllabu;b


 ��
: ð3:80Þ
Choose
Ba ¼ bVII
1þ m
E

2 �jbu;lljau;b


 ��
þ �jcxcu;kllabu;b


 ��
: ð3:81Þ
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The divergence invariant vector field is
XVII ¼ �jcxcu;jll

o

ou
: ð3:82Þ
Remark 3.2
• The above calculation is demonstrative; we have not exhausted, in any way, the possibilities of

divergence symmetry.
• There could be a confusion regarding the relationship between null Lagrangian and natural

boundary conditions. In our problem, prescribed stress function on the boundary will mean
the Dirichlet boundary condition, even though it is stress type of boundary condition in phys-
ics. In other words, there is a difference between the Nuemann boundary condition in mathe-
matics and ‘‘natural boundary condition’’ in physics.
4. Dual conservation laws

There are two groups of dual conservation laws:

• The genuine variational-symmetric conservation laws:
P ðvarÞ
a ¼ Lcna �

1

E
ðg� ncu;cÞu;bba þ Dbðg� ncu;cÞ

oLc

ou;ab

; ð4:1Þ
• The generalized (divergence-symmetric) conservation laws:
P ðdivÞ
a ¼ Lcna �

1

E
ðg� ncu;cÞu;bba þ Dbðg� ncu;cÞ

oLc

ou;ab

� Ba: ð4:2Þ
4.1. Variational-invariant conservation laws

Variational dual conservation laws in planar elasticity are listed as follows.
(1) Scaling.
Let a1 ¼ 1, and ai ¼ 0; i 6¼ 1 in variational symmetric transformations (3.39)–(3.44). One then

has
na ¼ xa; g ¼ u; ð4:3Þ

na;b ¼ dab; gb ¼ u;b: ð4:4Þ
Denote
Sa :¼ P ðvarÞ
a

��
fa1 6¼0g: ð4:5Þ
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One may find that
Sa ¼ Lcxa �
1

E
ðu� xku;kÞu;bba � xcu;cb

1þ m
E

u;ab

�
� m
E
u;ssdab

	
: ð4:6Þ
(2) Coordinate rotation.
Let a2 ¼ 1 and ai ¼ 0ði 6¼ 2Þ in Eqs. (3.39)–(3.44). One has
na ¼ �abxb; g ¼ 0; ð4:7Þ
g� ncu;c ¼ ��ckxku;c; Dbðg� ncu;cÞ ¼ ��cbu;c � �ckxku;cb: ð4:8Þ
Denote
Ra :¼ P ðvarÞ
a

��
fa2 6¼0g: ð4:9Þ
One may find that
Ra ¼ Lc�abxb þ
1

E
�ckxku;cu;bba � ð�cbu;c þ �ckxku;cbÞ

1þ m
E

u;ab

�
� m
E
u;ssdab

	
: ð4:10Þ
(3) Coordinate translation.
Let a3 ¼ d1j; a4 ¼ d2j, and ai ¼ 0; i 6¼ 3; 4 in transformations (3.39)–(3.44). Consequently,
na ¼ daj; g ¼ 0: ð4:11Þ
Define
TaðjÞ :¼ P ðvarÞ
a

��
fa3;a4 6¼0g: ð4:12Þ
It follows that
TaðjÞ ¼ Lcdaj þ
1

E
u;ju;bba � u;jb

1þ m
E

u;ab

�
� m
E
u;ssdab

	
; ð4:13Þ
where a, j ¼ 1, 2.

Remark 4.1. The divergence-free second order tensor TaðjÞ may be called as the dual-Eshelby
tensor. The following integral
J �
j ¼

Z
oX

Lcnj

�
þ 1

E
u;ju;bbana � u;jb

1þ m
E

u;ab

�
� m
E
u;ssdab

	
na

	
dS; ð4:14Þ
may be called as dual J integral.
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(4) Compatibility Identities.
Let a5 ¼ a6 ¼ 1 and ai ¼ 0, i 6¼ 5, 6. We may assume that
na ¼ 0; g ¼ dajxa; ð4:15Þ
where j is a fixed number.
Let
CaðjÞ :¼ P ðvarÞ
a

��
fa5¼a6¼1; and ai¼0;i 6¼5;6g: ð4:16Þ
We have dual conservation law
CaðjÞ ¼
1

E
xju;bba þ dbj

1þ m
E

u;ab

�
� m
E
u;ssdab

	
; ð4:17Þ
where a, j ¼ 1, 2.
(5) Gauss Theorem (divergence theorem).
Assume a7 ¼ 1 and ai ¼ 0, i 6¼ 7. Then
na ¼ 0; g ¼ 1: ð4:18Þ
Let
Ga :¼ P ðvarÞ
a

��
fa7¼1g: ð4:19Þ
We recover the Gauss (divergence) theorem
Ga ¼
1

E
u;bba: ð4:20Þ
(6) Inversion.
When m ¼ 1=2 for plane strain state, additional conservation laws are valid. Assume a8 ¼ d1j,

a9 ¼ d2j for a fixed j, and ai ¼ 0, i 6¼ 8, 9. The infinitesimal generators have the forms
na ¼ 2xaxj � dajxkxk; ð4:21Þ

g ¼ 2xju: ð4:22Þ
Subsequently,
g� ncu;c ¼ 2xju� ð2xcxj � dcjxkxkÞu;c ð4:23Þ

Dbðg� ncu;cÞ ¼ 2dbju� 2ðdbjxc � dcjxbÞu;c � 2ð2xcxj � dcjxkxkÞu;cb: ð4:24Þ
Define
IaðjÞ :¼ P ðvarÞ
a

��
fa8 6¼0;a9 6¼0g: ð4:25Þ
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It then follows that
IaðjÞ ¼ ð2xaxj � dajxkxkÞLc �
ð1� m2Þ

E
2xju
�

� ð2xjxc � dcjxkxkÞu;c

�
u;bba

þ ð1þ mÞ
E

2dbju� 2ðdbjxc þ dcjxbÞu;c � ð2xcxj � dcjxkxkÞu;bc

� �
u;ab � mu;ssdab
� �

;

ð4:26Þ
where a, j ¼ 1, 2.

4.2. Bessel–Hagen type conservation laws

The dual conservation laws in this category involve with a term, Ba, which can be introduced by
a null Lagrangian. A few examples of the Bessel–Hagen type conservation laws are presented in
the followings.

(1) Reciprocal formula of Betti–Rayleigh type.
Let
na ¼ 0; g ¼ w; and Ba ¼ Cabklw;klu;b; ð4:27Þ
where w is a solution of biharmonic equation, i.e. w;llkk ¼ 0. We then have the following con-
servation law,
HðIaÞ
a ¼ � 1

E
wu;bba þ w;b

1þ m
E

u;ab

�
� m
E
u;ssdab

	
� u;b

1þ m
E

w;ab

�
� m
E
w;ssdab

	
; ð4:28Þ
where Cabkl is the elastic tensor.
(2) Reciprocal formula of Green type.
Suppose that both u and w are the solutions of biharmonic equation. Sincer2r2 is self-adjoint,

a simple integration by part yields,
wu;aabb � uw;aabb ¼ wu;aab



� w;bu;aa � uw;aab þ u;bw;aa

�
;b
¼ 0: ð4:29Þ
It yields the conservation law,
H
ðIIaÞ
b ¼ wu;aab � w;bu;aa � uw;aab þ u;bw;aa: ð4:30Þ
In particular, let w ¼ bIcu;c. We have the higher order conservation law:
H
ðIIbÞ
b ¼ bIc u;cu;aab

�
� u;cbu;aa � uu;caab þ u;bu;caa

�
: ð4:31Þ
Let w ¼ bIInxnu;gg. It is readily shown that w;aabb ¼ 0. Therefore, we have
H
ðIIcÞ
b ¼ bIInxnu;ggu;aab � ðbIIbu;ff þ bIInxnu;nnbÞu;aa � 2bIIau;nnabuþ 2bIIau;nnau;b: ð4:32Þ
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More higher order conservation laws can be obtained by letting,
w ¼ bIIc;...;fgu;c;...;fg: ð4:33Þ
Some conservation laws in this class may be equivalent to the first class.
(3) Higher order conservation law (III).
Let
na ¼ 0; g ¼ u;cc: ð4:34Þ
Hence gb ¼ u;ccb. Choose
Ba ¼ Cabklu;bu;cckl: ð4:35Þ
It then follows
HðIIIÞ
a ¼ � 1

E
u;ccu;bba þ Cabklu;klu;ccb � Cabklu;ccklu;b: ð4:36Þ
(4) Higher order conservation law (IV).
Let
na ¼ 0; g ¼ dkju;kll ¼ u;jll; ð4:37Þ
for a fixed number j: 1 or 2. Therefore g;b ¼ u;llbj. The corresponding null divergence is
BaðjÞ ¼ Cabklu;klccju;b: ð4:38Þ
We have the following conservation law
H
ðIVÞ
aðjÞ ¼ � 1

E
u;kkju;bba þ Cabklu;klu;llbj � Cabklu;klccju;b: ð4:39Þ
(5) Higher order conservation law (V).
Let
na ¼ 0; g ¼ �jcxcu;jll: ð4:40Þ
Choosing
Ba ¼
1þ m

2½�jbu;lljau;b�
�

þ ½�jcxcu;kllabu;b�
�

ð4:41Þ

E



1236 S. Li / International Journal of Engineering Science 42 (2004) 1215–1239
we have higher order conservation law
HðVÞ
a ¼ � 1

E
�jcxcu;jllu;bba þ Cabklu;kl �jbu;jll

�
þ �jcxcu;kkjb

�
� 1þ m

E
2½�jbu;lljau;b�
�

þ ½�jcxcu;jllabu;b�
�
: ð4:42Þ
5. Eshelby tensor and dual Eshelby tensors

The dual conservation laws found in this paper are genuine and non-trivial conservation laws.
Most of them have not been known before. They are different from the conservation laws derived
by Knowles and Sternberg [15] and Olver [25,26]. They represent the intrinsic symmetry properties
of compatibility conditions, whereas the previous conservation laws represent the symmetry
properties of Navier equations.

To compare the differences between the dual conservations laws derived here with previous
conservation laws in elasticity, we consider a quantity that has most significant meaning in
physics, i.e. Eshelby’s energy momentum tensor. There are two dual-Eshelby tensors: one derived
by Bui [3] and the one found in this paper (Eq. (4.13)).

The Eshelby’s energy momentum tensor is defined as
Eab :¼ W dab � uc;arcb ð5:1Þ
and Bui’s dual energy momentum tensor is defined as
Bab :¼ Lcdab � ucrcb;a: ð5:2Þ
Recalling the definition (2.7) and the identity (2.9), one may be able to show that
u;bba ¼ �bk�blrkl;a ¼ dklrkl ¼ rll;a; ð5:3Þ

u;cc ¼ �ck�clrkl ¼ dklrkl ¼ rcc; ð5:4Þ

1þ m
E

u;ab �
m
E
u;ccdab ¼ �ak�blekl: ð5:5Þ
According to Timoshenko and Goodier [32], the displacement field may be expressed in terms of
Airy stress function as,
ua ¼
1

2G

�
� u;a þ

4

1þ m
pa

	
; G ¼ E

2ð1þ mÞ ; ð5:6Þ
where pa, (a ¼ 1, 2) is a pair of conjugate harmonic functions, and they are related to the Airy
stress function by definition or identity, pa;a ¼ 1

2
u;aa.

Eshelby’s energy momentum tensor may be written in terms of Airy stress function
Eab ¼ W dab � �af�bg
1þ m
E

u;fcu;gc

�
� m
E
u;fgu;cc

	
� 2

E
ðpc;a � pa;cÞ�cf�bgu;fg: ð5:7Þ
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On the other hand, Bui’s dual energy–momentum tensor may be expressed in terms of Airy
stress function as
2 T
Bab ¼ Lcdab �
1þ m
E

�
� u;c þ

4

1þ m
pc

	
�cf�bgu;fga: ð5:8Þ
Note that both Eshelby’s energy momentum tensor and Bui’s dual energy momentum tensor can
not be completely determined by the Airy stress function, unless additional conditions specified.
Assume that pc;a ¼ pa;c and 2pc ¼ u;c.

2 We may have
Eab ¼ W dab � �af�bg
1þ m
E

u:fcu;gc

�
� m
E
u;fgu;cc

	
ð5:9Þ

Bab ¼ Lcdab �
1� m
E

�cf�bgu;cu;fga: ð5:10Þ
Compare with dual Eshelby tensor obtained in this paper
Lab :¼ TbðaÞ ¼ Lcdab þ
1

E
u;au;bba �

1þ m
E

u;bju;aj

�
� m
E
u;abu;cc

	
: ð5:11Þ
Note that for linear elastic materials W ¼ Lc.
It is obvious that the differences among them are distinct and non-trivial. According to Eqs.

(5.9) and (5.10), it seems that the dual Eshelby tensor derived in this paper has features in both
original Eshelby’s energy momentum tensor and Bui’s dual-energy momentum tensor. An
in-depth study is needed to interpret physical meanings of their differences.
6. Closure

Most dual conservation laws derived in this paper are new except the conservation laws cor-
responding to the Gauss (divergence) theorem and the Betti–Rayleigh reciprocal formula.

To indulge oneself, one may venture to speculate that the dual conservation laws obtained here
may provide foundation to a new class of ‘‘material tensors’’ that are characterized by defor-
mation compatibility requirements, such as constraints for dislocations or disinclinations in sol-
ids. These material momentum tensors may be expressed in stress function space. In short, this
study suggests that there may exist two types of material momentum tensors, Eshelbian type in
deformation space and dual Eshelbian type in stress function space.

Furthermore, using stress function formalism to derive conservation laws has practical inter-
ests. It is well known that the Airy stress function can be expressed by two analytical functions, a
fact guaranteed by Goursat’s theorem (see [23]). In fact, the stress function related complex
variable formulation has been a primary method used to solve many engineering problems such as
hey are not true in general.
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crack problems, and the success of fracture mechanics owes a great deal to it. The dual conser-
vation laws obtained in this paper may allow us to make an easy link between invariant path-
integrals and Muskhelishvili’s complex potentials.

The same procedure can be readily extended into three-dimensional (3D) elasticity. Dual
conservation laws can be derived based on general Maxwell–Morera stress function formalism.
The 3D extension of this paper will be discussed in a separate paper.
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