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Summary In this paper, micromechanics methods are applied to characterize the damage of
plate structures, both Love-Kirchhoff and Reissner-Mindlin plates, due to microcrack distri-
bution. Analytical expressions for effective stiffness of a damaged plate with distributed mi-
crocracks are derived for the first time. The results are compared with the results based on
continuum damage theory, and it is found that there are significant differences between the
two. It is well known that constitutive relations at the structural level, e.g. curvature/moment
relation, and shear/transverse strain relation, are fundamentally different from the constitutive
relation at the material level, i.e. stress/strain relations. This is because a priori kinematic
assumptions in engineering structural theories pose additional constitutive constraints on the
relationships between stress resultant/couple and strain measures. The newly derived effective
stiffness formulae for various plates reflect such constitutive constraints, and therefore are
consistent with engineering plate theories. They provide an alternative means in structure
designs and structure damage evaluations.

Keywords Microcracks, Damage, Fracture, Micromechanics, Kirchhoff plate,
Reissner-Mindlin plate, Nanofilm, Representative plate element

1
Introduction
Plate-like structures have many engineering applications. They are primary structural com-
ponents in aerospace, civil, and mechanical engineering. Mathematical plate theories, such as
the classical (Kirchhoff) plate theory as well as the Reissner-Mindlin plate theory, are the corner
stones of structural engineering. In the rest of the paper a Love-Kirchhoff plate is referred to as
the thin plate, whereas a Reissner-Mindlin plate is referred to as the thick plate. By utilizing
plate theories in designs, which capture the essential characters of plate-like structural
deformations, engineers enjoy the advantage of reduced complexity of plate elements over
three-dimensional (3D) continuum theory.

The basic difference between plate theories and 3D elasticity theory is that in the former
theories a priori kinematic assumptions are introduced in order to filter out trivial defor-
mation modes while retaining or emphasizing important deformation modes, such as
bending and transverse shear modes. Mathematically speaking, the plate theory is a self-
contained logic set, and can be viewed as an independent subject from 3D elasticity theory,
though their derivation departs from 3D elasticity (not necessary) and their accuracy is
referenced to 3D elasticity solutions. In most physics-based treatments, plate equilibrium
equations are derived by integrating (averaging) through the plate thickness and deter-
mining stress resultants, while conforming with the kinematic assumptions. This procedure
is literally a homogenization as well, but both its physical implication as well as objective
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are different from the homogenization in micromechanics. Finally, this procedure leads to
new constitutive relations at the structural level. They are, in fact, the projection of con-
stitutive relations of 3D continuum to a flat 2D manifold, in which the stress resultants are
linked to strain measures at the structural level in terms of material elastic properties and
the plate’s geometry.

Due to the internal kinematic constraint, for both thin or thick plates, their constitutive
relations at the structural level differ fundamentally from the elastic constitutive laws at the
material level. This distinction has been long noted, and several writings have been devoted to
this issue, e.g. [13–15].

Today, most plate structures are made of composite materials, e.g. [18, 19]. Recently, mi-
cromechanics and homogenization techniques have been employed to study inhomogeneous
plates with microstructures, e.g. [9, 10, 11]. In fact, homogeneous plate is an idealization. In
reality, there is no such thing as a homogeneous plate. Any plate component, whether
homogeneous or not, will eventually degrade during loading service into an inhomogeneous
state, because of the initiation as well as evolution of damage.

Questions of great practical importance are, how do these plate elements behave, to what
extent can plate theories still be used when they are damaged by many microcracks (see Fig. 1),
as may happen, e.g., as a result of an earthquake or blast loading. If plate theories can still be
used after initial material damage or degradation, how can we use them in a correct fashion
without compromising the relevant mathematical and physical principles, such as the kine-
matic assumptions.

Moreover, in the recent development of nanotechnolgy and micro-electro-mechanical systems
(MEMS), primary miniature structural component in these technologies are thin plate-like films
or a thin plate-like graphite sheets, which is the substance of a nanotube. The effective stiffnesses
of these miniature plates are of great importance and concern in applications, because there are
many microcracks embedded in these thin films or thin sheets. For instance, the main technical
advantage of the nanotube is its ultra-strength, and the presence of microcracks will significantly
reduce that strength. There have been a few experimental and numerical studies on the effect of
microcracks on effective properties of thin films and nanotubes e.g. [21], [12], and [6], and
nanotubes, [3], and [2]. However, there is still a lack of complete understanding of the subject.

At the macroscale, the effective material properties of a solid with randomly distributed mi-
crocracks can be evaluated by using standard micromechanics techniques, e.g. [7, 16]. For a plate
member with randomly distributed microcracks, its effective stiffness has been evaluated
according to the engineering ‘‘folklore’’ in the past, i.e. the effective elastic moduli obtained from
continuum homogenization are substituted into the plate constitutive relations to estimate the
effective stiffness of a damaged plate. Apparently, this procedure may not be justified for a
nanometer-thin graphite sheet, or a micrometer-thin film, because these miniature plate struc-
tures have never been a part of a 3D continuum either in manufacture process or in their per-
formance configurations. By using 3D continuum approach, one could face the danger by
neglecting the free-surface effects on effective stiffness. In fact, there is a demand for justfication
and verification why the material strength used in nanotubes is often close to theoretical material
strength.

In this work, a new procedure is proposed. We apply micromechanics techniques directly to
plate theories and derive effective bending stiffness based on a consistent theoretical framework.
By doing so, we believe that the free-surface effects on effective stiffness can be captured. Here a
notion of representative plate element (RPE) is used, which is similar to the concept of repre-
sentative volume element (RVE) in continuum micromechanics. A detailed discussion on this
concept may be found in [10, 11]. We assume that the microcrack distribution in an RPE is

Fig. 1. A representative plate element with distributed
microcracks
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statistically stable, and the information on microcrack distribution density can be then linked as
a damage index to assess the degradation of structure stiffness.

Based on this philosophy, the effective stiffness for both thin and thick damaged plates have
been derived starting from the plate theories themselves in closed form. To assess the accuracy
of this new method, the stiffnesses of damaged plates are examined in a comparison study. The
arrangement of this paper is as follows: in Sec. 2, the basic formulas for both thin and thick
plates are outlined. Some new averaging theorems in micromechanics of plate are proved. The
main results for a cracked thin plate are presented in Sec. 3. The results for a cracked thick
plate are presented in Sec. 4.

2
Formulations
For a self-contained treatment, formulations of thin and thick plates are outlined. Greek indices
take on the values 1 and 2, and latin indices range from 1 to 3. For convenience, plate governing
equations are presented in a scaled form. Let Xi be the real coordinates. Define

� :¼
h
ffiffiffiffi

10
p

c
; for Reissner plate ;

h
pc ; for Mindlin plate ;

(

xi ¼
Xi

c
;

where c is the half-length of the crack, and h is the plate thickness.

Since the objective of this work is the averaging of the analytic solution of a single crack in a
plate, the departure point is fracture mechanics of plate theories. In Fig. 2, a plate with a
penetrating crack in a general state of loading is illustrated. Because of linearity it can be viewed
as the superposition of two states: a uniform deformation state and a crack perturbation state,
as shown in Fig. 3.

Fig. 2. Basic problem: a thin plate with single penetrating crack under general loading
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2.1
Formulations for thin plates
The thin plate theory, also known as classical or Kirchhoff plate theory, neglects shear
deformation, and requires that the fibers originally normal to the neutral surface remain
normal. For isotropic plates, the classical plate equations in scaled coordinates are,

bl ¼ �
1

c
w;l ; ð1Þ

jlm ¼
1

2c
bl;m þ bm;l

� �

; ð2Þ

DDw ¼ c4

D
p ; ð3Þ

Mlm ¼ �
D

c2
ð1� mÞw;lm þ mdlmw;cc
� �

; ð4Þ

Ql ¼ �
D

c3

o

oxl
Dw½ � : ð5Þ

where D :¼ olol is the 2D Laplacian operator. For kinematic variables, w is the deflection, bl
are rotations, and jlm are curvatures; for force variables, Mlm are moments, Ql are transverse
shear resultant forces, and p is external pressure on the plate surface. The constant D is the
plate rigidity, which is defined as

D :¼ Eh3

12ð1� m2Þ ð6Þ

in which E is the Young’s modulus, and m is the Poisson’s ratio. Note that it is assumed that the
vertical external load p has no influence on the thin plate stiffness. The external load p is always
set to zero in the equilibrium equation in the RPE of a thin plate.

2.2
Formulations for thick plates
The thick plate, or Reissner-Mindlin plate, takes into account transverse shear deformation, but
still requires that the fibers originally normal to the neutral plane remain straight. For isotropic
thick plates, the kinematic and constitutive relations, as well as equilibrium equations are

cl ¼ bl þ
1

c
w;l ; ð7Þ

jlm ¼
1

2c
bl;m þ bm;l

� �

; ð8Þ

Fig. 3. Decomposing the basic problem into two sub-problems: uniform deformation and crack
perturbation
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Mlm ¼
D

c
ð1� mÞbl;m þ mdlmbc;c

� �

; ð9Þ

Ql ¼
D 1� mð Þ

2c2�2
bl þ

1

c
w;l

� �

; ð10Þ

Mlm;m � cQl ¼ 0 ; ð11Þ

1

c
Ql;l ¼ �p ; ð12Þ

where cl are transverse shear strains. Note that again it is assumed that the vertical external
load p has no influence on thick plate’s stiffness, p ¼ 0 in the equilibrium equation of a thick
plate RPE.

2.3
Constitutive relations
The main objective of this paper is to evaluate constitutive relations of damaged members at
the structural level, i.e. the constitutive relations relating the stress resultants, or stress couples,
to the strain measures. It may be succinct to calculate the effective stiffness by using indicial
notations. However, matrix notation is more convenient in practical applications. To serve both
purposes, tensorial representations are presented so that the details of the calculation are
apparent, and readily useable results for isotropic plates are presented in matrix form.

The relationship between the moments and curvatures, in matrix notation, are:

M11

M22

M12

0

@

1

A ¼ D
1 m 0
m 1 0
0 0 1� m

0

@

1

A

j11

j22

j12

0

@

1

A ;

j11

j22

j12

0

@

1

A ¼ 1

D 1� m2ð Þ

1 �m 0
�m 1 0
0 0 1þ m

0

@

1

A

M11

M22

M12

0

@

1

A ;

Q1

Q2

� �

¼ D 1� mð Þ
2

c1

c2

� �

;

In tensorial notation,

Mlm ¼ Llmfgjfg ; ð13Þ

jlm ¼ NlmfgMfg : ð14Þ

For isotropic plates, the elastic stiffnesses are

Llmfg ¼ D 1� mð ÞIlmfg þ 2DmJlmfg : ð15Þ

In Eq. (15)

Jlmfg :¼ 1

2
dlmdfg ; ð16Þ

Ilmfg :¼ Jlmfg þ Klmfg ; ð17Þ

and

Klmfg :¼ 1

2
dlfdmg þ dlgdmf � dlmdfg
� �

; ð18Þ

where dab is Kronecker delta.
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Define the fourth-order Cartesian tensor as

A ¼ Aabfgea � eb � ef � eg :

The fourth-order tensors J and K with the components (16) and (18) have the following
properties:

J : J ¼ J ;

J : K ¼ 0 ;

K : K ¼ K :

In terms of the J-K basis, the plate’s stiffness as well as compliance tensors, L and N, can be
written as

L ¼ D 1þ mð ÞJþ 1� mð ÞKf g ; ð19Þ

N ¼ 1

D

1

1þ mð Þ Jþ 1

1� mð ÞK

� 	

: ð20Þ

Furthermore, for transverse shear deformation mode, the constitutive relation between
transverse shear and transverse shear strain are

Ql ¼ Glmcm ; ð21Þ

cl ¼ HlmQm : ð22Þ

In the case of isotropic plates

Glm ¼
1� mð Þ

2
Ddlm : ð23Þ

2.4
Averaging theorems for plates

The micromechanics homogenization theory rests upon volume-averaging theorems. In this
section, several averaging theorems in plate theories are proved. The averaging theorems for
plate theories are similar to those of the continuum theory. We first show that prescribed
remote deflection boundary condition leads to a link between average kinematic variables and
the prescribed kinematic variables at remote boundary. We then show that for a plate with a
crack, the average kinematic variable can be represented as the sum of the kinematic variable of
a virgin plate plus an additional term due to the presence of crack if constant force or moment
is applied on the remote boundary, which is referred to as the additional kinematic formula. To
derive the additional term due to the presence of inhomogeneities, the Reciprocal Theorem in
plate theories is needed in the analysis.

Before proceeding further, we first state the following well-known results.

Theorem 2.1 (Reciprocal Theorem for Plates)
1. Suppose that there are two sets of self-equilibrating (loading/deflection) states, fMð1Þlm ;wð1Þg

and fMð2Þlm ;wð2Þg for a thin plate. For any closed contour oV inside the thin plate, the fol-
lowing equality holds

Z

oV

Mð1Þlm bð2Þl nm dS ¼
Z

oV

Mð2Þlm bð1Þl nm dS ð24Þ

where
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bðaÞl ¼ �
1

c
wðaÞ;l :

2. Suppose that there are two sets of self-equilibrating states:fMð1Þlm ;Qð1Þl ; bð1Þl ;wð1Þg and

fMð2Þlm ;Qð2Þl ; bð2Þl ;wð2Þg for a thick plate. For any closed contour oV inside the thick plate, the
following equality holds

Z

oV

Mð1Þlm bð2Þl nm dSþ
Z

oV

Qð1Þl wð2Þnl dS ¼
Z

oV

Mð2Þlm bð1Þl nm dSþ
Z

oV

Qð2Þl wð1Þnl dS ð25Þ

The proof of the reciprocal theorems is standard (e.g [20] for thin plate), and is thus omitted
here.

The next two results are for a thin plate.

Result 2.1
Suppose a thin plate is subjected to the prescribed deflection boundary condition

w ¼ � c2

2
j0

lmxlxm 8 x 2 oV :

The average curvature is equal to a prescribed constant jlm

 �

¼ j0
lm.

Using the definition, and integration by parts,

hjlmi : ¼ 1

V

Z

V

jlm dV ¼ 1

2V

Z

V

bl;m þ bm;l

� �

dV ¼ � 1

2Vc

Z

oV

w;l nm dSþ
Z

oV

w;m nl dS

8

<

:

9

=

;

¼ � 1

V

Z

oV

j0
lfxfnm dS ¼ 1

V
j0

lf

Z

oV

xfnm dS

¼ j0
lfdfm ¼ j0

lm

Result 2.2
Suppose a thin plate with a single microcrack is subjected to the constant bending moment
boundary conditions

Mlm ¼ M0
lm 8 x 2 oV :

Then the average curvature is given by

hjlmi ¼ j0
lm þ jc

lm ; ð26Þ

where

jc
lm :¼ 1

2V

Z

oX

blnm þ bmnl
� �

dS ; ð27Þ

and j0
lm ¼ NlmfgM0

fg.

Let the remote boundary of the RPE be denoted by oV , the boundary of the crack be denoted
by oX.

Let us apply the following two loading conditions:
The first one is a uniform perturbation field, which may be thought of as being generated by

a prescribed rotation field db ¼ dj � x on the entire boundary of RPE,

dt1 ¼ dMlmnlem; 8 x 2 oV ;
�dMlmnlem; 8 x 2 oX :

�

ð28Þ
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Result (2.1) asserts that hj1i ¼ dj. Since interior to the crack the RPE is homogeneous, it is
plausible that

j1 ¼ hj1i ¼ dj! M1 ¼ dM ¼ L : dj :

The second is the real field generated by the true boundary condition of the cracked plate

t2 ¼ M0
lmnlem; 8 x 2 oV ;

0; 8 x 2 oX :

�

ð29Þ

Thereby, the corresponding fields become

M1; j1; b1
� �

! dM; dj; db ¼ dj � xð Þ ;

and

M2; j2; b2
� �

! M; j; bð Þ :

Applying the Reciprocal Theorem Eq. (24) yields

1

V

Z

oV

dMlmnlbm dS� 1

V

Z

oX

dMlmnlbm dX ¼ 1

V

Z

oV

M0
lmnldbm dS ;

and

1

V

Z

oV

dMlmnlbm dS� 1

V

Z

oX

dMlmnlbm dX ¼ 1

V

Z

oV

M0
lmnldjcmxc dS :

Rearranging and using the constitutive relations, we get

dMlm
1

V

Z

oV

nlbm dS� 1

V

Z

oX

nlbm dX� 1

V

Z

oV

M0
fgnfNgclm xc dS

8

<

:

9

=

;

¼ 0 :

Since the virtual moment tensor is symmetric, the symmetric part of the expression in brackets
must be zero, i.e.

1

2V

Z

oV

nlbm þ nmbl

� �

dS ¼ 1

2V

Z

oX

nlbm þ nmbl

� �

dXþ
M0

fgNgclm

V

Z

oV

nf xc dS : ð30Þ

Since by definition

j0
lm ¼ NgflmM0

fg ;

and the first integral in (30) is hjlmi, we obtain the desired result

hjlmi ¼ j0
lm þ jc

lm

and

jc
lm ¼

1

2V

Z

oX

blnm þ bmnl
� �

dS : ð31Þ

We now provide analogous results for thick plates.
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Result 2.3
Suppose a thick plate is subjected to rotation boundary condition

bl ¼ cj0
lmxm 8 x 2 oV :

Then,

hjlmi ¼ j0
lm :

The proof is nearly identical to that in Result 2.1.

Result 2.4
Suppose a thick plate with a single microcrack is subjected to the constant bending moment
boundary conditions

Mlm ¼ M0
lm 8 x 2 oV :

Then the average curvature is given by

hjlmi ¼ j0
lm þ jc

lm ;

where

jc
lm ¼

1

2V

Z

oX

blnm þ bmnl
� �

dS : ð32Þ

Noting that the applied shear force Ql on the boundary is zero, the result is trivially obtained
by the same procedure as shown in Result 2.2.

To derive the averaging theorem for transverse shear strain, we consider a thick plate with
an embedded single crack under a specific loading condition: a uniform transverse shear force,
Q0

l, is applied at the remote boundary, and there is no applied transverse shear on the crack
surfaces.

We then claim that:

Result 2.5
Suppose that a thick plate, V , with an embedded single crack is loaded at remote boundary, oV ,
by a constant shear force Q0

l, and equilibrating moment, Mlm, and there is no transverse shear
acting on the crack surfaces, oX. Then

hQli ¼ Q0
l : ð33Þ

Since p ¼ 0) Ql;l ¼ 0; 8 x 2 V; Ql ¼ ðQmxlÞ;m. Therefore,

hQli ¼
1

V

Z

V

Ql dV ¼ 1

V

Z

V

ðQmxlÞ;m dV

¼ 1

V

I

oV

Qmxlnm dS� 1

V

I

oX

Qmxlnm dS

¼ 1

V

I

oV

Qð0Þm xlnm dS

¼ Q0
m

V

Z

V

dlm dV ¼ Q0
l : ð34Þ

Note that the existence of an equilibrating moment on the boundary is essential. First, without
additional moments, the transverse shear force alone may not ensure a global equilibrium state;
second, the prescribed boundary moment can not be a uniform constant, which will lead to
zero average transverse shear force (see [11]).
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Result 2.6
Consider a thick plate RPE. At microlevel, it may be viewed as an infinitely thick plate with an
embedded single crack, which is subjected to remote boundary conditions of constant shear
forces Q0

l and associated equilibrating moment Mlm.
The average transverse shear strain is

hcli ¼ c0
l þ cc

l ; ð35Þ

with

cc
l ¼

Z

oX

wnl dS : ð36Þ

Consider the strain energy density �UU of the cracked plate

�UU ¼ 1

2
M0

lmj
0
lm þ

1

2
Q0

lc
0
l �

1

V

Z

oX

Q0
lwnl dS� 1

V

Z

oX

M0
lmblnm dS ;

where the first two terms are the energy density for the undamaged plate, and the last two terms
are energy release density for a single crack X. The complementary energy density is
accordingly,

�UcUc ¼ M0
lmj

0
lm þ Q0

lc
0
l � �UU

¼ 1

2
M0

lmj
0
lm þ

1

2
Q0

lc
0
l þ

1

V

Z

oX

Q0
lwnl dSþ 1

V

Z

oX

M0
lmblnm dS : ð37Þ

Since the transverse shear force is constant at remote boundary and is zero at crack surfaces, by
Result 2.5 we get:

hQli ¼ Q0
l : ð38Þ

Consequently, one can calculate the average shear strain by

hcli ¼
o �UcUc

ohQli
¼ o �UcUc

oQ0
l
: ð39Þ

Substituting (37) into (39) yields

hcli ¼ c0
l þ cc

l ¼ c0
l þ

1

V

Z

oX

wnl dS ; ð40Þ

where c0
l ¼ HlmQ0

m :

3
Effective bending stiffness for a thin plate with microcracks
The stiffness for a thin damaged plate is determined by using the additional curvature formula
(27) for a thin plate loaded at infinity by uniform bending and twisting moments. The plate has
no transverse shear load. With the additional curvature for a single crack, a standard averaging
procedure, [17], is used to determine the moduli for a distribution of microcracks with random
orientations. The uniform loads at infinity are consistent with the Representative Plate Element
(RPE) concept.

3.1
Crack solutions for thin plates
The mode-I and mode-II crack problems in thin plate theory have been studied before, e.g.
[18]. For convenience, the solution of a thin plate with a penetrating crack is reformulated in a
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systematic fashion, and they are listed in Appendix A. The Crack Opening Curvature (COC)
may be defined as an analogue to Crack Opening Displacement (COD) in fracture mechanics of
linear elasticity, which can be used to estimate the magnitude of the additional strain as well as
the porosity caused by microcrack distribution.

3.1.1
Pure bending load
From Appendix A, the resulting expressions for the rotations along the crack surface for a plate
loaded with constant remote bending M0 are

b1ðx1; 0Þ ¼
M0c

D

4

3þ mð Þ 1� m2ð Þ x1 ; ð41Þ

b2ðx1; 0Þ ¼
2M0c

Dð3þ mÞð1� mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

q

: ð42Þ

Based on Result 2.2,

jc
lm ¼

1

2V

Z

oX

blnm þ bmnl
� �

dS ¼ 1

2V

Z

oXþ

bl

� �

nm þ bm½ �nl
� �

dS ;

where bl

� �

¼ bþl � b�l . For this crack, n1 ¼ 0 and n2 ¼ 1, so,

jc
11 ¼ jc

12 ¼ 0 ;

jc
22 ¼

2pM0c2

VD 3þ mð Þ 1� mð Þ :
ð43Þ

3.1.2
Pure twist load
The resulting expressions for the rotations along crack surface of a plate loaded with constant
remote twist H0 are

b1ðx1; 0Þ ¼
H0c 1þ mð Þ
2D 1� mð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

q

; ð44Þ

b2ðx1; 0Þ ¼ 0 : ð45Þ

We find,

jc
11 ¼ jc

22 ¼ 0 ;

jc
12 ¼

pH0c2 1þ mð Þ
4 DV 1� mð Þ ;

ð46Þ

3.2
Averaging of aligned non-interacting microcracks
In this section, we compute the effective stiffness for a thin plate with a set of aligned cracks.
We seek relationships of the form Eq. (4) and (5), replacing D with �DD.

Following [17], define the crack density parameter, f . Assume that there are Na microcracks
in an RPE with crack length 2ca. We further assume all cracks are oriented parallel to the x1 axis.

Define crack density parameter for a particular crack length,

fa :¼ Nac2
a

V
; ð47Þ

and the overall density parameter,
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f :¼
X

n

a¼1

fa : ð48Þ

The compliance tensor for a damaged plate can be written:

�NN ¼ NþH ð49Þ

where N is the compliance of the undamaged plate and H is the change due to the cracks.
Thus,

jc ¼ H : M ; ð50Þ

and we can determine the components of H directly from the results in the previous sections
for a set of non-interacting cracks.

The matrix form of Eq. (50) is

jc
11

jc
22

jc
12

2

4

3

5 ¼ f p
D

0 0 0

0
2

ð3þ mÞð1� mÞ 0

0 0
ð1þ mÞ

4 1� mð Þ

2

6

6

6

6

4

3

7

7

7

7

5

M0

M0

H0

2

4

3

5 : ð51Þ

3.3
Averaging of randomly oriented and non-interacting microcracks
We now extend the results for the aligned microcracks to that for a uniform distribution of
randomly oriented cracks, again assuming no interaction between cracks.

Denote with the superscript a the set of cracks with length ca and oriented at an angle ha with
respect to the x1 axis. The non-zero components of Ha can be found from Eq. (50):

ĤHa
2222 ¼

1

D

2p
3þ mð Þ 1� mð Þ ; ð52Þ

ĤHa
1212 ¼ ĤHa

1221 ¼ ĤHa
2112 ¼ ĤHa

2121 ¼
1

D

p 1þ mð Þ
8 1� mð Þ : ð53Þ

The transformation from Ha to H is accomplished through the rotation tensor:

Qa ¼ ea
l � el; Qa

lmQa
gm ¼ dlg : ð54Þ

We assume the cracks have density parameter f , thus we only need to average over orientation,
crack length distribution is contained in f . To obtain H, we write Ha in the H basis, and
integrate.

H ¼ Hlmfgel � em � ef � eg ¼
f

2p

Z

2p

0

Ha
lmfgea

l � ea
m � ea

f � ea
g dha

¼ f

2p

Z

2p

0

Ha
nqrsQa

lnQa
mqQa

frQa
gs dha

8

<

:

9

=

;

el � em � ef � eg :

Since the orientations are random, H is an isotropic tensor, and can be written

Hlmfg ¼ h1dlmdfg þ
1

2
h2 dlfdmg þ dlgdmf
� �

:

We can determine h1 and h2 through the use of Eq. (54) and Eqs. (52) and (53):

293



Hllmm ¼ 4h1 þ 2h2 ¼ f ĤHa
ffgg ;

Hlmlm ¼ 2h1 þ 3h2 ¼ f ĤHa
fgfg :

Substituting, we get the following simultaneous equations:

4h1 þ 2h2 ¼
2pf

D 3þ mð Þ 1� mð Þ ;

2h1 þ 3h2 ¼
f p
2D

7þ 4mþ m2

3þ mð Þ 1� mð Þ :

Finally,

H ¼ pf

D 3þ mð Þ 1� mð Þ Jþ pf 7þ 4mþ m2ð Þ
8D 3þ mð Þ 1� mð ÞK : ð55Þ

Substituting Eq. (20) and Eq. (55) into Eq. (49) yields

�NN ¼ 1

D

1

1þ m
þ pf

3þ mð Þ 1� mð Þ

� �

Jþ 1

1� m
þ pf 7þ 4mþ m2ð Þ

8 3þ mð Þ 1� mð Þ

� �

K

� 	

: ð56Þ

We now define �DD and �mm by

�NN ¼ 1
�DD

1

1þ �mm
Jþ 1

1� �mm
K

� 	

: ð57Þ

Equating Eq. (57) and Eq. (56), we find

�DD

D
¼ 1

2

ð3þ mÞð1� m2Þ
ð3þ mÞð1� mÞ þ pf ð1þ mÞ þ

8ð3þ mÞð1� mÞ
8ð3þ mÞ þ pf ð7þ 4mþ m2Þ

� 	

; ð58Þ

and

�mm ¼ 16mð3þ mÞ þ pf ð1þ mÞð�1þ 4mþ m2Þ
16ð3þ mÞ þ pf ð1þ mÞð15þ 4mþ m2Þ : ð59Þ

3.4
Self-consistent estimate
Consider microcrack interaction. Self-consistent method [4, 5] is used to estimate effective
stiffness matrix. It consists of solving Eq. (49), Eq. (20) and Eq. (55) simultaneously. In the
solution process, virgin material properties D and m are replaced by �DD and �mm in the last equation.
Solving the implicit equation, we find,

�DD

D
¼ 2

ð3þ �mmÞð1� �mm2Þ
ð3þ �mmÞð1� �mmÞ � pf ð1þ �mmÞ þ

8ð3þ �mmÞð1� �mmÞ
8ð3þ �mmÞ � pf ð7þ 4�mmþ �mm2Þ

� 
�1

: ð60Þ

To find the effective Poisson ratio, the roots to the following cubic must be computed:

�mm3 þ a�mm2 þ b�mmþ c ¼ 0 ;

where

a ¼ �8ð1þ kÞ þ f p5k½ � 1

kf p
;

b ¼ �16ð1þ 2kÞ þ f pð11k� 8Þ½ � 1

kf p
;
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c ¼ 24ð1� kÞ þ f pð7k� 8Þ½ � 1

kf p
;

k :¼ 1� m
1þ m

:

The analytic solution to this algebraic equation can be found in standard mathematics
handbooks, e.g. [1],

q :¼ 1

3
b� 1

9
a2; r :¼ 1

6
ab� 3cð Þ � 1

27
a3 ;

s1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q3 þ r2
p

3

q

; s2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q3 þ r2
p

3

q

:

The roots are

�mm1 ¼ s1 þ s2ð Þ � a

3
;

�mm2 ¼ �
1

2
s1 þ s2ð Þ � a

3
þ i

ffiffiffi

3
p

2
s1 � s2ð Þ ;

�mm3 ¼ �
1

2
s1 þ s2ð Þ � a

3
� i

ffiffiffi

3
p

2
s1 � s2ð Þ :

ð61Þ

Only the last root, �mm3, satisfies the requirement

lim
f!0

�mm ¼ m

which is the physically meaningful solution.

3.5
Effective stiffness via continuum effective moduli
The effective flexibility �NN can be computed by substituting effective material property values
obtained in elastic continuum averaging, e.g. �EE and �mm, into Eq. (6). The values for �EE and �mm for
both the non-interacting and self-consistent method of effective matrix are available in [17].
These values are obtained from the corresponding averaging of a plane stress problem.

For the non-interacting distribution,

�EE

E
¼ 1

1þ pf
; ð62Þ

�mm
m
¼ 1

1þ pf
; ð63Þ

which lead to effective stiffness,

�DD

D
¼ ð1þ pf Þð1� m2Þ
ð1þ pf Þ2 � m2

: ð64Þ

The effective material constants obtained from a self-consistent continuum averaging (plane
stress problem) are

�EE

E
¼ 1� pf ; ð65Þ

�mm
m
¼ 1� pf ; ð66Þ

which lead to the effective stiffness for a thin plate
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�DD

D
¼ ð1� pf Þð1� m2Þ

1� ð1þ pf Þ2m2
: ð67Þ

These four results are compared in Fig. 4
From Fig. 4, one may find that the moduli obtained from plate averaging are much stiffer

than the results obtained from continuum averaging. This implies that plate averaging provides
a upper bound, whereas the continuum averaging may provide a lower bound for effective
stiffness of a thin plate.

4
Effective stiffnesses of a thick plate with microcracks
Stiffnesses of a damaged thick plate are evaluated by using the averaging theorems presented in
Sec. 2. These include both the bending stiffness and shear stiffness.

4.1
Crack solutions for thick plates
Crack solutions in a thick plate are presented in Appendix B. The thick plate is subjected to
pure bending load, pure twist load and shear load.

4.1.1
Pure bending load
The resulting expressions for the rotations along the crack surface for a plate loaded with
constant remote bending moment M0 are

b1ðx1; 0Þ ¼ 0 ;

b2ðx1; 0Þ ¼
2M0c

D 1� m2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

q

;

producing the COC’s

Fig. 4. Damaged stiffness for
Kirchhoff-Love plates: a, b
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jc
11 ¼ jc

12 ¼ 0 ;

jc
22 ¼

2M0pc2

VDð1� m2Þ :
ð68Þ

4.1.2
Pure twist load
The resulting expressions for the rotations of a plate loaded with constant remote twist H0

along the crack surface are

b1ðx1; 0Þ ¼
2H0c

D 1� m2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

q

;

b2ðx1; 0Þ ¼ 0 :

So, as before,

jc
11 ¼ jc

22 ¼ 0; and jc
12 ¼

pH0c2

VDð1� m2Þ : ð69Þ

4.1.3
Pure transverse shear load
To compute an effective shear modulus �GG, we choose a plate with applied distributed shear
along the top of the plate only. A distributed moment is also applied to satisfy equilibrium.

The results of the additional Crack Opening Shear Strain (COSS) are computed by using the
displacement along the crack

wðx1; 0Þ ¼
Q0c3�2

D 1� mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x1
2

p

;

and Result 2.6 yields

cc
1 ¼ 0 ; ð70Þ

cc
2 ¼

Q0c4�2p
VDð1� mÞ : ð71Þ

4.2
Averaging of aligned microcracks
In this section, we compute the effective stiffness of a thick plate following the methodology in
Sec. 3.2. The quantities f , �NN, H, and jc all have the same meaning as in Sec. 3.2. Using the
results obtained in the previous section, we can find the individual components of H for the
thick plate directly. In matrix form it is

jc
11

jc
22

jc
12

2

4

3

5 ¼ f p
D

0 0 0
0 2

1�m2ð Þ 0

0 0 1
1�m2ð Þ

2

6

4

3

7

5

M0

M0

H0

2

4

3

5 : ð72Þ

The total solution can then be written as

j11

j22

j12

2

4

3

5 ¼ 1

D 1� m2ð Þ

1 �m 0
�m 1þ 2f p 0
0 0 1þ mþ f p

2

4

3

5

M0

M0

H0

2

4

3

5 : ð73Þ

297



Similarly, for the shear modulus, we get

cc
2 ¼ H0pf Q0; where H0 ¼ 2c2�2

D 1� mð Þ : ð74Þ

The total shear strains are

c1

c2

� 


¼ 2

D 1� mð Þ
1 0
0 1þ pf h2

10

� 


Q1

Q2

� 


: ð75Þ

4.3
Averaging for randomly oriented and non-interacting microcracks
We now extend the results for the aligned microcracks to that for a uniform distribution of
randomly oriented cracks, assuming no interaction between cracks. The non-zero components
of H tensor in this case are

ĤHa
2222 ¼

2p
Dð1� m2Þ ĤHa

1212 ¼ ĤHa
1221 ¼ ĤHa

2112 ¼ ĤHa
2121 ¼

p
2Dð1� m2Þ : ð76Þ

The transformation from Ha to H is accomplished as before, and H is found to be

H ¼ pf

Dð1� m2Þ Jþ pf

Dð1� m2ÞK : ð77Þ

Substituting Eq. (20) and Eq. (77) into Eq. (49) yields

�NN ¼ 1

D

1� mþ pf

1� m2

� �

Jþ 1þ mþ pf

1� m2

� �

K

� 	

: ð78Þ

The final results are:

�DD

D
¼ 1� m2ð Þ 1þ pfð Þ

1þ pfð Þ2�m2
; ð79Þ

and

�mm ¼ m
1þ pf

: ð80Þ

It is interesting to note that the averaging results for thick plates appear to be the same as the
2D plane stress elasticity averaging solutions.

The matrix form now becomes

j11

j22

j12

2

4

3

5 ¼ 1

D 1� m2ð Þ

1þ f p �m 0
�m 1þ f p 0
0 0 1þ mþ f p

2

4

3

5

M11

M22

M12

2

4

3

5 : ð81Þ

Averaging over orientation for the shear modulus is only slightly more complicated. Unlike
the bending case, this loading does depend on crack angle. Thus, the shear deformation at an
angle a is cc

a ¼ cc cos a; and Ha ¼ H0 cos a. Integrating a from 0 to 2p yields

Hc ¼ H0 pf

2
: ð82Þ

Finally, we obtain the effective shear stiffness,

�GG

G
¼
�pf

2

��1

: ð83Þ
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The averaged shear strains are

c1

c2

� 


¼ 2

D 1� mð Þ
1þ pf h2

20 0

0 1þ pf h2

20

" #

Q1

Q2

� 


: ð84Þ

4.4
Self-consistent method
To take into account microcrack interaction, the self-consistent method [4, 5], is used to
evaluate the effective stiffness of a thick plate. In fact, just like the case of non-interacting
microcrack, the self-consistent estimates based on the thick plate theory yield the same results
as the continuum self-consistent estimate (plane stress), Eqs. (66) and (67).

However for shear stiffness, the self-consistent method based on the thick theory provides a
different answer

�GG

G
¼ 1� pf

2
: ð85Þ

In Fig. 5, the effective stiffnesses computed from averaging of a thick plate in the cases of both
dilute crack distribution as well as self-consistent method are displayed.

In Fig. 6, the effective shear stiffness computed from averaging of a thick plate in the cases of
both dilute crack distribution as well as self-consistent method are juxtaposed with those
computed based on continuum estimation.

5
Closure
In this work, a micromechanics averaging procedure is carried out to study the effective
stiffness of damaged plates due to distributed microcracks. The novelty of this approach is that

Fig. 5. Damaged stiffness for
Reissiner-Mindlin plates: a, b
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the averaging procedure is carried out within the framework of plate theories, which is in
contrast to traditional procedure in which averaging is carried out at the material level. The
results on effective stiffness of damaged plates, both thin plates and thick plates, based on these
two different procedures are compared in different averaging schemes, such as non-interacting
crack distribution as well as the self-consistent method of effective matrix. It is found that, in
general, the stiffnesses derived from plate averaging theory are higher than those obtained
based on plane stress elasticity averaging procedure for thin plates, but, perhaps surprisingly,
yield exactly the same result for thick plate bending.

Apparently, it seems that the procedures proposed in this paper are only valid when crack
length 2c is large in comparison to the plate thickness h, which may be unusual in the tradi-
tional civil engineering applications. Nevertheless, the applications under this scenario are both
abundant and significant. This is especially true in the study of stiffness of a thin film or a
nano-graphite sheet. In those circumstances, even a minute crack can have an enormous c=h
ratio. An example of thick plate application may be randomly distributed faults, which usually
have large c=h ratio comparing with the thickness of the earth crust.

It is interesting to note that in traditional averaging procedure the evaluation and
homogenization of material damage proceed first in the continuum level, and constitutive
projection procedure (integration through thickness) proceeds second, as if a material is
degraded first, and one built a plate structure later by using the damaged material. Whereas,
the new procedure proposed in this work implies a reversed order of the two procedures. As
if one built a plate structure first by using a virgin material, and then evaluated the plate’s
damage, by homogenizing randomly distributed microcracks within structural theory.
Obviously, in the second procedure, the damage theory as well as the micromechanics
averaging theory are consistent with plate theories, i.e. the effective stiffness is derived
directly based on plate theories providing a relationship that is consistent with the con-
straints imposed by the assumed kinematics.

Appendix A: Crack solutions for a thin plate
Since most crack solutions used in this work are not available in most literature, in this and the
next Appendix, the crack solutions for both thin plate and thick plate are documented.

The thin plate has a single crack from �c to c on the x1-axis and is loaded on its boundary,
assumed to be at infinity.

A.1. Solution for pure bending load
In this case, the plate is loaded at infinity by a uniform constant bending moment (in polar
coordinates) Mrr ¼ M0. The boundary conditions are:

lim
r!1

Mrr

Mrh

Q

0

@

1

A ¼
M0

0
0

0

@

1

A : ðA1Þ

Fig. 6. Effective shear modulus for
Reissiner-Mindlin plates
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Since the moments transform as second rank tensors, the following equations represent the
boundary conditions:

M11 cos2 hþM22 sin2 hþ 2M12 sin h cos h ¼ M0 ;

1

2
M22 �M11ð Þ sin h cos hþM12 cos2 h� sin2 h

� �

¼ 0 :

The crack problem has the following boundary conditions:

lim
x2!0þ

Mc
22 ¼ �M0 8 x1j j < 1 ; ðA2Þ

lim
x2!0þ

o

ox2

Dwc

c2

� �

¼ 0 8 x1j j > 1 ; ðA3Þ

lim
x2!0þ

Qc
2 þ

1

c
Mc

12;1 ¼ 0 (Kirchhoff condition) : ðA4Þ

Note that w is symmetric in both x1 and x2. We seek a solution of the following form:

Dwc

c2
¼ 1

p

Z

1

0

AðaÞ x2j j þ BðaÞ½ �e�a x2j jcos ax1ð Þ da:

By enforcing boundary condition (A4), we find that

BðaÞ ¼ � 1þ m
að1� mÞAðaÞ ;

Dwc

c2
¼ 1

p

Z

1

0

AðaÞ x2j j �
1þ m

að1� mÞ

� �

e�a x2j jcos ax1ð Þ da :

Applying boundary conditions (A2) and (A3) yields the dual integral equations:

1

p

Z

1

0

AðaÞcos ax1ð Þ da ¼ 0 8 x1j j > 1 ;

1

p

Z

1

0

aAðaÞcos ax1ð Þ da ¼ � M0

3þ m
8 x1j j < 1 :

The solution of these equations is

AðaÞ ¼ � M0

3þ m
p

J1ðaÞ
a

:

The solution for total deflection is

Dw

c2
¼ � M0

3þ m

Z

1

0

J1ðaÞ
a

x2j j �
1þ m

að1� mÞ

� �

e�a x2j jcos ax1ð Þ da� M0

2ð1þ mÞ x1
2 þ x2

2
� �

: ðA5Þ

Using this solution the rotations along x1 are
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b1ðx1; 0Þ ¼

M0c
D

4
3þmð Þ 1�m2ð Þ x1; x1j j < 1;

M0cð1þmÞ
D 3þmð Þ 1�mð Þ x1þ

ffiffiffiffiffiffiffiffi

x2
1�1

p
ð Þ þ

M0c
D 1þmð Þ x1; x1j j > 1 ;

8

>

<

>

:

b2ðx1; 0Þ ¼
2M0c

D 3þmð Þ 1�mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

p

; x1j j < 1;

0; x1j j > 1 .

8

<

:

A.2. Solution for pure twist load
This case is similar to the pure bending case, but the remote loading is Mrh ¼ H0 ¼ const.

The boundary conditions are

lim
r!1

Mrr

Mrh

Q

0

@

1

A ¼
0

H0

0

0

@

1

A : ðA6Þ

The crack problem has the boundary conditions

lim
x2!0þ

Mc
12 ¼ �H0 8 x1j j < 1 ; ðA7Þ

lim
x2!0þ

Dwc

c2
¼ 0 8 x1j j > 1 : ðA8Þ

Note that this problem is anti-symmetric in both x1 and x2. By enforcing the anti-symmetry and
Kirchhoff condition, we are seeking the solution of the following form:

Dwc

c2
¼ sgn x2

p

Z

1

0

AðaÞ x2j j �
1þ m

að1� mÞ

� �

e�a x2j jsin ax1ð Þ da :

Applying Eqs. (A7) and (A8), we get the dual integral equations

1

p

Z

1

0

aAðaÞcos ax1ð Þ da ¼ H0

2
8 x1j j < 1 ;

1

p

Z

1

0

AðaÞ
a

sin ax1ð Þ da ¼ 0 8 x1j j > 1 :

The solution to these equations is

AðaÞ ¼ pJ1ðaÞ
a

H0

2
:

The total solution then becomes

Dw

c2
¼ H0

2

Z

1

0

J1ðaÞ
a

x2j j �
1þ m

að1� mÞ

� �

e�a x2j jsin ax1ð Þ da� H0

1� m
x1x2 :

The rotations along x1 are
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b1ðx1; 0Þ ¼
H0c 1þmð Þ
2D 1�mð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

p

x1j j < 1;

0 x1j j > 1 ;

8

<

:

b2ðx1; 0Þ ¼ �
H0c

D 1� mð Þ

Z

1

0

J1ðaÞ
a

cos ax1ð Þ da� x1

8

<

:

9

=

;

:

Finally,

b2ðx1; 0Þ ¼
0 x1j j < 1,

� H0c
D 1�mð Þ

1

x1þ
ffiffiffiffiffiffiffiffi

x2
1�1

p � x1

� 


x1j j > 1 :

8

>

<

>

:

Appendix B: Crack solutions for a thick plate
In this Appendix, we provide the detailed derivation of crack solutions for a thick plate. The
solutions presented here are modifications from references [8, 22–24].

The assumption that p ¼ 0 in a thick plate RVE allows us to define a scalar potential function
U from which the shear forces can be determined through

Q1 ¼
1

c

oU
ox2

; Q2 ¼ �
1

c

oU
ox1

: ðB1Þ

Combining these with Eqs (11) and (12), we obtain two equations in the two unknowns w
and U:

o

ox2
U� �2DU
� �

þ D
o

ox1

Dw

c2
¼ 0 ; ðB2Þ

o

ox1
U� �2DU
� �

� D
o

ox2

Dw

c2
¼ 0 : ðB3Þ

These are the equations we solve for the bending and twist problems.

B.1. Solution for pure bending load
The loading is the same as for the thin plate case, with the same boundary conditions, Eq. (A1).
The crack problem has the boundary conditions

lim
x2!0þ

Mc
22

Mc
12

Qc
2

0

@

1

A ¼
�M0

0
0

0

@

1

A 8 x1j j < 1 ; ðB4Þ

and symmetry arguments dictating

lim
x2!0þ

Mc
12

Qc
2

� �

¼ 0
0

� �

8 x1j j ; ðB5Þ

lim
x2!0þ

wc
;2 ¼ 0 8 x1j j > 1 : ðB6Þ

Again, wc is symmetric in both x1 and x2, but U is anti-symmetric in x1 and x2. We seek
solutions of the form
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Dwc

c2
¼ 1

p

Z

1

0

AðaÞ x2j j �
1þ mð Þ

a 1� mð Þ

� �

e�a x2j jcos ax1ð Þ da ;

U ¼ 1

p

Z

1

0

2aAðaÞ e�a x2j j � e�j x2j j
� �

sin ax1ð Þ da :

For convenience, the general solutions are listed as follows:

M11 ¼ M0 þ
2M0

1þ mð Þp

Z

1

0

2�2a2 þ 1� mð Þ
2

1� a x2j jð Þ
� 


e�a x2j j � 2�2aje�j x2j j
� 	

� a~AAðaÞcos ax1ð Þ da ;

M22 ¼ M0 �
2M0

1þ mð Þp

Z

1

0

2�2a2 þ 3þ m
2
� 1� mð Þ

2
a x2j j

� 


e�a x2j j � 2�2aje�j x2j j
� 	

� a~AAðaÞcos ax1ð Þ da ;

M12 ¼ �
2M0sgn x2

1þ mð Þp

Z

1

0

1þ 2�2a2
� �

� 1� mð Þ
2

a x2j j
� 


e�a x2j j � 1þ 2�2a2
� �

e�j x2j j
� 	

� a~AAðaÞsin ax1ð Þ da :

b1 ¼
M0c

D 1þ mð Þ x1 þ
2M0c

D 1� m2ð Þp

Z

1

0

2�2a2 þ 1þ mð Þ
2
� 1� mð Þ

2
a x2j j

� 


e�a x2j j � 2�2aje�j x2j j
� 	

� ~AAðaÞsin ax1ð Þ da ;

b2 ¼
M0c

D 1þ mð Þ x2 þ
2M0c

D 1� m2ð Þp

Z

1

0

2�2a2 þ 1� 1� mð Þ
2

a x2j j
� 


e�a x2j j � 2�2a2e�j x2j j
� 	

� ~AAðaÞcos ax1ð Þ da ;

Q1 ¼
2M0

1þ mð Þp

Z

1

0

ae�a x2j j � je�j x2j j
� �

a~AAðaÞsin ax1ð Þ da ;

Q2 ¼
2M0

1þ mð Þp

Z

1

0

e�a x2j j � e�j x2j j
� �

a2 ~AAðaÞcos ax1ð Þ da :

Applying the first of boundary condition (B4) and (B6) yields the dual integral equations:

1

p

Z

1

0

~AAðaÞcos ax1ð Þ da ¼ 0 8 x1j j > 1 ;

1

p

Z

1

0

2

1þ m
3þ m

2
þ 2�2aða� jÞ

� �

a~AAðaÞcos ax1ð Þ da ¼ 1 8 x1j j < 1 :

Taking the thick plate limit as �!1, we find
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1

p

Z

1

0

a~AAðaÞcos ax1ð Þ da ¼ 1 8 x1j j < 1 ;

1

p

Z

1

0

~AAðaÞcos ax1ð Þ da ¼ 0 8 x1j j > 1 :

The solution of these equations is

~AAðaÞ ¼ p
J1ðaÞ

a
:

The thick limit rotations then become,

b1ðx1; 0Þ ¼
0 x1j j < 1;

M0c
Dð1þmÞ x1 � 1

x1þ
ffiffiffiffiffiffiffiffi

x2
1�1

p
� �

x1j j > 1 ;

8

>

<

>

:

b2ðx1; 0Þ ¼
2M0c

D 1�m2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

p

x1j j < 1;

0 x1j j > 1 :

(

B.2. Solution for pure twist load
The crack problem has the boundary conditions

lim
x2!0þ

Mc
22

Mc
12

Qc
2

0

B

B

@

1

C

C

A

¼

0

�H0

0

0

B

B

@

1

C

C

A

8 x1j j < 1 ; ðB7Þ

and the symmetry condition requires that,

lim
x2!0þ

bc
1 ¼ 0 lim

x2!0þ
wc ¼ 0 : ðB8Þ

The problem is completely anti-symmetric in x1 and x2. To remain consistent with classical
plate theory, we require that the shear deformation computed via Eq. (5) to match the shear
deformation computed via Eq. (B1). This yields the solutions of following forms:

Dwc

c2
¼ sgn x2

p

Z

1

0

BðaÞ þ x2j jAðaÞ½ �e�a x2j jsin ax1ð Þ da ;

U ¼ 1

p

Z

1

0

�2aAðaÞe�a x2j j þ 1

�2j
1þ 2�2a2
� �

AðaÞ � a
1� mð Þ

2
BðaÞ

� 


e�j x2j j
� 	

cos ax1ð Þ da :

The general solutions are
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M11 ¼
1

p

Z

1

0

�

�4�2a2 þ a2 1� mð Þ x2j j þ 2am
� �

AðaÞ þ a2 1� mð ÞBðaÞ
� �

e�a x2j j þ 2a

� 1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j j
	

sin ax1ð Þ da ;

M22 ¼
1

p

Z

1

0

�

4�2a2 � a2 1� mð Þ x2j j þ 2am
� �

AðaÞ � a2 1� mð ÞBðaÞ
� �

e�a x2j j � 2a

� 1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j j
	

sin ax1ð Þ da ;

M12 ¼
1

p

Z

1

0

�

1� mð Þ �a� 4�2a2

1� mð Þ þ a2 x2j j
� �

AðaÞ þ a2BðaÞ
� 


e�a x2j j þ j2 þ a2

j

� 1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j j
	

cos ax1ð Þ da ;

b1 ¼
1

p
c

D

Z

1

0

�

4�2a2

1� mð Þ � a x2j j
� �

AðaÞ � aBðaÞ
� 


e�a x2j j � 2

1� mð Þ

� 1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j jgcos ax1ð Þ da ;

b2 ¼
1

p
c

D

Z

1

0

�

� 4�2a2

1� mð Þ � 1þ a x2j j
� �

AðaÞ þ aBðaÞ
� 


e�a x2j j þ 2

1� mð Þ
a
j

� 1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j jgsin ax1ð Þ da ;

Q1 ¼
1

p

Z

1

0

�

2a2AðaÞe�a x2j j � 1

�2
1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j j
	

cos ax1ð Þ da ;

Q2 ¼
1

p

Z

1

0

�

� 2a2AðaÞe�a x2j j þ a
�2j

1þ 2�2a2
� �

AðaÞ � 1� mð Þ
2

aBðaÞ
� 


e�j x2j j
	

sin ax1ð Þ da :

Finally, by taking the thick crack limit, �!1, we can obtain the dual integral equations:

1

p

Z

1

0

aAðaÞcos ax1ð Þ da ¼ �H0

1þ mð Þ 8 x1j j < 1 ;

1

p

Z

1

0

AðaÞcos ax1ð Þ da ¼ 0 8 x1j j > 1 :

The solutions to these equations are

AðaÞ ¼ p
�H0J1ðaÞ
a 1þ mð Þ ;

while the thick plate rotations are
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b1ðx1; 0Þ ¼
2H0c

D 1�m2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
1

p

x1j j < 1;

0 x1j j > 1 ;

�

b2ðx1; 0Þ ¼
0 x1j j < 1;

H0c
D 1�mð Þ x1 � 1

x1þ
ffiffiffiffiffiffiffiffi

x2
1�1

p
� 


x1j j > 1 :

8

<

:

B.3 Solution for transverse shear load
The crack solutions in the case of pure shear loading are obtained by solving the following
equations:

Db1 �
1

�2
b1 ¼

o

ox1

1þ m
1� m

Dw

c
þ 1

�2

w

c

� 


; ðB9Þ

Db2 �
1

�2
b2 ¼

o

ox2

1þ m
1� m

Dw

c
þ 1

�2

w

c

� 


: ðB10Þ

The general solutions are

Dw

c2
¼ 2Q0c

1� m2ð Þ

Z

1

0

1� mð Þ
2

x2j jAðaÞ þ BðaÞ
� 


e�a x2j jcos ax1ð Þ da ;

M11 ¼
2Q0c

1þ mð Þ

Z

1

0

�

1� mð Þ
2

a2 x2j j þ am� 2a2�2

� �

AðaÞ þ a2BðaÞ
� 


e�a x2j j þ aCðaÞe�j x2j j
	

� cos ax1ð Þ da ;

M22 ¼
2Q0c

1þ mð Þ

Z

1

0

�

� 1� mð Þ
2

a2 x2j j þ aþ 2a2�2

� �

AðaÞ � a2BðaÞ
� 


e�a x2j j � aCðaÞe�j x2j j
	

� cos ax1ð Þ da ;

M12 ¼
2Q0c

1þ mð Þ

Z

1

0

�

� 1� mð Þ
2

a2 x2j j þ
1� mð Þ

2
aþ 2a3�2

� �

AðaÞ � a2BðaÞ
� 


e�a x2j j

� j2 þ a2

2j
CðaÞe�j x2j j

	

sin ax1ð Þ da ;

b1 ¼
2Q0c2

D 1� m2ð Þ

Z

1

0

�

1� mð Þ
2

a x2j j � 2a2�2

� �

AðaÞ þ aBðaÞ
� 


e�a x2j j þ CðaÞe�j x2j j
	

� sin ax1ð Þ da ðB11Þ

b2 ¼
2Q0c2

D 1� m2ð Þ

Z

1

0

�

1� mð Þ
2

a x2j j � 2a2�2 � 1� mð Þ
2

� �

AðaÞ þ aBðaÞ
� 


e�a x2j j

þ a
j

CðaÞe�j x2j j
	

cos ax1ð Þ da ðB12Þ

Q1 ¼
Q0

1þ mð Þ
1

�2

Z

1

0

�2a2�2AðaÞe�a x2j j þ CðaÞe�j x2j j� �

sin ax1ð Þ da
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Q2 ¼
Q0

1þ mð Þ
1

�2

Z

1

0

�2a2�2AðaÞe�a x2j j þ a
j

CðaÞe�j x2j j
n o

cos ax1ð Þ da :

The solution must be finite at 1 and satisfy the following boundary conditions:

lim
x2!0þ

M22 ¼ 0 8 x1 ; ðB13Þ

lim
x2!0þ

M12 ¼ 0 8 x1j j < 1 ; ðB14Þ

lim
x2!0þ

Q2 ¼ �Q0 8 x1j j < 1 ; ðB15Þ

lim
x2!0þ

w ¼ 0 8 x1j j > 1 ; ðB16Þ

lim
x2!0þ

b1 ¼ 0 8 x1j j > 1 : ðB17Þ

The substitution of the assumed forms into Eqs. (B9) and (B10) yields three coupled ODE’s.
With some work, they can be de-coupled resulting in sixth order equations that can be solved.
Consistency can be used to reduce the number of unknowns to three. Then, Eq. (B13) can be
used to reduce them to two. Employing the remaining boundary conditions, Eqs. (B14) through
(B17) result in four integral equations. We then take a thick plate limit retaining only the
largest terms. This results in two sets of decoupled dual integral equations

Q0

1þ mð Þ

Z

1

0

a 1þ mð Þ þ a
�2

� �

AðaÞsin ax1ð Þ da ¼ 0 8 x1j j < 1 ;

2Q0c2

D 1� m2ð Þ

Z

1

0

AðaÞsin ax1ð Þ da ¼ 0 8 x1j j > 1 :

and

Z

1

0

aBðaÞcos ax1ð Þ da ¼ 1þ mð Þ�2 8 x1j j < 1 ;

Z

1

0

BðaÞcos ax1ð Þda ¼ 0 8 x1j j > 1 :

The solutions to these equations are

AðaÞ ¼ 0 ; ðB18Þ

BðaÞ ¼ 1þ mð Þ�2

2

J1

a
; ðB19Þ

CðaÞ ¼ 1þ 2�2a2
� �

AðaÞ � aBðaÞ : ðB20Þ

yielding the solution

wðx1; 0Þ ¼
Q0c3�2

D 1�mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x1
2

p
x1j j < 1

0 x1j j > 1 :

(
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