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A new approach for calculating strain for particulate media
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SUMMARY

Discrete element modelling is a viable alternative to conventional continuum-based analysis for analysing
problems involving localized deformations of particulate media. However, to aid in the interpretation of
the results, it is useful to express the results of discrete element analyses in terms of the continuum
parameters of stress and strain. A number of homogenization methods have been proposed to calculate
strain in discrete systems; however, two significant limitations of these methods remain. First, none of these
methods incorporate particle rotation effects satisfactorily, although significant particle rotation occurs in
shear bands in both physical tests and numerical simulations of granular materials. Additionally,
observations of the particle displacement fields in shear bands in granular materials indicate that the
displacements within the localizations are erratic. Consequently, existing linear, local interpolation
approaches produce substantial variations in the strain values calculated in adjacent elements in the region
of localization, hindering clear visualization of the strain localization as it evolves. A new method of
domain discretization for calculating strain is proposed. This method is capable of capturing particle
rotation and employs a non-local meshfree interpolation procedure capable of smoothing the erratic
displacements in strain localizations, which better defines their evolution. The proposed method is
validated for problems involving both two and three dimensions. A number of methods are compared with
the proposed method and pertinent insights are made. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS: granular materials; discrete element methods; strain; kinematic homogenization; numerical
simulations

INTRODUCTION

Discrete element methods are promising numerical tools for analysing a variety of problems
involving particulate media. However, continuum methods continue to be the prevailing
numerical approach in research and practice. A discrete element simulation calculates inter-
particle contact forces and particle displacements, while continuum analyses typically provide
results in terms of stress and strain. Various homogenization methods have been developed to
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‘link” the two approaches, and allow the results of discrete element simulations to be compared
with those from the more familiar continuum-based analyses. Static averaging operators can be
used to calculate stress values from the contact forces in discrete element analyses, and
kinematic averaging operators are used to calculate strain. While the calculation of stress for a
discrete system is well defined (e.g., Reference [1]), there is no single definitive approach for
kinematic averaging to calculate strain across particulate media. In this paper, some new
approaches for calculating strain, specifically considering problems involving strain localization
or shear bands, are proposed.

As an introduction to the kinematic homogenization methods proposed in this paper, a brief
overview of recent research into the development of kinematic homogenization methods is
presented. A new discretization approach for kinematic homogenization, capable of capturing
particle rotations, is then proposed. The two-dimensional linear triangulation ‘finite element’
interpolation approach for kinematic homogenization is extended to three dimensions. An
alternative, higher-order, non-local ‘meshfree’ approach is implemented and validated for both
two- and three-dimensional homogenization. Finally, the proposed methods are used to analyse
the results of a discrete element simulation of a biaxial compression test on a dense, two-
dimensional specimen of disks, where a shear band develops after its peak strength is mobilized.

BACKGROUND AND MOTIVATION

Recent publications that offer detailed critical examinations of the available methods for
kinematic homogenization include References [2—4]. For all these approaches, the particle
displacements and rotations are calculated using a discrete element method. The homogeniza-
tion methods are applied as a post-processor to the discrete element analysis to obtain an
average displacement gradient value for a collection of particles. The strain values are then
calculated from the homogenized displacement gradients. For many engineering applications,
an infinitesimal strain field is adequate to describe the deformation state. However, for finite
deformation problems in general, and for problems with large localized deformations in
particular, an infinitesimal strain field is no longer an appropriate measure for deformation. The
definition of the finite strain tensor depends on whether the deformation measure is related to
the reference (original) configuration or the current configuration [5]. When the deformation
measure is related to the reference configuration, the Green strain tensor, £j;, is often used,
which can be expressed as

1
k= 5(”_;,1' Ui k) (1)

where u;; is the displacement gradient tensor. Refer to Zienkiewicz and Taylor [5] for a more
detailed explanation. The undeformed particle coordinates are selected as the reference
configuration for all of the simulations presented here. In addition, the strain contours are
plotted on the reference configuration in all cases.

Several kinematic homogenization methods have been proposed in recent years. For
problems involving strain localizations, it appears that the spatial discretization type approaches
are the most appropriate of the methods currently used for calculating strain in a discrete
system. In the spatial discretization type approaches, a graph, or nodal network, connecting the
particles is created; typically this graph is constructed by considering the particle centroidal
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coordinates. The incremental displacement gradient is calculated by considering the relative
incremental displacement along each edge of the graph, and assuming a linear variation in the
displacement values between adjacent nodes. The spatial discretization methods can be
decomposed into two steps: (1) discretize the domain to construct the graph, and (2) interpolate
between adjacent nodes to calculate the displacement gradient. While earlier approaches differ
in the way in which the graph system is set-up, they all use linear interpolation to calculate the
displacement gradients. Recent evaluations of various kinematic averaging operators (e.g.
References [2—4]) indicate that the strain calculated using the spatial discretization approaches
generally gives a good match to globally applied strain values.

Both Thomas [6] and Dedecker et al. [3] used approaches based on triangulation of the
granular medium and displacement of the particle centroids. Then, in each triangular element, a
linear variation in displacement is assumed. Recognizing the similarity with the finite element
constant strain triangle, the displacement gradient can be easily calculated. As demonstrated by
Thomas [6], the evolution of strain localizations within the granular material can be monitored
using homogenized strain values based on this triangular finite element-type interpolation.
While all of the methods discussed here have been shown to be theoretically applicable in three
dimensions, there have been few, if any, publications considering three-dimensional
implementations.

Other kinematic homogenization methods that have been proposed include an energy-based
method [7] and best fit-type approaches (e.g. Reference [8]). Cambou et al. [4] and Dedecker et al.
[3] clearly demonstrate that Calvetti’s energy method, which equates the strain energy in an
equivalent continuum to the energy stored in the contacts of a discrete system, yields inaccurate
estimates of strain. The best fit-type approach proposed by Liao e al. [8] seeks a translation field
that is close to the calculated displacements of the discrete system. A functional form for the
translation field is assumed, and the method of least squares is then used to determine the
coefficients for the equation. This approach is not well suited to problems involving
localizations, because a highly complex functional form would be required to capture the
displacement field.

All of the existing ‘equivalent continuum’ approaches discretize the domain by considering
only the particle centroids and neglect particle rotations. The experimental studies of Oda and
Kazama [9], amongst others, have indicated that a high gradient of particle rotation appears at
the boundaries of shear bands. Based on the results of experiments on 2-D rod assemblies,
Dedecker et al. [3] concluded that a prevailing phenomenon to explain irrecoverable global
strain is rolling of the particles around ecach other. The work of Oda and Kazama [9] and
Iwashita and Oda [10] further explored the significance of particle rotation effects on the
response of granular materials in two dimensions. A key finding of these studies is that particles
within the shear band experience significant rotation. Thomas [6] also outlined the necessity to
include particle rotations in the kinematic averaging operator. Dedecker et al. [3] proposed a
homogenization method based on the contact displacements that incorporate rotation. This
approach is limited, as rotational effects can only be included along branches of the graph
connecting the particle centroids where the particles are in contact. Furthermore, extrapolation
of this approach to three dimensions is non-trivial.

One limitation associated with the linear interpolation employed in the spatial discretization
approaches is that the associated interpolation error is O(h), where h is the size of the
discretization. Additionally, the strain values at a given point are calculated only based on the
displacements of immediately adjacent particles. Numerical simulations (e.g. Reference [11])
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have shown that the particle displacements within the shear zone are erratic. The linear
interpolation approaches will therefore give strain values with substantial inter-element
variation, making quantification of strain within the localization tenuous. While recognizing
that such disorder is a feature of the localization, it may be desirable to average or smooth the
displacement gradient, so that one may be able to estimate the overall strain at the region with a
strong or weak discontinuity. In this way the evolution of the strain in the localization zone can
be more casily examined. Thomas [6] discussed the difficulties associated with defining the
location of the discontinuity, e.g. plotting the strain contours is complicated by the inter-element
variation in strain values. A higher-order interpolation approach would reduce the interpolation
error and smooth any discontinuous fields (associated with erratic particle movements) enabling
them to become regular concentration fields.

FORMULATION OF PROPOSED STRAIN CALCULATION METHODS

New discretization approach to capture the effects of particle rotation

As discussed previously, the equivalent continuum approaches that discretize the domain by
considering the particle centroidal coordinates are a validated method for kinematic
homogenization. However, particle rotations cannot be accounted for using these approaches.
A schematic diagram illustrating the effects of particle rotation on the calculated strain values is
illustrated in Figure 1(a). When a particle experiences a finite amount of rotation, the
displacements of points on the edge of the particle may differ substantially from the centroidal
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Figure 1. Schematic diagram of proposed discretization approach to capture the effects of
particle rotation on local strain values.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2003; 27:859—-877



NEW APPROACH FOR CALCULATING STRAIN FOR PARTICLE MEDIA 863

displacements, consequently, the displacement gradient values calculated considering the
centroidal coordinates alone do not capture the actual strains that the assembly of particles is
experiencing.

The ‘no rotation’ discretization approach that has been used in previous linear interpolation
methods is compared schematically with the proposed ‘rotational’ discretization approach in
Figure 1(b). The original ‘no rotation’ discretization approach considers only the centroidal
displacements. In the proposed ‘rotational’ discretization method, the displacements of two
points located at a distance from the particle centroid are tracked. A similar idea was used by
Bardet [1] in the boundary displacement method. The displacement of these points is a function
of both the centroidal displacements, as well as the particle rotations. The details of the
approach will differ slightly depending on whether the analysis is two-dimensional or three-
dimensional.

Considering the two-dimensional case, the coordinates of the two ‘tracked’ points (j = 1,2)
for each particle are as follows:

u(j) u(0) | sinw
= —1Yr 2
[v(j)] lv(O)] o1y Losw] @

where u(j) and v(j) are the co-ordinates of the tracked points, #(0) and v(0) are the co-ordinates
of the particle centroid, w is the accumulated particle rotation, r is the particle size (radius for
circular particles), and « is a constant of proportionality to relate the position of the monitoring
point to the particle size (typically, set to 0.9). All of these variables are easy to monitor in a two-
dimensional discrete element analysis.

For the three-dimensional case, the coordinates of the two ‘tracked’ points (; = 1,2) are given
by the intersection of the principle axis of inertia of the particle with the particle boundary. The
time integration approaches for three-dimensional analysis generally keep track of the
orientation of the principal axes of inertia (e.g. Reference [12]). Therefore, as with the two-
dimensional case, no additional calculations are required within the body of the discrete element
code.

Implementation of existing two-dimensional linear approach in three dimensions

Previous discussions of linear interpolation approaches (e.g. References [4,6]) have considered
two-dimensional implementations only. The method proposed by Thomas can be extended to
three dimensions using constant strain tetrahedra in lieu of the constant strain triangles. The
basic principles of the approach are outlined here. The use of tetrahedral elements in three-
dimensional finite element analysis is described by Zienkiewicz and Taylor [13]. The four nodes
of a tetrahedron are the particle centroids, or when rotations are considered, the measured
points. Using linear interpolation, the displacement at any point (with co-ordinates (x, y,z)) in
the tetrahedron can be expressed as

ulx, y,z) = By + anx + diny + aizz

v(x, ¥,2) = Py + @aix + any + axnz

w(x, y,z) = 3 + anix + any + asz 3)
where u,v and w represent the incremental displacements in the x,y and z directions,

respectively, the a;; values are the averaged displacement gradients for the tetrahedron, and the
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p values are arbitrary constants. The a;; values are constant across each tetrahedron. The strain
values are then calculated using Equation (1).

Implementation of meshfree interpolation approach in two and three dimensions

For a better interpretation of discrete element modelling results, an ideal homogenization
procedure would use a higher order interpolation field (C"(Q2), n> = 1, where C"(Q) represents a
function space, in which functions have continuous n-th order derivatives) with non-local
character. Such an approach would provide a smooth interpolation basis capable of capturing
the high deformation gradient field inside the shear band (and hence the strain field), while also
eliminating the high inter-element variation in strain values associated with local (linear)
interpolation based homogenization (as documented by Thomas [6]). A suitable technique was
found in the literature relating to the ‘meshfree’ methods [14,15]. Meshfree methods have been
used by researchers to simulate strain localization problems (e.g. Reference [16]). In fact, it has
been found that the meshfree interpolants are particularly effective in simulating strain
localization under large deformation.

In contrast to the finite element interpolation, meshfree interpolation is a non-local data
fitting algorithm that is entirely based on nodes, or particles, it does not require either elements
or a mesh. The commonly used meshfree shape functions can interpolate over a set of randomly
distributed particles in space with optimal accuracy. A shortcoming of the spatial discretization,
graph-based approaches is that they impose a mesh constraint on the discrete system while
interpreting the DEM data. The advantage of using meshfree interpolants to homogenize DEM
data is that one can interpret DEM data without imposing an additional topological constraint
to the system.

In the current study, we are only utilizing meshfree shape functions to homogenize or to
smooth the discrete data set obtained from DEM analyses. Other aspects of the
meshfree methods are not considered here. For a more detailed description of
the meshfree methods readers may consult References [14,15]. The application of meshfree
methods to geotechnical applications was explored by Murakami et al. [17], who used EFGM
(element-free Galerkin method) analysis to analyze consolidation. A previous, but limited,
investigation of the application of meshfree shape functions to strain calculation in discrete
element simulations is described by Horner [18]. Horner’s study was largely limited to a linear
shape function, and the strain values were calculated by first calculating the spatial velocity
gradient.

A schematic diagram of the approach used in the non-linear interpolation is illustrated in
Figure 2. The displacement values are known from the DEM simulation. A rectangular grid is
generated to serve as a referential continuum discretization over the volume of particles under
consideration. The interpolated displacements and displacement gradients are then calculated at
these grid points using the meshfree interpolants. A compact support is associated with each
particle that defines its zone of influence, i.e. the area over which the particle contributes to the
interpolated displacement field, and hence the average strain field. For the analyses discussed
here the compact support associated with each particle is a multiple of the particle radius. The
particular meshfree interpolant adopted is the meshfree interpolant used in the so-called
reproducing kernel particle method (RKPM) [19].

At an arbitrary position inside a particulate aggregate, the displacement field can be expressed
in terms of the nodal displacements at the tracked points. That is the interpolation is sampled at
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Figure 2. Schematic diagram of meshfree interpolation approach.

the tracked points,

NP
u(x) = Z K, (x — x;, x)u(x;)AV;
=1

865

“4)

where N, is the number of tracked points, AV} is the nodal weight, and the term K,(x — x;,x) is

given by
Kﬂ(x - xiax) = Cp(x - xinx)q)p(x - xl'ax)

where C,(x — x;,x) is a correction function to reduce the interpolation error, and

D,(x) = %¢<%) d =2, for 2D and d = 3, for 3D

©)

(6)

is a compact supported window function, where p is the dilation parameter that defines the size
of the window function. In this paper, the cubic spline function is chosen as the compact

supported window function,

</5(x)=é(x+2)3 —2<x< — 1
¢(X):§*x2(l+x/2) —1<x<0
P =221 —x/2) 0<x<l

(x) :é(x— 2 1<x<2

¢(x) =0 otherwise

(7a)

(7b)

(7o)

(7d)

(Te)
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In higher dimensions, the window function is formed as a Cartesian product, i.e.:
D(x,y) = Ppx)P(y)
d(x,y,2) = pX)P(¥)(2) ®)

To calculate the meshfree shape function, K,(x — x;,x), at each sample point i (tracked point) the
size of the compact support must be known. In two dimensions, the compact support is a circle
centered at the tracked point with a typical radius w = 2r, where r is the radius of the circular
particle associated with the tracked node. While in three dimensions, the compact support is a
sphere of radius with a typical radius w = 2r, where r is the radius of the spherical particle
associated with the tracked node.

There are several ways to calculate the correction function. The simplest way is to use the
condition of partition of unity,

NP
> Colx = x0,0)¢,()AV; = 1 ©)
i=1

to determine C,(x — x;,x) at an arbitrary point x. To obtain higher order interpolation accuracy,
one may enforce certain ‘reproducing conditions’ and find the correction function by solving a
moment equation. For details, readers may consult Liu ez al. [20].

Each tracked point is also associated with a weight, AV;, which may be calculated by first
triangulating the system in terms of all the tracked points. Then each tracked point is a vertex of
a number of triangles. The weight, AV;, can then be determined as

1 &
AV=— Ay (10)
Ny k=1

where AQy represents the area of a triangle with a vertex at the tracked point 7, Nt is the total
number of triangles with vertices at point i, and N, is the number of vertices per triangle (N, is 3
in two dimensions). Similarly, in three dimensions, the system was divided into tetrahedra, and
the incremental volume associated with particle i, was calculated by considering the tetrahedra
with vertices at point i (Ny is 4 in three dimensions).

The two-dimensional shape function described above is plotted in Figure 3(a). Visualization
of the 3-D shape function is non-trivial. In Figure 3(b), the variation in magnitude of the shape
function is illustrated with shading. The region with darker color indicates where the shape
function value approaches zero, while white or bright color indicates the region where the shape
function is a maximum.

VALIDATION OF PROPOSED METHODS

Two-dimensional case

The approach proposed by Dedecker et al. [3] and Bagi and Bojtar [2] is used here to validate the
proposed kinematic averaging methods. A biaxial compression test on a disk specimen was
simulated using the two-dimensional DEM code, PFC-2D [21]. The test specimen is illustrated
in Figure 4(a). The specimen contained 1052 circular disk particles, with a mean particle radius
of 0.174 m and a standard deviation of 0.014 m. The particle density was 2.6 x 10* kg/m?>.
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(b)

Figure 3. Shape functions for meshfree interpolation: (a) two dimensions and (b) three dimensions.

Contact was modelled using linear normal and shear springs with a stiffness of 5 x 10’ N/m.
A PFC damping coefficient of 0.2 was used, and the interparticle coefficient of friction was
0.324. The specimen was enclosed by four rigid walls. Using a servo-controlled system, the wall
velocities were initially adjusted to attain an isotropic stress condition with o, = 0., = 50.7 kPa.
Once the specified isotropic stresses were achieved, the top rigid boundary was moved
downwards with a constant velocity, while adjusting the velocity of the lateral boundaries to
maintain the specified o,, values. The resulting specimen response is illustrated in Figure 4(b).
The points at which the strain calculation methods were applied for the validation study are
identified in Figure 4(b). The global axial and lateral displacement gradients were calculated
from the boundary displacements. While the rigid, lateral boundaries inhibit the development of
free localizations in the specimen, this validation approach is an effective way to demonstrate
the accuracy of the kinematic averaging operators in both directions.
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Figure 4. Validation of 2-D kinematic averaging approaches: (a) test specimen configuration
and (b) specimen response.

Four kinematic homogenization approaches were considered; linear interpolation using both
the ‘no-rotation’ and ‘rotational’ discretizations, and non-linear meshfree interpolation using
both discretization approaches. For the ‘rotational’ discretization, the measured points were
located at 0.9 times the disk radius from the disk centroid. The grid used in the non-linear
interpolation had 40 points in the x-direction and 80 points in the y-direction. The radius of the
window support for each disk is twice the disk radius. The average global displacement
gradients, a2°%! and @&°¥ as calculated from the boundary conditions, are compared with the
mean displacement gradients, a,, and a.., in Figure 5. The accuracy of the linear interpolation
method with the ‘no-rotation’ discretization approach has already been demonstrated by
Cambou et al. [4], and the other approaches are also seen to give a good match to the values
calculated from the boundary conditions. The non-linear meshfree interpolation over-estimates
the lateral displacement gradient values slightly and underestimates the axial displacement
gradient values slightly for large strain values.

Three-dimensional case

Both the linear and the non-linear interpolation methods were implemented in three dimensions,
and as before the ‘no-rotational’ and ‘rotational’ discretizations were considered. A ‘servo-
controlled’ triaxial compression test was used to validate the interpolation approaches. The
three-dimensional simulations used a modified version of the three-dimensional DEM code
Ellipse3D [12]. The modifications that were made to this code are described in O’Sullivan [22].

The discrete element simulation contained 9000 spherical particles with radii of 0.4, 0.5, and
0.6 cm (ratio of 1:1:1), which were randomly generated in a rectangular box with dimensions
20 cm x 20 cm x 40 cm. The particle generation subroutine used is a modified version of the
Ellipse 3-D particle generation subroutine. The radii of the spheres were then gradually
uniformly expanded to attain a target void ratio of 0.6. A similar approach is used by Itasca [21].
The particles had a scaled density of 2 x 10% kg/m?. As with the two-dimensional simulation,
particle contact was modeled using linear normal and shear springs with a stiffness of
1 x 10 N/m. The interparticle coefficient of friction was 0.3.
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Figure 5. Comparison of golbal and average displacement gradients: Validation of 2-D
kinematic averaging approaches.

Once the required void ratio was attained, a measurement sphere, centered at the center of the
specimen was created, and the specimen was brought into an isotropic stress state with ¢,, =
o,y = 02z = 100 kPa. A ‘servo-controlled’ system was used to achieve this initial stress state. The
void ratio at the start of the triaxial compression test was 0.618. During the simulation the top
plate of the box was moved downwards with a constant velocity. The positions of the lateral
specimen boundaries were adjusted to maintain constant lateral stresses of gy =gy, = 100 kPa.
Figure 6(a) illustrates the initial specimen configuration.

The specimen response is illustrated in Figure 6(b). The stresses were measured using a
measurement sphere [1]. The average displacement gradients a; obtained using the linear and
non-linear interpolation methods and the ‘rotational’ discretization are compared with the
global displacement gradients, 2", (calculated from the boundary conditions) in Figure 7.
Overall, a good match is obtained between the aﬁlObaland the a; values for all the
homogenization methods examined in this study.

STRAIN LOCALIZATION STUDY

Simulation of dense biaxial compression test

A discrete element simulation of a two-dimensional compression test on a dense specimen of
randomly arranged disks was performed to allow evaluation of the ability of the linear and non-
linear interpolation approaches to capture the development of a localized shear band. The
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Figure 6. Validation of 3-D kinematic averaging approaches: (a) initial particle configuration and (b)
specimen response for 3-D servo controlled triaxial test.
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Figure 7. Results of validation of three-dimensional kinematic averaging approaches:
Comparison of global displacement gradients and average displacement gradients for linear
and non-linear interpolation with ‘rotational’ discretization.

influence of particle rotation on the calculated shear strain is also investigated for the non-linear
meshfree interpolation approach.

The simulation was performed using the two-dimensional DEM code, PFC-2D. The specimen
contains 12512 disks and is illustrated in Figure 8(a). The specimen was created using the
specimen generation approaches proposed by Itasca [21]; the particle radii were generated to be
uniformly distributed between 0.075 and 0.100 cm and to have an initial porosity of 0.1. The
specimen dimensions are 18 cm wide by 36 cm high. The simulation of the biaxial compression
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Figure 8. Biaxial test with 12 512 disks: (a) initial disk configuration and (b) specimen response.

test used the ‘stress controlled membrane’ algorithm proposed by Thomas and Bray [23] and
implemented in PFC. The simulation used a scaled particle density of 2 x 10° kg/m?, linear
normal and shear contact springs with a stiffness of 5 x 10’ Nm, and an interparticle coefficient
of friction of 0.3.

The specimen response plotted as the angle of friction mobilized as a function of axial strain is
given in Figure 8(b). The specimen attained a peak angle of mobilized friction of 22.4° at an
axial strain of 1.2%. Representative plots of the incremental displacements are given in Figure 9.
To aid in the visualization, only the particle displacement vectors whose magnitude exceeds the
magnitude of the median particle displacement are shown. At small strain levels, the
displacement localizations are not distinguishable; however, with increasing strain, two
localization zones can be seen. After the peak stress has been reached, i.e. strains exceeding
1.3%, the localization that dips to the left can be seen more easily.

Considering the particle rotations, at each strain level the mean clockwise particle rotation
and the mean counter-clockwise particle rotation were calculated. The rotations that are greater
in magnitude than these mean values are then illustrated in Figure 10. The particles whose
rotation exceeds the mean counter-clockwise rotation are indicated as solid black circles. The
particles whose rotation exceeds the mean clockwise rotation are indicated as hollow circles. In
both cases the shear band locations are defined by the locations of the zones of maximum
rotation. The trend is for clockwise rotations to dominate in the localizations that dip to the left,
while the rotations in the localizations that dip to the right tend to be counter-clockwise. This
pattern of rotation direction is similar to the observations of Iwashita and Oda [10]. For circular
disks with rotational resistance at the contact points, Iwashita and Oda [10] found that the disks
in the shear band dipping to the right experienced clockwise rotation, while the disks in the
shear band dipping to the left experienced counter-clockwise rotation. In contrast to the results
presented here, Iwashita and Oda [10] found that disks in the specimen with no rotational
contact resistance (as is modeled in these simulations) showed no definite tendency to rotate in
either direction.
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Figure 9. Plot of incremental displacements, for biaxial test with 12512 disks (Only incremental
displacements exceeding the median value are shown). The rectangular box indicates the area of the
specimen for which strain contour plots were developed.

Evolution of local strain distribution

Three homogenization methods were used to calculate the strain values for this system: linear
interpolation with ‘no rotation’ discretization, non-linear meshfree interpolation with ‘no
rotation’ discretization, and non-linear meshfree interpolation with ‘rotational’ discretization.
For the non-linear meshfree interpolation the window size for the interpolation (w,) was set to
1 x r, where r is the particle radius. For ease of visualization, the strain contours were developed
over a portion of the specimen shown in Figure 9 where the shear bands developed. The grid
used to calculate the strain values had 100 points in the x-direction and 200 points in the y-
direction. For the ‘rotational’ discretization the measured points were located at 0.9 times the
disk radius from the disk centroid.

Contour plots of the calculated shear strains are illustrated in Figure 11 for each of the three
cases: (a) linear FEM-type interpolation, (b) non-linear meshfree interpolation with ‘no-
rotation’ discretization and (¢) non-linear meshfree interpolation with ‘rotational’ discretization
for the deformed specimen at an axial strain of 2.65%. In these plots, the strain contours are at
intervals of 0.25, and the color scale runs from 0 to 4. The linear interpolation approach and
the non-linear ‘no-rotation’ approach yield similar strain contour distributions. However, the
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Figure 10. Plot of accumulated rotations, for biaxial test with 12512 disks. The filled circles indicate
clockwise rotation (exceeding the mean clockwise rotation value), while the hollow circles indicate anti-
clockwise rotation (exceeding the mean counter-clockwise rotation value).
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Figure 11. Plot of shear strain contours for biaxial test with 12 512 disks. The strain values are
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illustrated by shading.
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non-linear ‘rotational’ interpolation identifies the secondary regions of localization more
effectively than either the linear interpolation approach or the non-linear, ‘no-rotation’
approach.

The volumetric strain contours are illustrated in Figure 12 for these same three interpolation
schemes. There is a significant amount of ‘noise’ away from the zone of localization. The areas
of the specimen that exhibit a contractive response tend to be located away from the
localization, while the arecas of the specimen that exhibit a more dilative response are located
closer to the localization. The shape of the localization is similar for all three schemes. However,
the non-linear interpolation with the ‘rotational’ discretization produces a localization that is
longer in extent at an axial strain of 2.65% in comparison to the other two cases.

Considering the strain contour plots shown in Figures 11 and 12, it is important to realize that
for the non-linear meshfree interpolation approach the results are somewhat sensitive to the size
of the widow used in the interpolation function. The strain calculations were repeated using a
window size of w = 2 x r, where r is the particle radius. The maximum strain values obtained
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Figure 12. Plot of volumetric strain contours for biaxial test with 12512 disks. The strain
values are illustrated by shading.

45 547
——— Linear %2
o Meshfree -
> a3 = Without Rotation, w=r = 3
- [
c Meshfree =
© With Rotation w=r (7]
&Hh 27 Meshfree o 27
,_ Without Rotation w=2r =
3 Meshfree [
£ 1+ With Rotation w=2r €1
[72] =] 1
1 o
0 >O TV
1 2 3 4 5 6 1 2 3 4 5 6
Global Axial Strain, % Global Axial Strain, %

Figure 13. Comparison of maximum strain values for window sizes w =1 x rand w =2 x r,
for biaxial test with 12 512 disks.
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with each approach are provided in Figure 13. The maximum strain values calculated with the
larger window size are significantly smaller than those calculated with the smaller window size,
and these values are now less distinguishable from those calculated using the other interpolation
schemes. The strain contour distributions were also affected by the window size. In comparison
to the results obtained using a window size of 1 x r, the effects of particle rotation on the
calculated shear values are no longer apparent for larger window size. The narrow width of the
shear band for this particular problem requires a restricted window size to capture the
localization and to examine the effects of particle rotations on the strain values.

CONCLUSIONS

New approaches to kinematic homogenization for interpreting the results of discrete element
simulations have been presented. This work was motivated by the inability of the currently
available methods of kinematic homogenization to capture effectively particle rotations. In
addition, all of these pre-existing strain calculation methods used some type of local, linear
interpolation. Moreover, the effectiveness of these methods to capture the development of
localizations in granular materials has not been examined widely. Lastly, while the existing
methods of strain calculation were known to be theoretically applicable in three dimensions, the
three-dimensional formulations had not been implemented.

In this paper, a simple approach for discretization of the granular material, which can capture
particle rotations, has been proposed, and details for both the two-dimensional and three-
dimensional implementations of this approach were presented. Using the meshfree interpolants,
a non-linear interpolation approach has also been developed and implemented in two and three
dimensions. In addition, the linear (FEM-type) interpolation method (currently the most
popular interpolation approach in two dimensions) was extended to three dimensions.
Simulations were then carried out in both two and three dimensions to validate the proposed
kinematic homogenization methods.

A simulation of a biaxial compression test on a dense specimen of circular disks was carried
out to compare the strain values calculated using the proposed methods. Several distinct
localizations developed in this specimen after the peak strength was mobilized. Considering the
larger-scale simulations with irregular packing, the linear interpolation approach gave results
that were similar to the non-linear interpolation approach when the ‘no-rotation’ discretization
was employed in both cases. However, the effects of particle rotation on the calculated strain
values were found to be important. Strain localizations could be more easily visualized when the
non-linear meshfree interpolation approach with ‘rotational’ discretization was adopted. In
addition, the amount of dilation within the localization zone, as well as the shear strain in the
localization zone, increased when the particle rotation effects were taken into account. However,
the results of the meshfree interpolation are sensitive to the size of the compact support of the
window function. As the support size increases, the calculated maximum strain values decrease
and the localization becomes less well defined. The sensitivity to the support of the window
function size appears to decrease as the extent of the localization (relative to the particle radius)
increases. Other researchers who have developed techniques to examine the evolution of local
variables in granular materials have observed similar sensitivities to the size of the control
volume used to monitor the variable in question.
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These approaches also have applicability beyond interpreting the results of discrete element
simulations. A number of researchers (e.g. References [9,24]) are using image analysis techniques
to study the development of localizations in soil. Because three-dimensional image analysis of
granular materials is difficult, researchers have found it is more tractable to consider two-
dimensional projections of the three-dimensional particles. The kinematic homogenization
methods proposed here could be used in conjunction with such image analysis studies to explore
the development of localizations in granular materials in experimental studies.
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