On Global Energy Release Rate of
a Permeable Crack in a
Piezoelectric Ceramic

A permeable crack model is proposed to analyze crack growth in a piezoelectric ceramic.

S. Li In this model, a permeable crack is modeled as a vanishing thin, finite dimension, rect-
Department of Civil and Environmental angular slit with dielectric medium inside. A first-order approximation solution is derived
Enginesring, in terms of the slit height, i The main contribution of this paper is that the newly
University of California, proposed permeable crack model reveals that there exists a realistic leaky mode for
Berkeley, CA 94720-1710 electrical field, which allows applied electric field passing through the dielectric medium

inside a crack. By taking into account the leaky mode effect, a correct estimation of
electrical and mechanical fields in front of a crack tip in a piezoelectric ceramic is
obtained. To demonstrate this new finding, a closed-form solution is obtained for a mode
Il permeable crack under both mechanical as well electrical loads. Both local and global
energy release rates are calculated based on the permeable crack solution obtained. It is
found that the global energy release rate derived for a permeable crack is in a broad
agreement with some known experimental observations. It may be served as a fracture
criterion for piezoelectric materials. This contribution reconciles the outstanding discrep-
ancy between experimental observation and theoretical analysis on crack growth problem
in piezoelectric materials{DOI: 10.1115/1.1544539

1 Introduction local energy release rate criterion was subsequently proposed to
asure the fracture toughness of piezoelectric materials. The lo-
energy release rate criterion is based on the so-called
ration-strip model, or equivalently an electric dipole distribu-
model, which is basically a domain switch strip-zone model
that is taking into account the nonlinearity induced by the overall
effect of domain switching. The saturation-strip model is the di-
rect analogous of Dugdale crack in a cohesive elastic medium of
classical fracture mechanics.
. The local energy release rate criterion was an immediate suc-
[26,27, Yang [.21'274 among others_. A recent article by Zhangcess, because itggrovides a plausible explanation on Park-Sun’s
et al.[2_8] provides an excellent review. . . . empirical formula of energy release rafd1,12. However, the

A major challenge in fracture mechanics of piezoelectric matﬁissipative nature of saturation-strip model seems to be a nui-
rials has been how to resolve an outstanding discrepancy betwg Rce e.gl27].
exper!mental observation and theoretic_analysis. In a landmarky, tr’1is Wé)l’k, a permeable crack model is carefully crafted to
experimental work by Park and Sual], it was found that the e ger 4 tractable solution for mode Ill crack, while retaining all
experimental observation contradicts with some basic aspectsyof main features of a permeable crack. By doing so, it provides

fracture mechanics theory of linear piezoelectric materials. Fgp opnortunity to systematically reexamine the permeable crack
instance, the experimental results obtained by Park and Bln ¢, iution of a piezoelectric ceramic.

show that there is a decrease in the critical stress of a cracked

piezoelectric body if the electric field is applied along the direc-

tilon of pfqlilrég_ axis, ;e_mg the{‘e is an irjcr%a_lse in critichal stress if tk% Formulation of the Problem
electric field is applied to the opposite direction, whereas accord- ) e L .
ing to linear fracture mechanics theory, the applied electric field Con3|_der a c_rack with f'n't? dlm_enS|on in the m|§jdle ofa trans-
does not induce any nonzero stress intensity fa@ay., Pak1,2] versely isotropic piezoelectric solid under the antiplane mechani-
and Suo et al[6]), and it always predicts a negative definite en(-:""lek:;‘ﬁl3 vaz;nnc: ftigf d'CéE:;EE:Iaefemcal load. bat=X andx,=Y.

ergy release rate regardless the directions of the applied elec?m:

Fracture mechanics of piezoelectric solids has been an actg\}a
research area since early 1990s due to the widespread use of sg}ﬁ[}
materials and smart structures. Many research works have b«ﬁgﬂ
published in the past decade, e.g., PaR], Li et al. [3], Sosa
[4,5], Suo et al[6,7], Dunn[8], Dascalu and Maugi[®,10], Park
and Sur{11,12, Gao and Barneftl3], and Gao et al.14], Lynch
et al. [15,16, Zhang and Hack17], Fulton and Gad18], Ru
[19,20, Yang and Zhij21-23, Zhang et al[24,25, McMeeking

fields, which implies that the applied electric field always retards U=u,=0, us=w(X,Y);
crack growth.
Using micromechanics concepts related to domain switching, do d¢

Gao and his co-workers 3,14,18 argued that crack growth in a Es=0, E=—

D) A
piezoelectric solid is a multiscale phenomenon, and the local en- ) )
ergy release rate may be a critical factor in fracture process.FRT the symmetry class of 6 mm piezoelectric crystal, or general
piezoelectric composite possessing the same symmetry, the rel-
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which interacts with both the mechanical field as well as the elec-
trical field outside the crack along the crack surfaces. To capture
this interaction, one has to employ the exact boundary conditions
of both continuum mechanics and electromagnetics to solve the
crack problem.

Instead of imposing various combinations of boundary condi-
tions to show the coupling between the primary variables and their
conjugate pairs, only standard mixed boundary value problems are
considered heréMalvern [30] and Jacksom31]). The boundary
conditions or interface conditions for two different dielectric me-

dia are
Fig. 1 Convention for boundary conditions + mechanical boundary conditions
nflel]J=-T onS,; u=0onS,; (10)
aw d¢p « electrical boundary conditions
Dx= elSW_ Eilﬁ (3)

n-[ID]]=gs on Sy and nX[|E[]=0 on S (11)
Du—e ow & 5_¢ @) whereS, , S, identify appropriate subsets of the domain boundary

YT RISy gy and S=S,US,. Note that the notatiofi|f|]:==f"—f~, and the

normal vectom is pointing from medium-to mediumt+as shown

Subsequently, the Euler and Maxwell equations take the form in Fig. 1. In electrostatics, conditiofl1l) can sometimes be re-

cEV2w+esV2¢=0 (5) placed by the continuity condition of electric potential, i.e.,
[|¢|1=0. It should be noted the&,NS,=0, butSyNSg#0.
e15V2W—€3,V?¢=0 (6) In this paper, a planar permeable crack is modeled as a vanish-

ing thin, finite dimension, rectangular-shaped slit with heigihg 2

where and width 2a as shown in Fig. 2.
) & & As hy—0, the permeable crack becomes a conventional math-
v =ox2 + a2 ematical crack. One may write the crack height as the function of
X,
Since the determinant
cE, e h(X) o, [X|<a (12)
15 =
— e44 140 ) 0, |X|>a.
— €
o . ) ) The interior region of the crack is denoted as the(3gt
one can decouple the system of governing equations
Qu:={(X,Y)|—a<X<a, and —hg<Y<hg}. (13)
V2w=0, Y(X,Y)eR%Q,, (8a) , . o . ,
5 5 Adjacent to the slit, there are two semi-infinite strips, which are
Vep=0, V(X,Y)eRQ,, (8b)  denoted ad),,
where(},, is the void space inside the crack. Qe={(X,Y)|la<|X] and —hy<Y<hg} (14)
<={(X, , .

Note that the coupling between mechanical and electrical vari-
ables_stlll exists in boundary condltlons. For perr_negble crack§, Crack Solution
there is a nonzero electrical field in the free space inside the void,

and the electrical potential inside the cragk, satisfies the equa- _Consider a mode Il permeable crack that is perpendicular to

tion the poling direction(out plane, and it is subjected to remote
~ traction and charge distribution at remote boundase Fig. 2
V2$=0, xeQy 9) Let T=r.e, andgs=—(..
Teo
PPPOPOPOEOPOEOEOEO® ——m—e—>—
Teo q.
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Fig. 2 A permeable crack with remote traction and charge distribution and surface charge distribution at the corner of the crack
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n-[lofl=-T—oy=r., VYo (15)
n-[|D[]=0s—Dy=q.., VY- (16)
whereqs=—0., .

The boundary conditions on the crack surfaces
n-[le]]=0, VY==*h, and |X|<a @a7)
n-[|D|]]J=gs, VYY==hy, and |X|<a (18)
nX[|E[]=0, VY=xh, and [X|sa (19)

take the form
ovAX,thg)=0, V|X|<a (20)
Dv(X,=hg)—D%(X,+£hg)=0, V|X|<a (21)
Ex(X,*ho)—E&(X,*hy)=0, V|X|<a. (22)

The following symmetry conditions will be useful as well,

w(X,00=0, V|X|>a (23)

#(X,00=0, V|X|>a (24)

$*(X,00=0, VO<|X|<a (25)
or

Ex(X,00=0, V|X|>a (26)

E3(X,00=0, VO0<|X|<a. (27)

In the dielectric medium inside the cracRi=e,E> and E?
=— d)f’} ,i=XY.

Separate the displacement and electric potential fields into two
parts: a uniform part due to the remote boundary conditions and a

disturbance part due to the presence of the crack.

w=wy+Ww (28)
$=dot ¢ (29)
and choose
Wo=7xY, ¢o=—E.Y (30)
and
0 =Chgy.—€1E.. (31)
0 =€157.+ €74E (32)

such thatw, ¢—0 asY—x.

It is convenient to write the inverse relationship among key

physical variables on the remote boundary,

1 s
%c:I(EllToc"‘ €150) (33)
I
1 E
Em:A_i (—e157: 1+ Cgi0s), (34)
whereA, :=c,el+e?e.
Extend the definition domain ap? into Q,UQ, and let

~ #?—¢g, Y(X,Y)eQ

= ’ ' (35)

0, V(X,Y)eQq

where the uniform part of the electric potential is the leaky mode,

which is chosen agg:=—q../¢,Y.
Introduce the Fourier cosine transform

248 | Vol. 70, MARCH 2003

F*(£,Y)= \[ﬂf F(X,Y)cog {X)dX
F(X,Y)= \[WJ F*(£,Y)cod £X)d¢

where F(X,Y)=w(X,Y), ¢>(X,Y), and ¢a(X,Y), andF*(¢Z,Y)

=W*(£,Y), $*(£.Y), and " (£,Y).
The transformed governing equations become

(36)

2

* 2% —
av2 F*+°F (37)
Within the piezoelectric ceramic,
W*(Z,Y)=A(0)exp—LY), VYY>O0 (38)
S*(LY)=B(l)exp(—LY), VY>O0. (39)
Inside the permeable crack,
6% (£,Y)=C({)sin(ZY), VY>0 (40)
which satisfies the symmetry conditi&b?(x,o)=0.
Consider the boundary condition
Ex(X,*=hg)—E&(X,£hg)=0, |X|<a (41)
and the symmetry condition
Ex(X,00=0, |X|>a, (42)
and in the extended domain
E4(X,00=0, |X|>a. (43)
Combining Eqs(41)—(43), one may find that
Ex(X,=h(X))—E3(X,£h(X))=0, V—oo<X<+o
(44)
where functionh(X) is defined in Eq(12).
In transformed space(Y), the condition(44) reads as
E5(L,+h*(0)—EY (L, =h*(0)=0, VO<{<+x (45)
where
sin(a
h*(£)=ho m({ 2 (46)
Considering Eqs(39) and(40), one has
1
B(¢)=C({) 5 (exp(2¢h*(£)) 1)
2
=C(¢)| hgsin(ag)+h3 sirf(ag) + 3 h3sinf(a?)+ ... |.
(47)
Let
A(D)=A1(D+hoAx(O) +hGAS(D) + . .. (48)
B(£)=B1({)+hoBa(§) +hiBs(H)+ . .. . (49)
By virtue of Eq.(47),
B1({)=C({hgsin(ag) (50)
B2(£)=C({)hgsir’(a) (51)
2h
Ba(£)=C(¢) 3~ si(ag) (52)
(53)

After the Fourier transform, the boundary conditi@il) be-
comes

Transactions of the ASME



2 o0
\[; fo H{lesA0) — €2iB(2) Jexpl —hol)

—€oC({)cosh{Zhg)}cog (X)d{=0, VO0<X<a.
(54)

Note the subtlety in terms of crack surface position between Eg.
(45) and Eq.(54). In the physical plane, the upper crack surface is

at Y=hy for |X|<a, whereas in the transformed plan¥,
=h*(¢), 0<¢<w.
Consider the series expansion

[e1sA() — €3B(0) 1=[e1sA1({) — 1+ hol e15A2(¢)
—n1Ba(0) ]+ hi[e1sA3(0) — €11B3({)]
+ ... (55)

(hof)z (ho§)3
2 3!

€11B1({)

exﬂ—h0§)=l—h0§+

(56)

(hot)?
+ 51 +

coshhg)= (57)

Assume that the permittivity constant,, is very small and

Considering the symmetry condition&(X,0)= ¢(X,0)=0,
V|X|>a. Two sets of standard dual integral equations may be

comparable td,. The following asymptotic series integral equa-

tions may be derived:

\/E * s €p d
;Lg e15A1({) — 611+W B1({) (cog¢{X)d{
=0, V0<X<a (58)
2 el
\/;JO {= P([e1sA1(0) — €2B1(D) ]+ {lersAa(d)
—e21Ba({)]}cog{X)d¢=0, YO0<X<a (59)
(60)

In the remainder of this paper, only the first-order approxima-

tion is considered. Moreover, whelm,— 0, sin@) is always

bounded. To render a tractable solution, we adopt the following

average approximation:

hg sin(ad)~hgsin(al)—0

- L w1l
sm(a§)==\[5fo sin(ag)d¢= \@5

The identity(62) is in the sense of a generalized functi@ee
Erddyi et al. [32] or Lighthill [33], p. 33.

(61)

where

(62)

Let
a \/E a
Equation(54) becomes
2 o0
\/; J; {(e1sA(D— (6fl+ €or)B1({))cog(X)d(=0,
Vo<X<a. (64)

The first-order approximation of boundary conditi(0) pro-
vides the additional integral equation

2 o0
\[;fo §(CE4A1(§)+elsBl({))COS{§X)d§=Tx, Vo<X<a.
(65)

Journal of Applied Mechanics

derived;
4 2 0
\[;fo EALQ)cot£X)d=S, [X|<a
B (66)
fOA1(§)00$§X)d§=0, IX|>a
and
2 o0
\/;JO (Bi(Ocost X)de=T, [X|<a
. (67)
fo B1({)cog¢X)d{=0, IX|>a
where
(Efl-i-eor)q'oc
S=——f—— (68)
€157
Ti=—3 (69)
andA =cE (3, + eor) +e%.
Let
A1(§>f\[ 57 (@0 (70)
Bl<§>=\[2 7 1(a0). (71)
Consequently, one may find that
w(x,Y)znyer fg“lJl(al)cos@X)
X exp(— £Y)d¢ (72)
6157'00 *
(X,Y)=—E.Y+ af 1y (ag)cog £X)exp — LY)dE
0
(73)
and
(et en)T. [VaP-X%  [X|<a
W(X'O)_T[o, IX|>a 74)
et [Va?—X3,  |X|<a
#(X,0)= {0’ X|>a (75)

4 Intensity Factors

Let Y=0. The asymptotic fields of both mechanical and electric
variables in front of the crack tip are found as follows:

(eter)r, X (et €l) e
€yz= A X2— g2 Hlre— A
+higher order terms (76)
_ €157 X €157 .
Ey=— A X2—a2+ E.+ A +higher order terms
(77)
"X+ higher order t (78)
Oy = igher order terms
Nl
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D= elsfor T X
A a2

+higher order terms. (79)

e15EOr T Y Fg
* A

+1a

The relevant field intensity factors can be found as follows:

( efl-i- €l ) T\ T

K}, = lim \/Zﬂ(x—a)EYz(X,O):+ (80) 6 .
X—a®
I

(&)
€157 VTa
KE = lim V2m(X—a)Ey(X,00= — ————  (81)
+

A
X—a

Ki = lim 2m(X—a)oyy(X,0)= 7.\ ma (82)

X—at

) elsfor T\ TTaA - . .

KP= |lim V2m(X—a)D X0)=——-"1 83) Fig. 3 J-integral contours for evaluating local and global en-

! ot m( )D¥(X.0) A (83) ergy release rates
Assume that the permittivity inside the crack is very smél,

<hg, or eg—0, we may recover all the results obtained by Zhang

and Hack{17] for a mode III crack. release rate may be defined as any contour intedrakarting at

the center of the lower part of the crack surface and ending at the

K, :irw‘/ﬂa (84) center of upper part of the crack surfa@ee Fig. 3. Therefore,
ny the global energy release rate is the sum of the local energy re-
e lease rate and the contour integral contribution along the crack
KE ==— A_15 r.ma (85) surfaces, ie.,
' Jg=J1+Jes (93)
Ki =722 (86) whereJ. denote the energy release rate contribution from crack
KPu -0 (87) surfaces, which can be calculated by

Let hy=0 and consequently—co. That is, the slit has zero Jo=— | nD¢.,ds
height. The physical interpretation of this limit is that the upper cs s
and lower crack surfaces are constantly in close contact during
fracture process, there is no dielectric medium inside the crack.5.1 Local Energy Release Rate. We first consider the so-

(94)

The intensity factors become calledlocal energy release rateConsider the following electro-
mechanical boundary conditions:
€11
K =C—E4wwa (88) Ovy=Tw, Dy=0Q., VY—oo. (95)
E _ The corresponding local energy release rate of the present per-
KIII =0 (89)

meable crack model is

K =7.Vma (90) 1 ra 7
KD =0. (91) J:\‘EWZE(KmKlyH_KﬁlKﬁl):TP(A(Eff"fo)"‘eisGor)-
This recovers the solution obtained by Yang and Ka4é] for a (96)
zero-height crack in piezoelectric medium. Letting €,=0 in (96), one recovers the result obtained by
Zhang and Hack17], i.e.,

S
ma €

5 Energy Release Rate JuNEW=>7A—MT§- 97)
It is generally believed that energy release ratel]-mtegral, is i

a better criterion for crack growth than stress intensity factors. The| et h =0 orr— in Eq.(96). The result obtained by Yang and
J-integral in a piezoelectric medium is given by Cherepal88],  kao [34] may be recovered,

2

= —o:nu —nD: ma T

J J'F(Hnl (T”nlu]’l n,D,¢,1)dS (92) \]|NEW:> > CE . (98)
44

whereH is the electric enthalpy density. Equation(99) is the purely elastic energy release rate, since there
On the surface of a permeable crack, both the normal comqggno diel(ect)ric med?um i>rllside the craglg '

nent of electric displacement as well as the electric potential are

not zero, consequently, the contribution in the contour intedral, 5.2 Global Energy Release Rate. When a permeable crack
along crack surfaces is not zero. Therefore, for permeable cracgmws, energy release is not only consumed in supplying the sur-
two types ofJ-integrals can be definetbcal energy release rate face energy for newly formed crack surfaces, but also consumed
and global energy release rateThe global energy release rateby supplying the electrostatic energy to the dielectric medium
consists of two parts{l) local energy release ratand (2) the inside the crack. In fact, if the surface charge is absent on the
energy release rate due to interaction between dielectric mediarack surfaces, the normal component of electric displacement in
inside the crack and piezoelectric matrix along crack surfaces. Thiezoelectric medium may be equal to the normal component of
local energy release rate is defined as the contour intelji@bng electric displacement in the dielectric medium inside the crack.
an infinitesimal circle around the crack tip, . The global energy This suggests that the crack surface contribution toJtheegral
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is the part of energy release rate that goes directly into supplyimgpression that the applied electric field will prohibit crack
the electrostatic energy increase in the dielectric medium insideowth. The fallacy of impermeable approximation is that it
the crack. shields, and may even reverse the direction of energy-momentum
If the surface charge is present on crack surfaces, which miyx on the crack surface. The permeable crack model presented in
either enhance or reverse the direction of the energy-moment fltixis paper provides a leaky mode for an electrical field, allowing
an additional energy release rate may be created that will infline applied electric field pass through the dielectric medium inside
ence crack growth process. the crack. An in-depth analysis for a mode | permeable crack is
In order the evaluatd,, we first evaluatel ;. Consider the presented in a recent paper by[Bi7].
normal component of the electric displacement on the crack sur-Based on the asymptotic analysis, a first-order approximation
faces. solution is obtained for a mode Il crack in a permeable environ-
ment. The control parameters of the asymptotic analysis are the
Dv(X,ho)~Dy(X,0) crack heighthg, dielectric permittivity inside the cracleg,, and
the crack widtha.
It has been found that the global energy release rate derived for
a permeable crack is in broad agreement with the known experi-
mental observationg.g.,[11,12)), which is in contrast with the
local energy release rate criterion proposed by Gao ¢1.3|14]
according to the saturation-strip model. Nevertheless, for all prac-
tical purposes, it may be a good estimate that

ow o dP
SISy UGy

elsfor Too

=0 Taf Jy(ag)cog ¢X)d¢
0

1, [X|<a
€560 Tor <J< r J,<J< 1
—Q.— lSAO X . (99) J1<I<dy, or Jg<I<, (105)
1- JY—?Z IX|>a since the actual contour integral may has a path betWgend
a I'y (see Fig. 3
Substituting Eq(99) and Eq.(75) into Eq.(94) yields The global energy release rate derived here may be served as a
_ " " . fracture criterion for piezoelectric materials in general. This con-
Jes=Dv(0,0")(4(0,07) — ¢(0,07)) tribution reconciles the discrepancy between experimental obser-
€01 T\ 26557, vations and' theore_tic anal_yses without i'nvoking any n_onlinear
= Q,— A A (100) theory, and it explains, by rigorous analysis, how an applied elec-
tric field affects crack growth in a piezoelectric ceramic through
Hence the global energy release has the form its interaction with the permeable environment surrounding the
crack.
2
Ta els€ol 4
I: Jgr= (—H (6f1+ €l )+ L( 1-— —) 7'50
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