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On Global Energy Release Rate of
a Permeable Crack in a
Piezoelectric Ceramic
A permeable crack model is proposed to analyze crack growth in a piezoelectric cer
In this model, a permeable crack is modeled as a vanishing thin, finite dimension,
angular slit with dielectric medium inside. A first-order approximation solution is deriv
in terms of the slit height, h0 . The main contribution of this paper is that the new
proposed permeable crack model reveals that there exists a realistic leaky mod
electrical field, which allows applied electric field passing through the dielectric med
inside a crack. By taking into account the leaky mode effect, a correct estimatio
electrical and mechanical fields in front of a crack tip in a piezoelectric ceramic
obtained. To demonstrate this new finding, a closed-form solution is obtained for a
III permeable crack under both mechanical as well electrical loads. Both local and glo
energy release rates are calculated based on the permeable crack solution obtained
found that the global energy release rate derived for a permeable crack is in a b
agreement with some known experimental observations. It may be served as a fr
criterion for piezoelectric materials. This contribution reconciles the outstanding disc
ancy between experimental observation and theoretical analysis on crack growth pro
in piezoelectric materials.@DOI: 10.1115/1.1544539#
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1 Introduction
Fracture mechanics of piezoelectric solids has been an a

research area since early 1990s due to the widespread use of
materials and smart structures. Many research works have
published in the past decade, e.g., Pak@1,2#, Li et al. @3#, Sosa
@4,5#, Suo et al.@6,7#, Dunn@8#, Dascalu and Maugin@9,10#, Park
and Sun@11,12#, Gao and Barnett@13#, and Gao et al.@14#, Lynch
et al. @15,16#, Zhang and Hack@17#, Fulton and Gao@18#, Ru
@19,20#, Yang and Zhu@21–23#, Zhang et al.@24,25#, McMeeking
@26,27#, Yang @21,22# among others. A recent article by Zhan
et al. @28# provides an excellent review.

A major challenge in fracture mechanics of piezoelectric ma
rials has been how to resolve an outstanding discrepancy betw
experimental observation and theoretic analysis. In a landm
experimental work by Park and Sun@11#, it was found that the
experimental observation contradicts with some basic aspec
fracture mechanics theory of linear piezoelectric materials.
instance, the experimental results obtained by Park and Sun@11#
show that there is a decrease in the critical stress of a cra
piezoelectric body if the electric field is applied along the dire
tion of poling axis, and there is an increase in critical stress if
electric field is applied to the opposite direction, whereas acc
ing to linear fracture mechanics theory, the applied electric fi
does not induce any nonzero stress intensity factor~e.g., Pak@1,2#
and Suo et al.@6#!, and it always predicts a negative definite e
ergy release rate regardless the directions of the applied ele
fields, which implies that the applied electric field always reta
crack growth.

Using micromechanics concepts related to domain switch
Gao and his co-workers@13,14,18# argued that crack growth in a
piezoelectric solid is a multiscale phenomenon, and the local
ergy release rate may be a critical factor in fracture proces

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 2
2002; final revision, Aug. 26, 2002. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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local energy release rate criterion was subsequently propose
measure the fracture toughness of piezoelectric materials. Th
cal energy release rate criterion is based on the so-ca
saturation-strip model, or equivalently an electric dipole distrib
tion model, which is basically a domain switch strip-zone mod
that is taking into account the nonlinearity induced by the ove
effect of domain switching. The saturation-strip model is the
rect analogous of Dugdale crack in a cohesive elastic medium
classical fracture mechanics.

The local energy release rate criterion was an immediate
cess, because it provides a plausible explanation on Park-S
empirical formula of energy release rate,@11,12#. However, the
dissipative nature of saturation-strip model seems to be a
sance, e.g.,@27#.

In this work, a permeable crack model is carefully crafted
render a tractable solution for mode III crack, while retaining
the main features of a permeable crack. By doing so, it provi
an opportunity to systematically reexamine the permeable cr
solution of a piezoelectric ceramic.

2 Formulation of the Problem
Consider a crack with finite dimension in the middle of a tran

versely isotropic piezoelectric solid under the antiplane mech
cal load and the in-plane electrical load. Letx15X and x25Y.
The relevant field variables are

u15u2[0, u35..w~X,Y!;

E3[0, E52
]f

]X
e12

]f

]Y
e2 .

For the symmetry class of 6 mm piezoelectric crystal, or gene
piezoelectric composite possessing the same symmetry, the
evant constitutive equations are as follows~Auld @29#!:

sXZ5c44
E

]w

]X
1e15

]f

]X
(1)

sYZ5c44
E

]w

]Y
1e15

]f

]Y
(2)
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DX5e15

]w

]X
2e11

s
]f

]X
(3)

DY5e15

]w

]Y
2e11

s
]f

]Y
. (4)

Subsequently, the Euler and Maxwell equations take the form

c44
E ¹2w1e15¹

2f50 (5)

e15¹
2w2e11

s ¹2f50 (6)

where

¹2
ª

]2

]X2 1
]2

]Y2 .

Since the determinant

D iª2Uc44
E e15

e15 2e11
s UÞ0 (7)

one can decouple the system of governing equations

H ¹2w50, ;~X,Y!PR2/Vh , ~8a!

¹2f50, ;~X,Y!PR2/Vh, ~8b!

whereVh is the void space inside the crack.
Note that the coupling between mechanical and electrical v

ables still exists in boundary conditions. For permeable cra
there is a nonzero electrical field in the free space inside the v
and the electrical potential inside the crack,f̃, satisfies the equa
tion

¹2f̃50, xPVh (9)

Fig. 1 Convention for boundary conditions
Journal of Applied Mechanics
ari-
ks,
oid,

which interacts with both the mechanical field as well as the e
trical field outside the crack along the crack surfaces. To cap
this interaction, one has to employ the exact boundary conditi
of both continuum mechanics and electromagnetics to solve
crack problem.

Instead of imposing various combinations of boundary con
tions to show the coupling between the primary variables and t
conjugate pairs, only standard mixed boundary value problems
considered here~Malvern @30# and Jackson@31#!. The boundary
conditions or interface conditions for two different dielectric m
dia are

• mechanical boundary conditions

n•@ usu#52T̂ on Ss ; u5û on Su ; (10)

• electrical boundary conditions

n•@ uDu#5qs on SD and nÃ@ uEu#50 on SE (11)

whereSs , Su identify appropriate subsets of the domain bounda
and S5SsøSu . Note that the notation@ u f u#ª f 12 f 2, and the
normal vectorn is pointing from medium2to medium1as shown
in Fig. 1. In electrostatics, condition~11! can sometimes be re
placed by the continuity condition of electric potential, i.e
@ ufu#50. It should be noted thatSsùSu50, butSDùSEÞ0.

In this paper, a planar permeable crack is modeled as a van
ing thin, finite dimension, rectangular-shaped slit with height 2h0
and width 2a as shown in Fig. 2.

As h0→0, the permeable crack becomes a conventional m
ematical crack. One may write the crack height as the function
X,

h~X!5H h0 , uXu,a

0, uXu.a.
(12)

The interior region of the crack is denoted as the setVh ,

Vhª$~X,Y!u2a,X,a, and 2h0,Y,h0%. (13)

Adjacent to the slit, there are two semi-infinite strips, which a
denoted asVs ,

Vsª$~X,Y!ua,uXu, and 2h0,Y,h0%. (14)

3 Crack Solution
Consider a mode III permeable crack that is perpendicula

the poling direction~out plane!, and it is subjected to remote
traction and charge distribution at remote boundary~see Fig. 2!.

Let T̂5t`eY andqs52q` .
Fig. 2 A permeable crack with remote traction and charge distribution and surface charge distribution at the corner of the crack
MARCH 2003, Vol. 70 Õ 247



n

d

n•@ usu#52T̂→sYZ5t` , ;Y→` (15)

n•@ uDu#5qs→DY5q` , ;Y→` (16)

whereqs52q` .
The boundary conditions on the crack surfaces

n•@ usu#50, ;Y56h0 and uXu<a (17)

n•@ uDu#5qs , ;Y56h0 and uXu<a (18)

n3@ uEu#50, ;Y56h0 and uXu<a (19)

take the form

sYZ~X,6h0!50, ;uXu<a (20)

DY~X,6h0!2DY
a~X,6h0!50, ;uXu<a (21)

EX~X,6h0!2EX
a~X,6h0!50, ;uXu<a. (22)

The following symmetry conditions will be useful as well,

w~X,0!50, ;uXu.a (23)

f~X,0!50, ;uXu.a (24)

fa~X,0!50, ;0,uXu,a (25)

or

EX~X,0!50, ;uXu.a (26)

EX
a~X,0!50, ;0,uXu,a. (27)

In the dielectric medium inside the crack,Di
a5e0Ei

a and Ei
a

52f ,i
a , i 5X,Y.

Separate the displacement and electric potential fields into
parts: a uniform part due to the remote boundary conditions a
disturbance part due to the presence of the crack.

w5w01w̃ (28)

f5f01f̃ (29)

and choose

w05g`Y, f052E`Y (30)

and

s`5c44
E g`2e15E` (31)

q`5e15g`1e11
s E` (32)

such thatw̃, f̃→0 asY→`.
It is convenient to write the inverse relationship among k

physical variables on the remote boundary,

g`5
1

D i
~e11

S t`1e15q`! (33)

E`5
1

D i
~2e15t`1c44

E q`!, (34)

whereD iªc44
E e11

S 1e15
2 .

Extend the definition domain offa into VhøVs and let

f̃a5H fa2f0
a , ;~X,Y!PVh

0, ;~X,Y!PVs
(35)

where the uniform part of the electric potential is the leaky mo
which is chosen asf0

a
ª2q` /e0Y.

Introduce the Fourier cosine transform
248 Õ Vol. 70, MARCH 2003
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5 F* ~z,Y!5A2

p E
0

`

F~X,Y!cos~zX!dX

F~X,Y!5A2

p E
0

`

F* ~z,Y!cos~zX!dz

(36)

whereF(X,Y)5w̃(X,Y), f̃(X,Y), and f̃a(X,Y), and F* (z,Y)

5w̃* (z,Y), f̃* (z,Y), andf̃a* (z,Y).
The transformed governing equations become

d2

dY2 F* 1z2F* 50. (37)

Within the piezoelectric ceramic,

w̃* ~z,Y!5A~z!exp~2zY!, ;Y.0 (38)

f̃* ~z,Y!5B~z!exp~2zY!, ;Y.0. (39)

Inside the permeable crack,

f̃a* ~z,Y!5C~z!sinh~zY!, ;Y.0 (40)

which satisfies the symmetry conditionf̃a(X,0)50.
Consider the boundary condition

EX~X,6h0!2EX
a~X,6h0!50, uXu,a (41)

and the symmetry condition

EX~X,0!50, uXu.a, (42)

and in the extended domain

ẼX
a~X,0!50, uXu.a. (43)

Combining Eqs.~41!–~43!, one may find that

ẼX~X,6h~X!!2ẼX
a~X,6h~X!!50, ;2`,X,1`

(44)

where functionh(X) is defined in Eq.~12!.
In transformed space (z,Y), the condition~44! reads as

ẼX* ~z,6h* ~z!!2ẼX
a* ~z,6h* ~z!!50, ;0,z,1` (45)

where

h* ~z!5h0

sin~az!

z
. (46)

Considering Eqs.~39! and ~40!, one has

B~z!5C~z!
1

2
~exp~2zh* ~z!!21!

5C~z!S h0 sin~az!1h0
2 sin2~az!1

2

3
h0

3 sin3~az!1 . . . D .

(47)

Let

A~z!5A1~z!1h0A2~z!1h0
2A3~z!1 . . . (48)

B~z!5B1~z!1h0B2~z!1h0
2B3~z!1 . . . . (49)

By virtue of Eq.~47!,

B1~z!5C~z!h0 sin~az! (50)

B2~z!5C~z!h0 sin2~az! (51)

B3~z!5C~z!
2h0

3
sin3~az! (52)

. . . . (53)

After the Fourier transform, the boundary condition~21! be-
comes
Transactions of the ASME
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p E
0

`

z$@e15A~z!2e11
S B~z!#exp~2h0z!

2e0C~z!cosh~zh0!%cos~zX!dz50, ;0,X,a.

(54)

Note the subtlety in terms of crack surface position between
~45! and Eq.~54!. In the physical plane, the upper crack surface
at Y5h0 for uXu,a, whereas in the transformed plane,Y
5h* (z), 0,z,`.

Consider the series expansion

@e15A~z!2e11
S B~z!#5@e15A1~z!2e11

S B1~z!#1h0@e15A2~z!

2e11
S B2~z!#1h0

2@e15A3~z!2e11
S B3~z!#

1 . . . (55)

exp~2h0z!512h0z1
~h0z!2

2!
2

~h0z!3

3!
1 . . . (56)

cosh~h0z!511
~h0z!2

2!
1 . . . . (57)

Assume that the permittivity constant,e0 , is very small and
comparable toh0 . The following asymptotic series integral equ
tions may be derived:

A2

p E
0

`

zH e15A1~z!2S e11
S 1

e0

h0 sin~az! DB1~z!J cos~zX!dz

50, ;0,X,a (58)

A2

p E
0

`

$2z2~@e15A1~z!2e11
S B1~z!#1z@e15A2~z!

2e11
S B2~z!#%cos~zX!dz50, ;0,X,a (59)

. . . . (60)

In the remainder of this paper, only the first-order approxim
tion is considered. Moreover, whenh0→0, sin(az) is always
bounded. To render a tractable solution, we adopt the follow
average approximation:

h0 sin~az!'h0sin~az!→0 (61)

where

sin~az!ªAp

2 E
0

`

sin~az!dz5Ap

2

1

a
. (62)

The identity~62! is in the sense of a generalized function~see
Erdélyi et al. @32# or Lighthill @33#, p. 33!.

Let

rªA2

p

a

h0
. (63)

Equation~54! becomes

A2

p E
0

`

z~e15A1~z!2~e11
S 1e0r !B1~z!!cos~zX!dz50,

;0,X,a. (64)

The first-order approximation of boundary condition~20! pro-
vides the additional integral equation

A2

p E
0

`

z~c44
E A1~z!1e15B1~z!!cos~zX!dz5t` , ;0,X,a.

(65)
Journal of Applied Mechanics
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Considering the symmetry conditionsw(X,0)5f(X,0)50,
;uXu.a. Two sets of standard dual integral equations may
derived;

5A
2

p E
0

`

zA1~z!cos~zX!dz5S, uXu,a

E
0

`

A1~z!cos~zX!dz50, uXu.a

(66)

and

5A
2

p E
0

`

zB1~z!cos~zX!dz5T, uXu,a

E
0

`

B1~z!cos~zX!dz50, uXu.a

(67)

where

Sª
~e11

S 1e0r !t`

D
(68)

Tª
e15t`

D
(69)

andD5c44
E (e11

S 1e0r )1e15
2 .

Let

A1~z!5Ap

2

Sa

z
J1~az! (70)

B1~z!5Ap

2

Ta

z
J1~az!. (71)

Consequently, one may find that

w~X,Y!5g`Y1
~e11

S 1e0r !t`

D
aE

0

`

z21J1~az!cos~zX!

3exp~2zY!dz (72)

f~X,Y!52E`Y1
e15t`

D
aE

0

`

z21J1~az!cos~zX!exp~2zY!dz

(73)

and

w~X,0!5
~e11

S 1e0r !t`

D HAa22X2, uXu,a

0, uXu.a
(74)

f~X,0!5
e15t`

D HAa22X2, uXu,a

0, uXu.a
. (75)

4 Intensity Factors
Let Y50. The asymptotic fields of both mechanical and elect

variables in front of the crack tip are found as follows:

eYZ5
~e1e0r !t`

D

X

AX22a2
1S g`2

~e1e0r !t`

D D
1higher order terms (76)

EY52
e15t`

D

X

AX22a2
1S E`1

e15t`

D D1higher order terms

(77)

sYZ5
t`X

AX22a2
1higher order terms (78)
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DZ5
e15e0r t`

D

X

AX22a2
1S q`2

e15e0r t`

D D
1higher order terms. (79)

The relevant field intensity factors can be found as follows:

KIII
g 5 lim

X→a1

A2p~X2a!eYZ~X,0!5
~e11

S 1e0r !t`Apa

D
(80)

KIII
E 5 lim

X→a1

A2p~X2a!EY~X,0!52
e15t`Apa

D
(81)

KIII
t 5 lim

X→a1

A2p~X2a!sYY~X,0!5t`Apa (82)

KI
D5 lim

X→a1

A2p~X2a!DY~X,0!5
e15e0r t`Apa

D
. (83)

Assume that the permittivity inside the crack is very small,e0
!h0 , or e0→0, we may recover all the results obtained by Zha
and Hack@17# for a mode III crack.

KIII
g 5

e

D i
t`Apa (84)

KIII
E 552

e15

D i
t`Apa (85)

KIII
t 5t`Apa (86)

KIII
D 50 (87)

Let h050 and consequentlyr→`. That is, the slit has zero
height. The physical interpretation of this limit is that the upp
and lower crack surfaces are constantly in close contact du
fracture process, there is no dielectric medium inside the cr
The intensity factors become

KIII
g 5

e11
S

c44
E t`Apa (88)

KIII
E 50 (89)

KIII
t 5t`Apa (90)

KIII
D 50. (91)

This recovers the solution obtained by Yang and Kao@34# for a
zero-height crack in piezoelectric medium.

5 Energy Release Rate
It is generally believed that energy release rate, orJ-integral, is

a better criterion for crack growth than stress intensity factors.
J-integral in a piezoelectric medium is given by Cherepanov@35#,

J5E
G
~Hn12s i j niuj ,12niDif,1!dS (92)

whereH is the electric enthalpy density.
On the surface of a permeable crack, both the normal com

nent of electric displacement as well as the electric potential
not zero, consequently, the contribution in the contour integraJ,
along crack surfaces is not zero. Therefore, for permeable cra
two types ofJ-integrals can be defined:local energy release rate
and global energy release rate. The global energy release ra
consists of two parts:~1! local energy release rateand ~2! the
energy release rate due to interaction between dielectric med
inside the crack and piezoelectric matrix along crack surfaces.
local energy release rate is defined as the contour integral,J, along
an infinitesimal circle around the crack tip,G l . The global energy
250 Õ Vol. 70, MARCH 2003
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release rate may be defined as any contour integral,J, starting at
the center of the lower part of the crack surface and ending at
center of upper part of the crack surface~see Fig. 3!. Therefore,
the global energy release rate is the sum of the local energy
lease rate and the contour integral contribution along the cr
surfaces, i.e.,

Jg5Jl1Jcs (93)

whereJcs denote the energy release rate contribution from cra
surfaces, which can be calculated by

Jcs52E
cs

niDif ,xdS. (94)

5.1 Local Energy Release Rate. We first consider the so-
called local energy release rate. Consider the following electro-
mechanical boundary conditions:

sYY5t` , DY5q` , ;Y→`. (95)

The corresponding local energy release rate of the present
meable crack model is

Jl
NEW5

1

2
~KIII

t KIII
g 2KIII

E KIII
D !5

pa

2

t`
2

D2 ~D~e11
S 1e0!1e15

2 e0r !.

(96)

Letting e050 in ~96!, one recovers the result obtained b
Zhang and Hack@17#, i.e.,

Jl
NEW⇒ pa

2

e11
S

D i
t`

2 . (97)

Let h050 or r→` in Eq. ~96!. The result obtained by Yang and
Kao @34# may be recovered,

Jl
NEW⇒ pa

2

t`
2

c44
E . (98)

Equation~98! is the purely elastic energy release rate, since th
is no dielectric medium inside the crack.

5.2 Global Energy Release Rate. When a permeable crack
grows, energy release is not only consumed in supplying the
face energy for newly formed crack surfaces, but also consum
by supplying the electrostatic energy to the dielectric mediu
inside the crack. In fact, if the surface charge is absent on
crack surfaces, the normal component of electric displacemen
piezoelectric medium may be equal to the normal componen
electric displacement in the dielectric medium inside the cra
This suggests that the crack surface contribution to theJ-integral

Fig. 3 J -integral contours for evaluating local and global en-
ergy release rates
Transactions of the ASME



y
s

m
fl

s

a

d

a

.
m

e

k
it
tum
d in

ing
ide

k is

tion
n-
the

for
eri-

rac-

as a
n-
ser-
ear
lec-
gh
the

he

E

tric

ent
r.

in

nt.

e-

tric

he

ath-
ci.,

e,’’

cs,’’

zo-

gy
t. J.

ase
ch.

ld

5,
n

is the part of energy release rate that goes directly into suppl
the electrostatic energy increase in the dielectric medium in
the crack.

If the surface charge is present on crack surfaces, which
either enhance or reverse the direction of the energy-moment
an additional energy release rate may be created that will in
ence crack growth process.

In order the evaluateJg , we first evaluateJcs . Consider the
normal component of the electric displacement on the crack
faces.

DY~X,h0!'Dy~X,0!

5e15

]w

]Y
2e11

S
]f

]Y

5q`2
e15e0r t`

D
aE

0

`

J1~az!cos~zX!dz

5q`2
e15e0r t`

D H 1, uXu,a

12
X

AX22a2
, uXu.a

. (99)

Substituting Eq.~99! and Eq.~75! into Eq. ~94! yields

Jcs5DY~0,01!~f~0,01!2f~0,02!!

5S q`2
e0e15r t`

D D S 2e15t`a

D D . (100)

Hence the global energy release has the form

I: Jcr
g 5S pa

2D D H F ~e11
S 1e0r !1

e15
2 e0r

D S 12
4

p D Gt`
2

1
4

p
e15t`q`J . (101)

Let e050. The global energy release rate becomes

II: Jcr1
g 5S pa

2c44
E D S c44

E e11
S 1

4

p
e15

2

c44
E e11

S 1e15
2 t`

2 1
4

p
e15

2 t`E`
D .

(102)

If h0→0, the global energy release rate becomes

Jcr2
g 5S pa

2 D t`
2

c44
E (103)

which was previously found by Yang and Kao@34#.
Since 4/p51.273238'1.0, the newly derived results~101! and

~102! are very close to the empirical result proposed by Park
Sun @11,12#.

JPS5
pa

2~c44
E e11

S 1e15
2 !

~e11
S t`

2 1e15t`q`! (104)

This result also agrees with the result obtained by Mao et al.@36#
in analyzing a mode I crack by considering toughening un
polarization switching.

6 Closure
The analysis presented in this work reveals that the interac

between a crack and its permeable environment can be cruci
crack growth in a piezoelectric ceramic. This interaction may
quantified through aJ-integral along permeable crack surfaces
global energy release rate that taking into account this effect
serve better as the fracture toughness for piezoelectric ceram

It has been an outstanding problem regarding the energy rel
rate of a piezoelectric crack. The impermeable crack solution
ways gives the negative energy release rate, presenting a
Journal of Applied Mechanics
ing
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ur-

nd

er
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l to

be
A
ay

ics.
ase
al-

false

impression that the applied electric field will prohibit crac
growth. The fallacy of impermeable approximation is that
shields, and may even reverse the direction of energy-momen
flux on the crack surface. The permeable crack model presente
this paper provides a leaky mode for an electrical field, allow
the applied electric field pass through the dielectric medium ins
the crack. An in-depth analysis for a mode I permeable crac
presented in a recent paper by Li@37#.

Based on the asymptotic analysis, a first-order approxima
solution is obtained for a mode III crack in a permeable enviro
ment. The control parameters of the asymptotic analysis are
crack height,h0 , dielectric permittivity inside the crack,e0 , and
the crack width,a.

It has been found that the global energy release rate derived
a permeable crack is in broad agreement with the known exp
mental observations~e.g., @11,12#!, which is in contrast with the
local energy release rate criterion proposed by Gao et al.@13,14#
according to the saturation-strip model. Nevertheless, for all p
tical purposes, it may be a good estimate that

Jl,J,Jg, or Jg,J,Jl (105)

since the actual contour integral may has a path betweenG l and
Gg ~see Fig. 3!.

The global energy release rate derived here may be served
fracture criterion for piezoelectric materials in general. This co
tribution reconciles the discrepancy between experimental ob
vations and theoretic analyses without invoking any nonlin
theory, and it explains, by rigorous analysis, how an applied e
tric field affects crack growth in a piezoelectric ceramic throu
its interaction with the permeable environment surrounding
crack.
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