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Conserving Galerkin weak formulations for computational
fracture mechanics
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SUMMARY

In this paper, a notion of invariant Galerkin-variational weak forms is proposed. Two speci�c invariant
variational weak forms, the J -invariant and the L-invariant, are constructed based on the corresponding
conservation laws in elasticity, one of which is the conservation of Eshelby’s energy-momentum (Eshelby,
Philos. Trans. Roy. Soc. 1951; 87:12; In Solid State Physics, Setitz F, Turnbull D (eds). Academic
Press: New York, 1956; 331; Rice, J. Appl. Mech. 1968; 35:379).
It is shown that the �nite element solution obtained from the invariant Galerkin weak formulations

proposed here can conserve the value of J -integral, or L-integral exactly. In other words, the J and
L integrals of the Galerkin �nite element solutions are path independent in the discrete sense. It is
argued that by using the J -invariant Galerkin weak form to compute near crack-tip �eld in an elastic
solid, one may accurately calculate the crack extension energy release rate and subsequently the stress
intensity factors in numerical computations, because the �ux of the energy-momentum is conserved in
discrete computations. This may provide an alternative means to accurately simulate crack growth and
propagation. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: discrete conservation laws; Galerkin methods; crack growth; �nite element methods;
fracture mechanics; energy-momentum tensor

1. INTRODUCTION

For most �nite element (FE) analyses in solid mechanics, the equilibrium equation

�ji; j + fi=0; ∀x∈� (1)

is often chosen as the departure point, where �ji is the Cauchy stress, fi is the body force,
and � is the problem domain.
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836 S. LI AND D. C. SIMKINS JR.

Consider the following boundary conditions:

�ijnj = T̂i ∀x∈�t (2)

ui = ûi ∀x∈�u (3)

where �t∪�u=@�.
De�ne function spaces

V := {�u | �u=0; ∀x∈�u; �u∈H 1(�)} (4)

S := {u | u= û; ∀x∈�u; u∈H 1(�)} (5)

and consider �nite-dimensional function spaces Sh⊂S and Vh⊂V generated by a mesh. A
Galerkin weak form may be derived via the weighted residual method (e.g. Reference [1]),∫

�
�ij�ui; j d�−

∫
�t
T̂i�ui dS −

∫
�
fi�ui d� = 0 ∀�ui∈V (6)

Its discrete counterpart reads as∫
�
�hij�u

h
i; j d�−

∫
�t
T̂i�uhi dS −

∫
�
fi�uhi d� = 0 ∀�uhi ∈Vh (7)

Equation (7) is a discrete weak form of the equilibrium equation Equation (1), and con-
sequently it preserves the force �ux after the discretization. This property is apparent in
discontinuous Galerkin formulations. Neglect the body force and consider a single element
�e in the interior of �. The element weak form reads as∫

�e
�hik�u

h
i; k d�−

∫
@�e
�hiknk�u

h
i dS=0 (8)

Choosing �uhi =1 (hence �u
h
i; k=0), one may �nd the following discrete conservation law:∮

@�s
T hi dS=0 (9)

where Thi =�
h
iknk is the traction on the element boundary. The global conservation of force

�ux can then be obtained by integrating the weak form in all the elements in the domain.
It has been pointed out in a recent paper by Hughes et al. [2] that this local conservative
property may hold for continuous Galerkin formulations as well.
In passing, we note that a �nite element solution based on the weak form (7) is an approx-

imate solution, and it may not be the exact solution. As mesh size approaches zero, it may
approach the exact solution. Even though the stress distributions derived from the solution of
(7) are not the exact stress distributions, but the discrete solution of (7) retains an important
property of the exact solution: the conservation of force �ux, that is the force �ux is con-
served, or balanced in discrete sense, which provides users with certain assurance as well as
con�dence on stress distributions of the numerical solution.
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Nevertheless, the numerical solution of (7) will not conserve other invariant quantities,
which the original continuous system does. After discretization, most other invariant properties
of the Navier equation will be lost, consequently their numerical values may be less accurate
than the numerical values of stresses. In this sense, the conventional �nite element method in
solid mechanics is biased; it is in favour of a particular conservation law, the balance of force
or linear momentum. It relies on the Galerkin weak formulation derived from a strong form
of most obvious conservation law, the equilibrium equation. In contrast, other conservation
laws in elasticity will no longer hold after discretization, and the quantities associated with
those conservation laws are no longer invariant in discrete sense.
In fact, the governing equation of linear elasticity has in�nitely many conservation laws (see

References [3–5]). Among them, a very useful conservation law is the so-called J -integral
proposed by Rice [6], which is the conservation of Eshelby’s celebrated energy-momentum
tensor [7, 8]. Shown by Rice [6], the value of J -integral in a contour surrounding a crack tip
is exactly the energy release rate, G, due to the crack extension; moreover, J -integral is also
closely related to the stress intensity factors of the crack.
The primary goal of computational fracture mechanics is simulating the near crack-tip

�eld, and evaluating material strength that are relevant to fracture process, such as stress in-
tensity factors, KI, KII, and KIII. In computations, stress intensity factors are often evaluated
through calculating J -integral; the accuracy of the J -integral computation is therefore of great
importance. From this standpoint, a Galerkin weak formulation that can preserve the energy-
momentum �ux will be very desirable in computational fracture mechanics, because with such
formulation one may be able to predict crack growth with more accuracy. Indeed, the loss of
accuracy in evaluation of contour J -integral has already caused much concern. As reported by
Li et al. [9], the range of numerical errors in evaluating J -integral by using the virtual crack
extension technique were found to be 5%, 18%, and 7% for elastic, elastoplastic, and fully
plastic regimes, respectively. In some cases, the numerical error can reach as high as 30%. To
improve the accuracy on numerical computation of J -integral, much e�ort has been made in
the past few decades. The state-of-the-art technique is the so-called domain integral method.
After numerical solutions are obtained from computations, a post-processing is adopted to
evaluate the J -integral by using a domain integral technique proposed by Li et al. [9], and Nik-
ishkov and Atluri [10], which was later generalized and perfected by Moran and Shih [11, 12].
Since the discrete solution of weak form (7) does not conserve J -integral to begin with, the
domain integral procedure is limited by the accuracy of numerical data that it receives.
The objective of this paper is two-fold: (1) First, we seek an energy-momentum conserving

algorithm, a J -invariant Galerkin weak formulation, which can preserve energy-momentum
�ux in discrete computations, and therefore, provides a better computational algorithm that
improves the accuracy in evaluating the J -integral and hence stress intensity factors for crack
growth simulations. (2) Second, from a much more broad perspective, the proposed notion of
invariant Galerkin weak formulation suggests a theoretical underpinning to form alternative
Galerkin weak forms for continuum mechanics problems, or any other problems involved
solving partial di�erential equations.
It is the contribution of this paper to show that by employing the proposed J -invariant

Galerkin weak form, the discrete numerical solution will automatically and generically con-
serve the energy-momentum �ux in discrete computations. In other words, the J -integral of
the �nite element solution is path-independent as the exact solution in the continuum theory,
which furnishes the theoretical justi�cations for the proposed Galerkin weak formulations.

Copyright ? 2002 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2002; 18:835–850



838 S. LI AND D. C. SIMKINS JR.

2. A J -INVARIANT GALERKIN WEAK FORMULATION

Consider the equilibrium equation without body force

�ji; j=0; x∈� (10)

where � is an elastic solid admitting a potential function W such that

�ij=
@W
@�ij

(11)

in which

�ij := 1
2 (ui; j + uj; i) (12)

are in�nitesimal strains.
To introduce the notion of invariant Galerkin variational weak form, we �rst outline a few

properties of Eshelby’s energy-momentum tensor. De�ne the energy-momentum tensor as

Ejk :=W�jk − �ij @ui@xk (13)

First of all, the energy-momentum tensor is divergence free, or it obeys an ‘equilibrium’
equation for ‘energy-momentum �ux’,

@Ejk
@xj

=0 or ∇ · E=0 (14)

By virtue of Equation (10), it can be shown that

@Ejk
@xj

=
@W
@�‘m

@�‘m
@xj

�jk − @�ij
@xj

@ui
@xk

− �ij @
2ui

@xk@xj

= �‘m
@�‘m
@xk

− �ij @
2ui

@xj@xk
= 0 (15)

In general, there is an analogue between Cauchy stress tensor and Eshelby’s energy-momentum
tensor (see References [13, 14]). By Gauss’s theorem, the following invariant integral can be
found:

Jk=
∮
@�
Ejknj dS=

∮
@�
(Wnk − Tiui; k) dS = 0 (16)

where Ti=�ijnj. This fact has been thoroughly examined in the context of elasticity by many
authors, e.g. References [3, 4, 6, 8, 15–20] among others. In fact, the invariant property of
energy-momentum tensor is rooted in Noether’s celebrated theorem on invariant variational
principles [21]. The contemporary development has been documented in the literature (e.g.
Reference [5]).
The objective in this work is, however, di�erent; we do not claim any new contribution

in conservation laws of continuum mechanics, but rather we are interested in developing
computational algorithms that preserve the discrete counterpart of the conservation laws in
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continuum mechanics, such as J -integral, which, to the best of the authors’ knowledge, has
not been studied before, even though it is of practical importance.
Instead of choosing Equation (1) or (10) as the departure point, we choose Equation (14)

as the departure point to construct a Galerkin weighted-residual form∫
�
(∇ · Eh) · �uh d�=

∫
�
Ehjk; j�u

h
k d�=

∫
�

(
Wh�jk − �hij

@uhi
@xk

)
; j
�uhk d�=0; ∀uhk ∈Vh (17)

Integration by parts yields

Algorithm I :




∫
�
Eh :∇�uh d�−

∫
@�
(Eh · n) · �uh dS

=
∫
�
Ehjk�u

h
k; j d�−

∫
�t

(
Whnk − T̂i @u

h
i

@xk

)
�uhk dS=0; ∀�uhk ∈Vh

(18)

On the other hand, de�ne stress spaces

P := {�� | ��=0;∀x∈�t; and ��∈H 1(�)} (19)

Q := {� | n · � = �̂; ∀x∈�t ; �∈H 1(�)} (20)

Consider �nite-dimensional function spaces Ph⊂P and Qh⊂Q due to a mesh. One may form
the following the Galerkin weighted-residual form:∫

�
(∇ · Eh) · ��h d�=

∫
�
Ehjk; j��

h
k‘ d�=

∫
�

(
Wh�jk − �hij

@uhi
@xk

)
; j
��hk‘ d�=0 ∀��hk‘∈Ph (21)

Integration by part yields

Algorithm II :




∫
�
Eh · (∇ · ��h) d�−

∫
@�
(Eh · n) · ��h dS

=
∫
�
Ehjk��

h
k‘; ‘ d�−

∫
�u

(
Whnk − T̂i @u

h
i

@xk

)
��hkj dS=0 ∀��hkj∈Ph

(22)

It may be noted that the di�erence between the two algorithms is that Algorithm I takes into
account the energy-momentum �ux through traction boundary, whereas Algorithm II only
consider the energy-momentum �ux through the displacement boundary.
Before stating the main results, a few de�nitions are in order§

De�nition 2.1 (Partition(Subdivision))
A partition TM={T1;T2; : : : ;TM} of � is called admissible if

1. Ti ∩Tj=∅; (i �=j);

§These de�nitions are standard, e.g. References [22–25].
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Figure 1. The support and domain of basis functions associated with essential boundary.

2. TM is an open cover of �, i.e.
⋃M
i=1 Ti= ��;

3. if �Ti ∩ �Tj (i �=j) consists of exactly one point, then it is the common vertex of Ti and Tj;
4. if �Ti ∩ �Tj (i �=j) consists of more than one point, then �Ti ∩ �Tj is the common surface,
or common edge between Ti and Tj.

For convenience, �� is denoted as the index set of the partition TM , i.e. �� = {i | xi∈ ��; i=
1; 2; : : : ; M}.
De�nition 2.2 (Partition of unity)
For a given partition TM , there exists a class of functions, {�I}NI=1∈C0(Rn), such that
1. 06�I (x)61; ∀I ;
2. each �I has its support in some Ti, and
3.
∑N

I=1 �I (x)=1; ∀x∈ ��.
{�I (x)}NI=1 is called a partition of unity.

Denote 	N :={I | I=1; 2; : : : ; N} as the index set of {�I (x)}NI=1; and the mapping between ��
and 	N is then the so-called connectivity array in �nite element methods (see References
[25, 26]).
It is noted that, in general, one may construct a partition of unity such that

Sh=span{�I (x)}I∈	N (23)

but

Vh �=span{�I (x)}I∈	N (24)

due to the essential boundary condition (see Figure 1). To prove general global conservation
properties, one has to augment the space Vh to include the nodes on the essential boundary.
The procedure is elaborated by Hughes et al. [2].
To get to the point quickly, it is assumed that �u=∅, �s⊂� is a singly connected sub-

domain, and �s ∩ �u=∅, so that {�I}I∈	N ;∀x∈�s is always a partition of unity.
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Let

�†
I :=

{
�I (x); x∈�s
0; x =∈�

(25)

De�nition 2.3 (Admissible sub-domain)
For a given subdivision TM :={Ti}i∈�� and a partition of unity P :={�I}I∈	N in �, the special
domain, �s⊂�, is de�ned as a class of sub-domains, and �s ∩�t=∅, such that there exists a
sub-partition of unity, P†={�†

I (x)}I∈	s , a sub index set ��s⊂��, and 	s⊂	N that render
the following conditions:

�s =
⋃
e∈��s

Te (26)

∑
I∈	s

�†
I (x) = 1; x∈ ��s (27)

The merit of the invariant weak form (17) is enunciated in the following theorem:

Theorem 2.1
For test function �uhk ∈Vh, the numerical solution, uhk ∈Sh, of the following weak formulation:∫

�
Ehjk�u

h
k; j d�−

∫
�t

(
Whnk − T̂i @u

h
i

@xk

)
�uhk dS=0 (28)

satis�es the following discrete conservation law:∮
@�s

(
Whnk − Thi

@uhi
@xk

)
dS=0 (29)

where Thi =�
h
ijnj and �s⊂� is an admissible sub-domain of �.

Note that it is not di
cult to deduce that @�s⊂
⋃
i∈��s @Ti. The point is that all the admissible

sub-domains �s of � are surrounded by �nite element boundary. An admissible domain has
to be surrounded by �nite element edges. The concept of the admissible sub-domain �s is
illustrated in Figure 2(a) and 2(b).

Proof
Let

uh(x) =
∑
I∈	N

�I (x)uI ∀x∈� (30)

�uh(x) =
∑
I∈	N

�I (x)�uI ∀x∈� (31)

If ��s is a special subset of �, there exists a subset 	s of 	N such that

uh(x) =
∑
I∈	s

�†
I (x)uI ∀x∈�s (32)
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Figure 2. Schematic illustration: (a) admissible sub-domain �s, (b) in-admissible sub-domain �s.

�uh(x) =
∑
I∈	s

�†
I (x)�uI ∀x∈�s (33)

For �xed I ∈	s, the J -invariant weak form (17) holds ∀e∈�s,∫
Te

Ehjk�
†
I; j d�−

∮
@Te

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS=0 (34)

Use the element assembly notation [26] and assume the displacements and the energy-
momentum tensor are continuous across the element boundary. One may �nd that

A
e∈��s

∮
@Te

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS=

∮
@�s

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS (35)

Consequently,

A
e∈��s

{∫
Te

Ehjk�
†
I; j d�−

∮
@Te

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS

}

=
∫
�s
Ehjk�

†
I; j d�−

∮
@�s

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS=0 (36)

Sum I ∈	s and replace the volume (area) integral in (36) by the Gauss quadrature

∑
I∈	s

{∫
�s
Ehjk�

†
I; j d�−

∮
@�s

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS

}

=
∑
I∈	s

GK∑
k=1
Ehjk(xk)�

†
I; j(xk)wk −

∑
I∈	s

∮
@�s

(
Whnk − �hijni

@uhi
@xk

)
�†
I dS

Copyright ? 2002 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2002; 18:835–850
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=
GK∑
k=1

∑
I∈	s

Ehjk(xk)�
†
I; j(xk)wk −

∮
@�s

(
Whnk − �hijni

@uhi
@xk

)( ∑
I∈	s

�†
I (x)

)
dS

=0 (37)

where wk is the Gauss quadrature weight and GK is total number of Gauss points inside �.
Using the property of partition of unity

∑
I∈	s

�†
I (x) = 1 ∀x∈�s (38)

∑
I∈	s

�†
I; j(x) = 0 ∀x∈�s (39)

We arrive at the conclusion ∮
@�s

(
Whnk − �hijni

@uhi
@xk

)
dS=0 (40)

Following a similar procedure, one can easily show that Algorithm II (22) is also conserving
the energy-momentum �ux.

Remark 2.1
In a �nite element discretization, one can �nd a region, �s, such that �s=

⋃
e∈��s Te and

�– ∩�—= ∅ ∀–; —∈��s, and all the shape functions, �†
I , associated with nodal points inside �s

form a partition of unity, i.e.
∑

I∈	s �
†
I (x)=1. This is, however, not true for non-interpolate

discretization, for instance the moving least-square interpolant [27], and the related mesh-
free interpolants, such as those used in element-free Galerkin method (EFG) [28], or the
reproducing kernel particle method (RKPM) [29].

3. PRACTICAL ISSUES

3.1. Discrete J -integral

In computational fracture mechanics, the main concern is to calculate the stress intensity
factors, which can be accomplished by evaluating the J -integral. To illustrate the invariant
property of the new algorithm, we consider the problem shown in Figure 3. In this case,

J :=J1=
∫
�

(
Whn1 − �hijnj

@uhi
@x1

)
dS (41)

is relevant to the stress intensity factor calculation. Note that � is a special contour through
element boundary.
Choose a �nite element discretization consisting of quadrilateral elements. In Figure 3, the

shaped area, �s⊂�, satis�es the admissible condition. In this particular con�guration, the
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Figure 3. Contour integrals around a crack.

J -invariance implies that∫
�1

(
Whn1 − �hijnj

@uhi
@x1

)
dS=

∫
�4−

(
Whn1 − �hijnj

@uhi
@x1

)
dS (42)

There exist index subsets �s⊂�M , and 	s⊂	N , such that {�I}	s is a partition of unity
inside �s, and ∀I ∈	s

A
e∈�s

{∫
Te

Ehj1�I; j d�−
∮
Te

Ej1nj�I dS
}
=
∫
�s
Ehj1�I; j d�−

∮
@�s
Ehj1nj�I dS

=
∫
�s
Ehj1�I; j d�−

∫
�1
Ehj1n1�I dS −

∫
�2
Ehj1nj�I dS

−
∫
�3
Ehj1nj�I dS −

∫
�4
Ehj1nj�I dS=0 (43)

if the displacement �eld and stress/strain �eld are assumed to be continuous across the each
element boundary.
Since along �2;�3, n1=0 and T̂j=�ijni=0 the above expression can also be expressed as∫

�s
Ehj1�I; j d�−

∫
�1
Ehj1nj�I dS −

∫
�4
Ehj1nj�I dS=0 (44)

Replace the volume (area) integral in (44) by a chosen quadrature

GK∑
k=1
Ehj1(xk)�I; j(xk)wk −

∫
�1
Ehj1nj�I dS −

∫
�4
Ehj1nj�I dS=0 (45)
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where wk is the quadrature weight and GK is the total number of Gauss quadrature points
inside �s.
Sum Equation (45) ∀I ∈	s

∑
I∈	s

GK∑
k=1
Ehj1(xk)�I; j(xk)wik −

∑
I∈	s

∫
�1
Ehj1nj�I dS − ∑

I∈	s

∫
�4
Ehj1nj�I dS

=
GK∑
k=1

∑
I∈	s

Ehj1(xk)�I; j(xk)wk −
∫
�1

∑
I∈	s

Ehj1nj�I dS −
∫
�4

∑
I∈	s

Ehj1nj�I dS

=0 (46)

Using the properties of the partition of unity (38) and (39), one has

GK∑
k=1

∑
I∈	s

Ehj (xk)�I; j(xk)wk =
GK∑
k=1
Ehj (xk)wk

( ∑
I∈	s

�I; j(xk)wk

)
=0

and ∫
�1

∑
I∈	s

Ehj1(x)nj�I (x) dS =
∫
�1
Ehj1(x)nj

∑
I∈	s

�I (x) dS=
∫
�1

∑
I∈	s

Ehj1(x)nj dS

∫
�4

∑
I∈	s

Ehj1(x)nj�I (x) dS =
∫
�4
Ehj1(x)nj

∑
I∈	s

�I (x) dS=
∫
�4

∑
I∈	s

Ehj1(x)nj dS

They lead to the desired result∫
�1
Ehj1nj dS=

∫
�4−
Ehj1nj dS (47)

where the path �4− is the contour �4 turning in clockwise direction (see Figure 3).

4. CONSISTENT LINEARIZATION

Denote d :={u1; u2; : : : ; : : : ; uN}. The discrete balance of energy-momentum equation become

(f int − f ext) · �d=0 (48)

where

fintkI :=
∫
�
Ehjk(u)�I; j d� (49)

fextkI :=
∫
�t

(
Wh(u)nk − T̂i @ui@xk

)
�I dS (50)

Unlike the conventional Galerkin weak form based on the equilibrium equation, the J -invariant
Galerkin weak form (48) leads to a set of non-linear algebraic equations. To �nd the solution,
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iterative methods, such as Newton–Raphson scheme, may be needed in the solution procedure,
which requires consistent linearization

(f int − f ext)(û+ W)=(f int − f ext)(û) +�(f int − f ext)(û+ W) +R(û+ W) (51)

where the remainder R(û+ �) has the property

lim
‖W‖→0

R

‖W‖ → 0 (52)

Taking Gateaux derivative, one may have

�fintkI := lim�→0

1
�

{∫
�
Ehjk(u+ ��u)�I; j d�−

∫
�
Ehjk(u)�I; j d�

}

=
∫
�

(
�h‘m��

h
‘m�jk −��hij

@uhi
@xk

− �hij
@�uhi
@xk

)
�I; j d� (53)

and

�fextkI := lim�→0

1
�

{∫
�t

(
Wh(u+ ��u)nk − T̂i @(u

h
i + ��u

h
i )

@xk

)
�I dS

−
∫
�t

(
Wh(u)nk − T̂j @u

h
i

@xk

)
�I dS

}
(54)

=
∫
�t

(
�h‘m��

h
‘mnk − T̂i

@�uhi
@xk

)
�I dS (55)

Denote �d :={�u1;�u2; : : : ;�uN}. One may write

�fintiI =
∑
J
K intijIJ�ujJ (56)

�fextiI =
∑
J
K extijIJ�ujJ (57)

and the components of the tangent sti�ness matrix can be expressed as

K intijIJ =
∫
�

(
1
2
�h‘m�I; i(�J; ‘�mj +�

†
J;m�‘j)−

1
2
C‘mpq

@uh‘
@xi
�I;m(�J;p�jq +�

†
J; q�jp)− �hjm�I;m�J; i

)
d�

(58)

and

K extijIJ=
∫
�t
( 12 �

h
‘m�I (�J; ‘�mj +�J;m�‘j)ni − T̂j�I�J; i)dS (59)
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5. OTHER INVARIANT WEAK FORMULATIONS IN ELASTICITY

The following questions may rise:

• Can every conservation law furnish a useful Galerkin weak formulation?
• How many invariant Galerkin weak formulations can we construct for an elastostatic
problem?

As shown by Olver [3, 4], there could be in�nitely many conservation laws in elastostatics.
In principle, an invariant Galerkin formulation may be constructed based on any speci�c
conservation law that a user thinks is most pertinent to the speci�c aspect of a mechanics
problem considered. It will in turn preserve a particular physical quantity in discrete sense.
In other words, a given invariant Galerkin variational formulation is equivalent to a speci�c
discrete conservation law. Nevertheless, not all conservation laws can furnish a useful invariant
variational weak form. In some cases, a conservation law may fail to establish an invariant
Galerkin variational weak form. To illustrate this point, two additional invariant Galerkin weak
forms are constructed in the following.
In the �rst example, the following L-invariant variational formulations is constructed based

on the conservation of angular energy-momentum. Following Budiansky and Rice [30], we
de�ne the angular energy-momentum tensor

Qik :=�ikmxmW + �imj(�mkuj − �‘ku‘;mxj) (60)

It is elementary to verify that Q is divergence free for linear elastic solids:

@Qik
@xk

= �ikm�mkW + �imkxmW;k + �imj(�mkuj; k − �‘ku‘;mkxj − �‘ku‘;m�jk)

= �imj(�m‘uj; ‘ − �‘ju‘;m)=0 (61)

In fact, Knowles and Sternberg [18] showed that the above expression holds for more general
elastic constitutive relations.
Since ∫

�

@Qik
@xk

�ui d�=
∫
�
Qik�ui; k d�−

∫
�t
Qi; knk�ui dS=0 (62)

the following discrete L-invariant weak form may be constructed.

Theorem 5.1
For �uhi ∈Sh, the numerical solution, uhi ∈Vh, of the following Galerkin weak formulation,∫

�
Qhik �u

h
i; k d�−

∫
�t
�ikm

(
xmnkWh + T̂kuhm − T̂‘uh‘; k xm

)
�uhi dS=0 (63)

will satisfy the following discrete conservation law:∮
@�s
�ikm(xmnkWh + Thk u

h
m − Th‘ uh‘; kxm) dS=0 (64)

where �s⊂� is an admissible sub-domain.
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The proof is omitted here.
In the second example, let

Rk=Wxk − �jk(uj; i xi + 1
2uj) (65)

It is straightforward that

@Rk
@xk

=W�kk + xkW;k − �jk(uj;ikxi + uj; i�ik + 1
2 uj; k)

= xk�‘m�‘m; k − xk�‘mu‘;mk=0 (66)

Consequently, the following M -invariant integral holds in continuum level [30],∮
@�s

(
Wxknk − Tjuj; ixi + 1

2 Tiui
)
dS=0; �s⊂� (67)

But this conservation law fails to produce a Galerkin weak formulation since R is only a
vector.

6. CLOSURE

The notion of invariant Galerkin variational formulation is a generalization of the conven-
tional Galerkin variational method. The conventional Galerkin variational method establishes
its weighted residual form based on the original strong form of a partial di�erential equation
(PDE) that is under consideration, whereas the invariant Galerkin variational method estab-
lishes its weighted residual form based on the strong form of a suitable conservation law
that the PDE possesses. Most PDEs have many di�erent conservation laws, which may be
in�nitely many. In fact, the original strong form of the PDE itself is also a particular conser-
vation law. Therefore, from a computational standpoint, one could construct many di�erent
invariant Galerkin weak formulations for a PDE. It should be noted that all these invariant
variational weak forms are not equivalent in discrete sense; each may conserve one special
physical quantity in computation, and hence the accuracy of di�erent quantities obtained in
di�erent weak formulations will vary. In engineering applications, one may prefer to con-
serve one physical quantity over another, if one cannot preserve all of them at the same
time. The signi�cance of this contribution is that it extends the options and choices on how
to construct Galerkin variational weak forms. Based on the notion of invariant weak formu-
lation proposed here, one may have many di�erent choices to form a Galerkin weak form
while solving a speci�c engineering problem. In the area of computational fracture mechanics,
the energy-momentum tensor is obviously a more important quantity than the Cauchy stress
tensor. Therefore, preserving energy-momentum �ux is more important than preserving
traction �ux.
It may be pointed out that the energy-momentum conserving algorithms proposed in this

paper are di�erent from so-called energy-momentum conserving algorithms in time integra-
tion schemes, such as the work done by late Prof. J. C. Simo and his co-worker [31, 32].
Nonetheless, Simo and Honein [33] did intend to construct a variational formulation to
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preserve discrete conservation laws. We believe that at least part of that goal has been achieved
in this work. In the end, we would like to pose the following question:

Can one construct an invariant Galerkin-variational weak form that preserves discrete
force �ux as well as energy-momentum �ux?

which, we believe, is a challenging one.
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