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Recent developments of meshfree and particle methods and their applications in applied mechan-
ics are surveyed. Three major methodologies have been reviewed. First, smoothed particle
hydrodynamicgSPH is discussed as a representative of a non-local kernel, strong form collo-
cation approach. Second, mesh-free Galerkin methods, which have been an active research

area in recent years, are reviewed. Third, some applications of molecular dyridbi¢sn

applied mechanics are discussed. The emphases of this survey are placed on simulations of
finite deformations, fracture, strain localization of solids; incompressible as well as compress-

ible flows; and applications of multiscale methods and nano-scale mechanics. This review ar-
ticle includes 397 referencefDOIl: 10.1115/1.1431547

1 INTRODUCTION have been developddee,eg[1-4]). For a complete descrip-
tion on this subject, readers may consult Chapter 7 of the
book by Belytschko, Liu, and Morafb]. The objective of

Since the invention of the finite element meth@EM) in g k
the 1950s, FEM has become the most popular and widd AITE formulation is to make thg mesh mdependgnt of the
aterial so that the mesh distortion can be minimized. Un-

used method in engineering computations. A salient fea'[Li‘oertunatel in computer simulations of very large deforma-
of the FEM is that it divides a continuum into discrete el Y. P y 1arg

_me_nt_s. This subdivision is called discretization. In FEM, t_ﬁtéggnavr\}géo»:hgl?/_\rtéag?r?]uﬂ?&?,?gﬁgg?i;:?:;ﬁr?nltrséﬁfggs'
individual elements are connected together by a topologicalyere errors in numerical computations. Furthermore, the
map, which is usually called a mesh. The finite element iRy yective transport effects in ALE often lead to spurious
terpolation functions are then built upon the mesh, whichscillation that needs to be stabilized by artificial diffusion or
ensures the compatibility of the interpolation. However, thig petrov-Galerkin stabilization. In other cases, a mesh may
procedure is not always advantageous, because the numegaaly inherent bias in numerical simulations, and its presence
compatibility condition is not the same as the physical convecomes a nuisance in computations. A well known example
patibility condition of a continuum. For instance, in a Lais the simulation of the strain localization problem, which is
grangian type of computations, one may experience mesptorious for its mesh alignment sensitiv[i§,7]. Therefore,
distortion, which can either end the computation altogethérwould be computationally efficacious to discretize a con-
or result in drastic deterioration of accuracy. In additiodinuum by only a set of nodal points, or particles, without
FEM often requires a very fine mesh in problems with higmesh constraints. This is theitmotif of contemporary mesh-

gradients or a distinct local character, which can be comptie€ Galerkin methods. _
tationally expensive. For this reason, adaptive FEM has be- 1"€ advantages of the meshfree particle methods may be

come a necessity. summarized as follows:

Today, adaptive remeshing procedures for simulations b They can easily handle very large deformations, since the
impact/penetration problems, explosion/fragmentation prob- connectivity among nodes is generated as part of the
lems, flow pass obstacles, and fluid-structure interaction cOmputation and can change with time;
problemsetc have become formidable tasks to undertak@ The methodology can be linked more easily with a CAD
The difficulties involved are not only remeshing, but also database than finite elements, since it is not necessary to
mapping the state variables from the old mesh to the new generate an element mesh;
mesh. This process often introduces numerical errors, ad The method can easily handle damage of the components,
frequent remeshing is thus not desirable. Therefore, the sosuch as fracture, which should prove very useful in mod-
called Arbitrary Lagrangian EuleriafALE) formulations elings of material failure;
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4) Accuracy can be controlled more easily, since in areas There are exceptions to this classification, because some
where more refinement is needed, nodes can be adgedticle methods can be used in both strong form collocation
quite easily(h-adaptivity; as well as weak form discretization. The particle-in-cell

5) The continuum meshfree methods can be used to modeIC) method is such an exception. The strong form colloca-
large deformations of thin shell structures, such as nariien PIC is often called the finite-volume particle-in-cell
tubes; method[89-91], and the weak form PIC is often called the

6) The method can incorporate an enrichment of fine scawaterial point metho@2], or simply particle-in-cell method
solutions of features, such as discontinuities as a functit®3—99. RKPM also has two versions as well: a collocation
of current stress states, into the coarse scale; and ~ Vversion[96] and a Galerkin weak form versid66].

7) Meshfree discretization can provide accurate representa-In areas such as astrophysics, solid state physics, biophys-
tion of geometric object. ics, biochemistry and biomedical research, one may encoun-

) -~ ter situations where the object under consideration is not a
In general, particle methods can be classified based Qfhinyum, but a set of particles. There is no need for dis-

two different criteria: physical principles, or computationaletization to begin with. A particle method is the natural
formulations. According to the physical modeling, they mayhgice in numerical simulations. Relevant examples are the
be categorized into two classes: those based on determinigfiglation of formation of a star system, the nano-scale
models, and those based on probabilistic models. On thgyyement of millions of atoms in a non-equilibrium state,
other hand, according to computational modelings, they M@{ding and unfolding of DNA, and dynamic interactions of
be categorized into two different types as well: those serviRgrious moleculesetc. In fact, the current trend is not only
as approximations of the strong forms of partial differentiah yse particle methods as discretization tools to solve con-
equations(PDES, and those serving as approximations ofnuum problems(such as SPH, vortex methdd4,15,97
the weak forms of PDEs. In this survey, the classificatiognd meshfree Galerkin methods$ut also to use particle
based on computational strategies is adopted. methods as a physical modgtatistical model, or atomistic

To approximate the strong form of a PDE using a partici®iode) to simulate continuum behavior of physics. The latest
method, the partial differential equation is usually discretizaskamples are using the Lattice Boltzmann method to solve
by a specific collocation technique. Examples are smoothigid mechanics problems, and using molecular dynamics to
particle hydrodynamic§SPH [8-12], the vortex method solve fracture mechanics problems in solid mechafeés-
[13-18, the generalized finite difference meth§#9,20, 103].
and many others. It is worth mentioning that some particle This survey is organized as follows: The first part is a
methods, such as SPH and vortex methods, were initiallyitical review of smoothed particle hydrodynami(SPH).
developed as probabilistic methods0,14], and it turns out The emphasis is placed on the recent development of correc-
that both SPH and the vortex method are most frequentlye SPH. The second part is a summary of meshfree Galer-
used as deterministic methods today. Nevertheless, the rkia methods, which includes DEM, EFGM, RKPM, hp-
jority of particle methods in this category are based o@loud method, partition of unity method, MLPGM, and
probabilistic principles, or used as probabilistic simulatiomeshfree nodal integration methods. The third part reviews
tools. There are three major methods in this categoyy: fecent applications of molecular dynamics in fracture me-
molecular dynamics(both quantum molecular dynamicschanics as well as nanomechanics. The last part is a survey
[21-24 and classical molecular dynamif87—32); 2) di- on some other meshfree/particle methods, such as vortex
rect simulation Monte CarlofDSMC), or Monte Carlo methods, the Lattice Boltzmann method, the natural element
method based molecular dynamics, such as quantum MoRtgthod, the particle-in-cell methodic The survey is con-
Carlo methodg33—41)) (It is noted that not all the Monte cluded with the discussions of some emerging meshfree/
Carlo methods are meshfree methods, for instance, a propatticle methods.
bilistic finite element method is a mesh-based methi-
44]), and 3 the lattice gas automataibGA), or lattice das 2 sSMOOTHED PARTICLE HYDRODYNAMICS
cellular automaton45—-49 and its later derivative, the Lat-
tice Boltzmann Equation metha@BE) [50-54. It may be 2.1 Overview
pointed out that the Lattice Boltzmann Equation method Smoothed Particle Hydrodynamics is one of the earliest par-
not a meshfree method, and it requires a grid; this exampigle methods in computational mechanics. Early contribu-
shows that particle methods are not always meshfree.  tions have been reviewed in several artiJ8sl2,104. In

The second class of particle methods is used with varioug77, Lucy[10] and Gingold and Monaghaf®] simulta-
Galerkin weak formulations, which are called meshfregeously formulated the so-called Smoothed Particle Hydro-
Galerkin methods. Examples in this class are Diffuse Elgynamics, which is known today as SPH. Both of them were
ment Method (DEM) [55-58, Element Free Galerkin interested in the astrophysical problems, such as the forma-
Method (EFGM) [59-63, Reproducing Kernel Particle tion and evolution of proto-stars or galaxies. The collective
Method (RKPM) [64—-72, h-p Cloud Method73—76, Par- movement of those particles is similar to the movement of a
tition of Unity Method [77-79, Meshless Local Petrov- liquid, or gas flow, and it may be modeled by the governing
Galerkin Method MLPG) [80—-83, Free Mesh Methof84— equations of classical Newtonian hydrodynamics. Today,
88], and others. SPH is being used in simulations of superno{/A85|, col-
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lapse as well as formation of galaxigs06—109, coales- The third property ensures the convergence, and the last
cence of black holes with neutron stf#40,111, single and property comes from the requirement that the smoothing ker-
multiple detonations in white dwarfgl12], and even in nel must be differentiable at least once. This is because the

“Modeling the Universe”[113]. Because of the distinct ad-gerivative of the kernel function should be continuous to
vantages of the particle method, soon after its debut, the SBL ent a Jarge fluctuation in the force felt by the particle.

method was widely adopted as one of the efficient COMPUtRn . |ayer feature gives rise to the nasmoothedparticle
tional techniques to solve applied mechanics problems.

Therefore, the ternhydrodynamicsreally should be inter- ydrodynamlcs_. .

preted asnechanicsn general, if the methodology is applied In c.omputatl_ons, compact supported kernel fun_cuons such
to other branches of mechanics rather than classical hyd@s-Spline functions are usually employdd7]. In this case,
dynamics. To make distinction with the classical hydrodythe smoothing length becomes the radius of the compact sup-
namics, some authorsgg Kum et al [114,119, called it port. Two examples of smooth kernel functions are depicted
Smoothed Particle Applied Mechanics in Fig. 1.

This idea of the method is somewhat contrary to the con- The advantage of using an analytical kernel is that one
cepts of the conventional discretization methods, which disan evaluate a kernel function at any spatial point without
cretize a continuum system into a discrete algebraic systatowing the local particle distribution. This is no longer true
In astrophysical applications, the real physical system is dier the latest corrective smoothed particle hydrodynamics
crete; in order to avoid singularity, a local continuous field isiethodq 66,118, because the corrective kernel function de-
generated by introducing a localized kernel function, whighends on the local particle distribution.
can serve as a smoothing interpolation field. If one wishes to The kernel representation is not only an instrument that
interpret the physical meaning of the kernel function as thn smoothly discretize a partial differential equation, but it
probability of a particle’s position, one is dealing with aalso furnishes an interpolant scheme on a set of moving par-
probabilistic method. Otherwise, it is only a smoothing techicles. By utilizing this property, SPH can serve as a La-
nique. Thus, the essence of the method is to choose a smagtingian type method to solve problems in continuum me-
kernel, W(x,h) (h is the smoothing lengthand to use it to chanics. Libersky and his co-workers apply the method to
localize the strong formof a partial differential equation solid mechanic$117,119,12Q and they successfully simu-
through a convoluted integration. Define SPH averagingte 3D thick-wall bomb explosion/fragmentation problem,

localization operator as tungsten/plate impact/penetration problest¢. The impact
and penetration simulation has also been conducted by
Ak(x)=<A(x))=f W(x—x",h)A(x")dQ,, Johnson and his co-workef$21-123, and an SPH option
]Rn

is implemented in EPIC code for modeling inelastic, dam-
N age, large deformation problems. Attawetyal [ 124] devel-
~Z W(x—x, ,h)A(x)AV, (1) oped a coupling technique to combine SPH with the finite
=1 element method, and an SPH option is also included in PR-
One may derive a SPH discrete equation of motion from i@NTO 2D (Taylor and Flanagafil25]).
continuous counterpafi2,1184, SPH technology has been employed to solve problems of
both compressible flow[126] and incompressible flow

dvi v dv,
T |__< "T>|:>P|E

N 1
~=2 (a0 VW —x,0AY, (@ b
J=1 “E Cubic Spline
whereo is Cauchy stresg is density,v is velocity, andAV, 08 S
is the volume element carried by the partidle o
Usually a positive function, such as the Gaussian fun %[
tion, is chosen as the kernel function sk
1 X2 :
W(X,h)=(ﬂ_h—2)nlzexr{—ﬁ s 1=sn<3 (3) :’.0'55
0.4 =
where the parametdr is the smoothing length. In general, .
the kernel function has to satisfy the following conditions: 93 F
i) W(x,h)=0 4) 02k
.. 01
i) W(u,h)dQ,=1 (5) 3
RN o A I |
-3
iii) W(u,h)—é&(u), h—0 (6)

iv) W(u,h)eCP(R"), p=1 7 Fig. 1 Examples of kernel functions
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[116,127-129 multiple phase flow and surface tensiowelocity, and acceleration are still sampled at particle points.
[114,115,129,130,131,132,133 heat conduction [134], In fact, the stress point plays a similar role as the “Gauss
electro-magneti¢Maxwell equations[90,104,13% plasma/ quadrature point” does in the numerical integration of the
fluid motion[135], general relativistic hydrodynami¢$36—  Galerkin weak form. This analogy was first pointed out by
138], heat conductior{134,139, and nonlinear dynamics | j, et a| [66]. This problem was revisited again recently by

[140] Chenet al [159] as well as Monaghafh148]. The former
2.2 Corrective SPH and other improvements proposes a special corrective smoothed-particle method
in SPH formulations (CSPM to address the tensile instability problem by enforc-

Various improvements of SPH have been developed throul the higher order consistency, and the latter proposes to

the years[104,141—149 Most of these improvement are d an artificial force to stabilize the computation. Randles
aimed at the fé)llowing shortcomings, or pathologies, in m?-nd Libersky[160] combined normalization with the usual

merical computations: ﬁtress pom.t fpproex‘,h to at;lhlet\;]e bSeFt;tﬁrtstat.)llllty a;s bv'\ll'?" as
 tensile instability{ 150—154; inear consistency. Apparently, the ensile instability is

e lack of interpolation consistency, or completenesrﬁ%a:g:; :Jhoeinlfglép?g;&gﬂtsinscgos\fnt?fFSigPHZ'merpOIam'A

(66,155,156
* zero-energy modg157]; _ 222 Zero-energy mode
- difficulty in enforcing essential boundary conditionThe zero energy mode has been discovered in both finite
(120,128,131 difference and finite element computations. A comprehensive
2.2.1 Tensile instability discussion of the subject can be found in the book by Be-

So-called tensile instability is the situation where particléxtSChko etal[5]. The reason that SPH suffers similar zero

are under a certain tensilaydrostati¢ stress state, and the€nergy mode deficiency is due to the fact that the derivatives

motion of the particles become unstable. To identify the Clt_j?_f kinematic variables are evaluated at particle points by ana-

prit, a von Neumann stability analysis was carried out lytical differentiation rather than by differ_entiation of inter- _
Swegleet al [150], and by Balsard158]. Swegle and his olants. In-many cases, the ke_rnel f“F‘C“O” _rea_ches a maxi-
co-workers have identified and explained the source of tH&M atits nqdal position, and its spatial der_|vat|ves becom_e
tensile instability. Recently, by using von Neumann and Coﬁg_ro' To av0|_d a zero-energy mode, or spurious stres_s oscil-
rant stability criterion, Belytschket al [151] revisited the ation, an efficient remedy is to adopt the stress point ap-
problem in the general framework of meshfree particle metRanCh[ls?]'

ods. In their analysis, finite deformation effects are also cop-2.3 Corrective SPH

sidered. As an interpolation among moving particles, SPH is not a

Several remedies have been proposed to avoid such tggrtition of unity, which means that SPH interpolants cannot
sile instability. Morris proposed using special kernel funGepresent rigid body motion correctly. This problem was first
tions. While successful in some cases, they do not alwaysticed by Liuet al [64—66. They then set forth a key no-
yield satisfactory resultf152]. Randles and Libersk{120] tion, a correction function, which has become the central
proposed adding dissipative terms, which is related to cofieme of the so-called corrective SPH. The idea of a correc-
servative smoothing. Notably, Dylet al[153,154 proposed tjve SPH is to construct a corrective kernel, a product of the
a so-called stress point method. The essential idea of thisrection function with the original kernel. By doing so, the
approach is to add additional points other than SPH particlgsnsistency, or completeness, of the SPH interpolant can be
when evaluating, or sampling, stress and other state vaghforced. This new interpolant is named the reproducing ker-
ables. Whereas the kinematic variables such as displacemﬁgt,partide method64—66.

SPH kernel functions satisfy zero-th order moment condi-
tion (5). Most kernel functions satisfy higher order moment
condition as wel[104], for instance

foW(x,h)dx: 0. (8)

These conditions only hold in the continuous form. In gen-
eral they are not valid after discretizatide,

NP
> W(x—x h)Ax #1 ©)
=1

Particle: ° NP

Stress Point: ® S (x=x)W(x=x ,h)Ax, #0 (10)
=1

where NP is the total number of the particles. Note that con-
Fig. 2 A 2D Stress point distribution dition (9) is the condition of partition of unity. Since the
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kernel function can not satisfy the discrete moment condi- | my(x) my(x) - mu(X)
. . S 0 1 n bo(x,h)
tions, a modified kernel function is introduced to enforce the M) myx) - M0 | | bk h
discrete consistency conditions 1 2 n+i 1(?(' )
Wh(X—X; ;X) = Ch(X—X; ;:X)W(X—X, ,h) (11) Ma(X) Mo1(X) o Mn(X) bn(x,h)
whereCp(X;x—X;) is the correction function, which can be 1
expressed as 0
=1 (16)
X_X| )
Ch(x;x—x|):bo(x,h)+b1(x,h)T+b2(x,h) 0
X—x, |2 It is worth mentioning that after introducing the correction
X ) I (12) function, the modified kernel function may not be a positive
h function anymore,
where by(x),b1(X), - .,b,(X) are unknown functions. We K(x—x)#0. 17)

can determine them to correct the original kernel function.
Supposef(x) is a sufficiently smooth function. By Taylor Within the compact suppor (x—x%;) may become negative.
expansion, This is the reason why Duarte and Oden refer to ithees
signed partition of unity73,74,78.
f,=f(x,)=f(x)+f’(x)(xl_X>h There are other e}pproaches to restoring completeness' of
the SPH approximation. Their emphases are not only consis-
2 tency, but also on cost effectiveness. Using RKPM, or a
24 eeee (13) moving-least-squares interpolarftl55,15§ to construct
modified kernels, one has to know all the neighboring par-
ticles that are adjacent to a spatial point where the kernel
function is in evaluation. This will require an additional CPU
NP to search, update the connectivity array, and calculate the
fh(x)zE W (X=X, ;X)fAX, modified kernel function pointwise. It should be noted that
=1 the calculation of the modified kernel function requires
NP pointwise matrix inversions at each time step, since particles
=( E Wi (x—X ,x)Axl) f(x)h° are moving and the connectivity map is changing as well.
=1 Thus, using a moving least square interpolant as the kernel

f"(x) (x,—x
2! h

the modified kernel approximation can be written as,

NP X— x| ~ function may not be cost-effective, and it destroys the sim-
—( > ( h )Wh(x—xI ,x)Axl) f'(x)h plicity of SPH formulation.
Several compromises have been proposed throughout the
NP ( B )n years, which are listed as follows:

Wi, 1) Monaghan’s symmetrization on derivative approximation
[104,145;
£(x) 2) Johnson-Beissel correctiga23|;
h"+O(h"*1). (14) 3) Randles-Libersky correctiofi20];
n! 4) Krongauz-Belytschko correctid$1];
5) Chen-Beraun correctiofl39,140,161;
%) Bonet-Kulasegaram integration correctidr g];
g7) Aluru’s collocation RKPM[96].

Since the linear reproducing condition in the interpolation is
~ equivalent to the constant reproducing condition in the de-
Mo(X)ZZl Wh(X=x,X)Ax=1; rivative of the interpolant, some of the algorithms directly
correct derivatives instead of the interpolant. The Chen-
Beraun correction corrects even higher order derivatives, but
} (15) it may require more computational effort in multi-
dimensions.
P Completeness, or consistency, closely relates to conver-
X=x\"~ gence. There are two types of error estimates: interpolation
M(x) =2, ( h ) Wh(x=x;,x)A%=0; error and the error between exact solution and the numerical
/ solution. The former usually dictates the latter. In conven-
Substituting the modified kernel expressiofik]l) and (12) tional SPH formulations, there is no requirement for the
into Eq.(15), we can determine the+ 1 coefficientsp;(x), completeness of interpolation. The particle distribution is as-
by solving the followingmoment equations sumed to be randomly distributed and the summations are

X
h

X (X=X, ,x)Ax|>

To obtain ann-th order reproducing condition, the moment
of the modified kernel function must satisfy the followin
conditions:

NP )

NP
Ml(x)=;l (X hxl>\7vh(x—x, X)AX,=0;
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Monte Carlo estimates of integral interpolants. The error of

random interpolation was first estimated by Niederdit&2] oll=DIlI[ov]= Z VPDU,[4v]

as being=N~1logN""* where N is total particle number and

n is the dimension of space. This result was further improved P

by Wozniakowski[163] as being=N~*logN""*2 Accord- :EI {g m,m; Y.

. ) |

ing to referencg¢104], “this remarkable result was produced

by a challenge with a payoff of sixty-four dollars !” Twenty-Wherem; is the mass associated with parti¢le

one years after its invention, in 1998 Di Liskt al [164] On the other hand,

gave a convergence proof of smoothed particle hydrodynam- Il

ics method for regularized Euler flow equations. DH[(‘)\/]ZE &—Bv, =E T,- v (21)
Besides consistency conditions, the conservation proper- oo !

ties of a SPH formulation also strongly influence its perfowhere T is the internal forcelsummation of stregs Then

mance. This has been a critical theme throughout SPH through the variational principle, one can identify,

search, se§12,104,120,145,155,1§5It is well known that

Py

VWI(XJ)] oV (20)

classical SPH enjoys Galilean invariance, and if certain de- T, =>' mm, p_£+ p_; VW, (x;) (22)
rivative approximations, or Golden rules as Monaghan puts [ I Py

it, are chosen, the corresponding SPH formulations can pggig establish the discrete SPH equation of motlzalance
serve some discrete conservation laws. This issue was ¢efinear momenturm

cently revisited by Boneet al [166], and they set forth a

discrete variational SPH formulation, which can automati- dv, P Py
. . ' m-—-—=- mm,| —+ — | VW,(X;). 23
cally satisfy the balance of linear momentum and balance of ' dt Z P 2 p3 1) (23)

angular momentum conservation laws. Here is the basic idea.

Assume the discrete potential energy in a SPH system is 2-2-4 Boundary conditions _ o
SPH, and in fact particle methods in general, have difficulties

0 in enforcing essential boundary condition. For SPH, some
H(X):Z Viu@d) (18)  effort has been devoted to address the issue. Takeda’s image
particle method[131] is designed to satisfy the no-slip
where v? is the initial volume element, antd(J,) is the boundary condition; it is further generalized by Moreisal
internal energy density, which is assumed to be the functibh28] to satisfy boundary conditions along a curved bound-
of determinant of the Jacobian—ratio between the initial ardly. Based on the same philosophy, Randles and Libersky

current volume element, [120] proposed a so-calleghost particleapproach, which is
outlined as follows: Suppose partidles a boundary particle.
V, P|O All the other particles within its suppord(i), can be di-

J= V_? - o (19)  vided into three subsets:

1) 1(i): all the interior points that are the neighborsipf
wherep? andp, are pointwise density in initial configuration2) B(i): all the boundary points that are the neighbors;of
and in current configuration. 3) G(i): all the exterior points that are the neighbors,aé,

For adiabatic processes, the pressure can be obtained fron@ll the ghost particles.
dU,/dJ =p, . Thus, the stationary condition of potential enThereforeN(i)=1(i) UB(i) UG(i). Figure 3 illustrates such
ergy gives an arrangement.
In the ghost particle approach, the boundary correction
formula for general scalar fielflis given as follows

jZI(i) (fi— fod AV|W;;

fbc
(1— > Avjwij>

fi= (24)
jeB()

wherefy is the prescribed boundary valuexat x; . One of

the advantages of the above formula is that the sampling

formula only depends on interior particles.

2.3 Other related issues and applications

Besides resolving the above fundamental issues, there have
been some other progresses in improving the performance of
. SPH, which have focused on applications as well as algorith-
I(): 0 mic efficiency. How to choose an interpolation kernel to en-
sure successful simulations is discussed i67]; how to
Fig. 3 TheGhost particleapproach for boundary treatment modify the kernel functions without correction is discussed
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in [168,169; and how to use SPH to compute incompressical Lagrangian method, it has been found that SPH can
ible flow, and to force incompressibility conditions are studeliminate problems of artificial diffusion at the free bound-
ied in[126]. How to use SPH to simulate contact is revisitegries of the ice region, and it can handle discontinuities at the
by Campellet al [170], which is critical in SPH impact/ free surface and also the cohesive effects between moving
fragmentation simulation. In astrophysics, the SPH methodgsticles by proper choice of the kernel functions. Moreover,
now used in some very complex computations, including, faing et al [185] have been trying to connect SPH with
Z[mglatlpns of various protostellar encountgfs’1-174, gliscrete-element method to make a particle-cohesive model.
issipative formation of elliptical galaxies, supernova feed-"_. . .
Birnbaumet al[186] recently tested a coupling technique

back, and thermal instability of galaxi¢$05,179. ) ) .
By considering a smoothing operator as a filter, it haetween SPH with the Lagrangian finite element method as

been found that an adaptive smoothing filter is an efficie€!l @ with the arbitrary Lagrangian Eulerian finite element
tool to resolve large-scale structui@strophysical problems me'thoc'i to simulate fluid-structural mterachon pr'oblems,
as well as small-scale structumicro-mechanics problems Which is called the SPH-Lagrange coupling technique. In-

Owen [176,177 has recently developed an adaptive spgfead of forming smoothed hydrodynamics from strong
(ASPH) technique—an anisotropic smoothing algorithnflorms of the governing equation, Fahrenthold and Kb&7]

which uses an ellipsoidal kernel function with a tensdi"9ued that one may form a hydrodynamics directly from the
smoothing length to replace the traditional isotroar '12@miltonian of the mechanical system. By doing so, one
spherical kernel function with a scalar smoothing Iength!nay end up W'th discrete equations that wil havg an !ntr|n5|c
The method has been tested in various computategnsos- energy conserving property. An example was givenli7|

mological pancake collapse, the Riemann shock tube, Sed8\/30|ve a wall shock problem.
blast waves, the collision of two strong shock waves. Seto

[178] used perturbation theory to adjust adaptive paramet&fs MESH-FREE GALERKIN METHODS

in SPH formulation to count the fluctuations present in ? . .
o . here have been several review articles on meshfree Galer-
statistical environment. Iﬂn methodsgeg [60,68, and two special issues are devoted
Much effort has been devoted to develop parallelizatio T )
PP to meshfree Galerkin method€omputer Methods in Ap-

of SPH. Daveet al [179] developed a parallelized code . ) . ) )
based on TreeSPH, which is a unification of conventionﬁ"ed Mechanics and Engineeringol 139, 1996,Computa-

SPH with the hierarchical tree meth¢i80]. The parallel onal MechanicsVol. 25, 2000. The focus of this review is

protocol of TreeSPH is called PTreeSPH. Using a messagiﬁced on the Iate_st developments and perspectives that are
passing interfac€@Pl), it is executed through a domain de- erent from previous surveys.
composition procedure and a synchronous hypercube com- )
munication paradigm to build self-contained subvolumes 8f1 Overviews
the simulation on each processor at every time step. Whenlike SPH, meshfree Galerkin methods are relatively
used on Cray T3D, it can achieve a communications ovegmung. In the early 1990s, there were several research
head of~8% and load balanced up to 95%, while dealingroups, primarily the French group Villon, B Nayroles, G
with up to 10 particles in specific astrophysics simulationsTouzod and the Northwestern groufJ Belytschko and W K
Recently, Lia and Carrarfd81] also presented their versionLiu) who were looking for either meshless interpolants
of parallel TreeSPH implementation, which has been used[#6,57,58 to relieve the heavy burden of structured mesh
the simulation of the formation of an X-ray galaxy cluster igeneration that is required in traditional finite element refine-
a flat cold dark matter cosmology. In solid mechanics applirent process, or interpolants having multiple scale compu-
cations, Plimpton and his co-workefd82] have imple- tation capability[64,65,188. Nayroleset al basically redis-
mented a parallelization of a multi-physics code PRONT@overed the moving least square interpolant derived in a
3D, which combines transient structural dynamics wittandmark paper by Lancaster and Salkauska&9)]. Foresee-
smoothed particle hydrodynamics, and they have carried dog its potential use in numerical computations, they named
some simulations of complex impact and explosions ihthe diffuse element metho®EM). Meanwhile, Liuet al
coupled structure/fluid systems. [64—-66,188 derived the so-called reproducing kernel par-
The traditional Newtonian SPH has been generalized ticle interpolant in an attempt to construct a corrective SPH
the form of general relativistic hydrodynamic equations fanterpolant.
perfect fluids with artificial viscosity in a given arbitrary Then in 1994, another landmark paper was published by
space-time backgrounfi136,13§. With this formulation, Belytschko, Lu, and G{i59], in which the MLS interpolant
both Chow and Monaghdi36] and Siegleet alhave simu- was used in the first time in a Galerkin procedure. Be-
lated[138] ultrarelativistic shocks with relativistic velocitieslytschkoet al formed a variational formulation to accommo-
up to 0.9999 the speed of light. On the small scale end, SEHte the interpolant to solve linear elastic problems, specifi-
methodology has been used in simulation of cohesive graieally the fracture and crack growth problefi3,190-192
Recently, both Gutfraincet al [183] and Ogeret al [184] The authors named their method the element free Galerkin
used SPH to simulate a broken-ice field floating on watemethod. Meanwhile, Liu and his co-workers used the repro-
under the influence of wind. The broken-ice field is simuducing kernel particle interpolant, which is an advanced ver-
lated as a cohesive material with rheology based on then of the MLS interpolant, to solve structural dynamics
Mohr-Coulomb vyield criterion. In comparison with the clasproblems[66,193.



8 Li and Liu: Meshfree and particle methods and applications Appl Mech Rev vol 55, no 1, January 2002

Meshfree interpolants are constructed among a set of sdagt
tered particles that have no particular topological connection
among them. The commonly-used meshfree interpolationsp (xy:= >, PT(x— X)) D (X— X)) P(X—x)AV, . (30)
are constructed by a data fitting algorithm that is based on red
the inverse distance weightegtinciple. The most primitive 5na  can  obtain b =M1 X2, . PT(X=x) P (X
one of the kind is the well-known Shepard’s interpolant. x)AV,f(x). Then the modified local kernel function
[194]. In the Shepard’s method, one chooses a decaying p%b‘uld be \7V(§5= PX=X)M L3S, . yPT(X= %) ® (X
tive vyindow functionw(x) >0, and interpolate only arbitrary —x,)AV, . To this end, only a standardeleast square proce-
function, f(x), as dure has been used, to complete the process, one has to move

N W(X—X;) the fixed pointx to any pointxe Q; this is why the method
fh(x)=2 f; N—' (25) is calledmovingleast square method. By so doing, the cor-
=1 2 W(X—x;) rective kernel becomes
|
~ ~
o | 00 = lim =P(0)M 100 PT(x—x) D (x~X)AV,
where the decaying positive window functiom(x—x;), lo- XX
calizes aroundx;. The Shepard’s interpolant then has the
form leA. (31)
W(X—X;) If we let P=(1x,x?,---,x""1), the moving least square in-
¢i(X)= N—' (26) terpolant is exactly the same as reproducing kernel interpo-
2 W(X—X;) lant. For comparison, the Lancaster-Salkauskas interpolant is
= ' listed as follows
Obviously, =N , ¢;(x) =1, ie Shepard's interpolant is a par- K;(x)=P(x)M " }(x)PT(x,)®(x—x), leA. (32)

tition of unity, hence the interpolant reproduces a constar:l.tWO things are obviously different: )1 Lancaster and

Notg that the partition Of. unity condition IS a discrete SumSalkauskas did not use the shifted basis, or local basis,)and 2
mation, which may be viewed as normalized zero-th order . .

. . g ey usedAV,=1 for all particles. In our experience, the
discrete moments. To generalize Shepard’s interpolant, one: . . ; }

. : : variable weight is more accurate than the uniform weight,

needs to normalize higher order discrete moments of the ba- "~ .

: . ) especially along boundaries.
sis function. There are two approaches to generalize Shep-

ard’s interpolant: 1 moving least square interpolant by Lan- There has been a conjecture that E@H) and (32) are

Castr a1 SalausS69; and 3 mong east sqare i, S 1 1 ot e e becauss e
reproducing kernel by Liu, Li and Belytschk@0]. The pro- P 9 Y. Y

cedures look alike, but subtleties remain. For instance, wi E—({);Osri?]';)l si[rzg.()} iﬁ; %ebr:jrsgsisa:ﬁzs' dif?eurcgonfgt’r(w)é)lo-
out employing theshiftedbasis, ill-conditioning may arise in ' ’ ' 9 Y

the stiffness matrix. cal basis. To show the global reproducing property(3f)

The reproducing kernel interpolant may be interpreted L%G]’ 1etfi() =P
a moving least square interpolant, if one chooses the follow-

ing shifted local basis EA Kl(X)f|=|§A Ki(x)P(x;)
n+1
X = 2, Pi(x=0bi(0=P(X-X)b(X) (27) =POOM~1(x) 2, PT(x)®(x—x)P(x)
= le A
where  b=(b(x),b,(X), by 1(X))T and P(x) =P(x). 33)

=(P1(x),P2(X),  ,Pny1(x)), Pi(x) e C"*1(Q). One may

notice that there is a difference between E2j7) and the A variation of the above prescription is that the basis vec-
orginal choice of the local approximation by Lancaster arf@" P need not be polynomial, and it can include other inde-
Salkauska$189] or Belytschkoet al [59]. To determine the pendent basis functions as well such as trigonometric func-

unknown vectorb(x), we minimize the local interpolation tions. Utilizing the reproducing property, Belytschia al
error [195] and Flemind 196] used the following basis to approxi-

mate crack tip displacement field,

NP
I(b(0) =2, D(X—x)[PX—x)b(X)—f(x)°AV; (28) 0 ~ 0
<1 P(x)= 1,x,y,\/Fcos§, rsin
such that
0 0 .
93 B B +/r sin= sin@,\r cos= siné|. (34)
5 =22 PT&x)®(x—x) 2 2
I=A
The same trigonometric basis was used again by Rao and
X[P(X—=x)b(X)—f(x,)]AV, Rahman197] in fracture mechanics. The similar bases,

-0. (29)  P(x)={1,cogkx),sinkx)} (35)



Appl Mech Rev vol 55, no 1, January 2002 Li and Liu: Meshfree and particle methods and applications 9

P(x)={1,cogkxcosf+ ky sin 8),sin(kx cosé dition, one can construct a multiple scale meshfree interpo-
+Kysing),cos — kxsin 8+ ky cosé), Iant' on a set of scattergq ddta07] by enforcing different
vanishing moment conditions,

sin(—kxsin#+kycos6)}, 36
oot} B8 b0 = (o)) (42)
are employed by Liuet al [198] in Fourier analysis of
RKPM, and it is used in computational acoustics applications (@D — Q) . . .
by Uraset al [199] and Suleatet al [200,201. For given a where P*(0)=(0,--,0,1,0, ’0,)'

wave numberk, the meshfree interpolant built upon the f-a
above bases reproduces desired mode function, and it is bes . procedure resembles the construction of wavelet ba-
lieved to be able to minimize dispersion error. A detailegis

. _ on the regular grideg [208,209. Indeed, Li et al
analy_3|s was performed by Bo_w!laajl al[202] to assess the 204,207,210 showed that the higher order RKPM interpo-
pollution error of EFG, when it is used to solve Helmholt

: . o . ants indeed satisfy the primitive definition of wavelet
equations. It is worth mentioning th"."t Christon an_d Vot ansformation/function. Figure 4 illustrates the build-up of
[nzecl)3]sgs]rifzrism§gti\g?i(;\lneLé;n%r;?hagﬂgs';nfgrtﬁgrgi%;r;?oﬁe neshfree wavelet function on a set of randomly distributed
first- and second-order hyperbolic differential equations. E oints. These wavelets functions have been used by. Li-and
. ) - - —fiy [210,21] to calculate reduced wave equation—
cellent dispersion characteristics are found for the consisten Imholtz equation, advection diffusion problem and Stokes

mass matrix with the proper choice of dilation parameter. w problems, and used by @theret al [217] to compute

f:ontrast, row-sum lumped mass matrix is demonstrated ctSmpressibIe flow problems as a stabilization agent. Chen
introduce lagging phase errors.

et al[213] utilized the meshfree wavelet basis as a numerical
regularization agent to introduce an intrinsic length, and con-
3.2 Completeness, convergence, adaptivity, sequently stabilize the numerical simulation of strain local-

and enrichment ization problem.

The reproducing property of RKPM interpolant leads to a sgt Them-th conss?ency conditio(87) is further generalized
. ; ; " y Wagner and Liu[214], Huerta and Fermalez-Medez
of very interesting consistency conditions. Dendk&’(x)}

as the basis of RKPM interpolant, the so-calleeth order [215,21§, and Haret al[217] for the hybrid finite-element—
consistency condition derived by E,t alin [70.204 reads as meshfree refinement, which has been used in either meshfree

h-adaptivity[218,219, or to enforce the essential boundary
conditions[217]. Denoting finite element basis 48I"'(x)}
and meshfree basis &K{(x)}, the hybrid interpolation has

If P(x) is a polynomial basis, the consistency condition itshe following m-order consistency condition
X=X
> P T’)Kf’(x)+2 P
|

equivalent to reproducing condition,
|

> P(%) KP(x)=P(0) . (37)

X=X\
TN|(X):P(0) (43)

El P(x))K{(x)=P(x). (38)

. and the corresponding reproducing property,
For instance,

S XKI) =X, m=0,12; - (39) 2 POXOKPOO+ 2 POXONT()=P(X). (44)
|

Moreover, it has been showed[in0,204 that there is an-th  This generalized consistency condition is instrumental in the
order consistency condition for the derivatives of meshfremnvergence study of mixed hierarchical finite-element/

interplant, meshfree approximation. In fact, the mixed finite-meshfree
enrichment procedure has been a success, which is much
> (X|—X)“Dfo’(X)=a!§aﬂ (40) easier to implement than the conventional finite element
|

h-type refinement, which may require structured mesh. In
practice, one can simply sprinkle particles onto a finite ele-
ment mesh expecting much improvement in numerical solu-

al tions[215].

an B p _ a—pf . . .

Z X D K{'(X) (a—pB)! X (41) Another important enrichment is the so-calledype en-
] N ] ) _richment. Since moving least square interpolant is a partition
These consistency conditions firmly establish the basis founity, Duarte and Odef73,74] used Legendre polynomial
the convergence of mesh-free Galerkin  methodg construct a firstp-version meshfree interpolant, which

[70,73,74,20% which is far more systematic than the earlyhey named ak-p Clouds. In one dimensional case, it takes
convergence study done by Fary205,204 for MLS inter- e form of

polant. s
The m-th order consistency for the derivatives of RKPM uP(x)= 2 " 1(x)( UL+ 2 by L (X) (45)
interpolant has a profound consequence. Based on this con- ih =T

which is equivalent to
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whereqS{‘”(x) is then+ 1 order moving least square inter-order polynomial to Shepard interpolant. By so doing, one
polant. In generall;(x) may be regarded as the Taylor exdoes not need the matrix inversion when constructing higher
pansion ofu(x) at point x,. The reason using Legendreorder meshfree shape function; one may still be able to enjoy
polynomial agp-enrichment is its better conditioning; a simi-good interpolation convergence.

lar procedure is well established prversion finite element  This line of thinking leads to a more general formulation,
[219]. An early paper by Liwet al [188] proposed an inter- for instance, the so-callgghrtition of unity methodet forth
polation formula that is aslo similar to E¢45); it is called by Babuka and MelenK77,79. The essence of the partition
the multiple-scale spectral finite element methdthe Leg- of unity method is: take a partition of unity and multiply it
endre polynomial enrichment basis is called by Belytschkeith any independent basis to form a new and better basis.
et al[60] as extrinsic basis, and it is attached to the intrinsithis flexibility provides leverage in computation practice.
basis,db{‘“(x) to form ap-cloud. There is a seldom men-Sometimes the choices of the independent basis can be based
tioned belief among the advocatestop clouds. That is one on users’ prior knowledge and experience about the problem
can buildh-p clouds on the simplest meshless partition dhat they are solving. For instance, Bakasind Melen{79]
unity—the Shepard interpolanig, one can pile up higher used the following basis,

Fig. 4 An illustration of 2D hierarchical partition of unity
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However, there are exceptions. For instance, if the boundary

u“(x)ng $i(agi+ayx+ayy+bysin(nx) is piece-wise linear, and the particle distribution can be ar-
ranged such that they are evenly distributed along the bound-
+ by cognx)) (46) ary, one may obtain Kronecker delta property along the

to solve Helmholtz equation. Dolbowt al [220] used the boundary. This is because the correction function not only
following interpolant to simulate strong discontinuitg,the can enforce consistency conditions, but also can correct ab-
crack surfaces, normality due to the finite domain. This is a hardly known
A fact, which was discussed in a paper by Gosz and 2a4].
u (X)=EI ol U|+H(X)b|+§ CaLFL(X) (47) This procedure, nevertheless, is only feasible for certain
simple geometries. In general, a systematic treatment is still

where H(x) is the Heaviside function and- (x) are needed.
gsymptotic fields in front of crgck tip. B,(x) is a meshfree 334 Lagrangian multiplier method
interpolant, then the method is a meshfree method (k)

5 i iment nerpolan, he method s called PUFE] 1%, EFC pavele) oeytscoeta enoree e

an acronym ofartition of unity f|n|t.e element me‘ho.ﬁfe' et al [63] slightly modified the formulation. Consider an

cently, Wagneret al [221] used a discontinuous version of lastostatics broblem

PUFEM to simulate rigid particle movement in a Stoke(sa P

flow. By embedding a discontinuous function to a partition of V:-0+b=0, xeQ (49)

unity, the interpolant can accurately represent the shape ofih the boundary conditions

finite size pqrt@cle, and the patrticle surface. need not to con- on=T, VxeT, (50)

form to the finite element boundary. By doing so, the prob- L

lem of moving particles in a flow can be simulated without U=U, Vxely. (51)

remeshing. A so-called X-FEM technique, a variant ofo accommodate the non-interpolating shape function, we

PUFEM, is used by Daugt al [222] to model cracks, espe-introduce the reaction forceR, on I', as another unkown

cially cracks with arbitrary branches, or intersecting cracksariable, which is complementary to the primary unknown,
A slight modification of the X-FEM technique was usedi, the displacement. A weak form of the original problem

by Wagnei{ 223] to simulate concentrated particulate susper@an be written as,

sions on a fixed mesh. In this work, the velocity and pressure _

function spaces are enriched with the lubrication theory so- f [(VovD):o— vT:b]dQ—f vIi-TdS

lution for flow between two particles in close proximity. This @ Tt

allows particles to approach each other at distances much

smaller than the element size, avoiding the need to refine or

adapt the mesh to capture these small-scale flow details. 1 0

Wagner took advantage of the fact that the lubrication solu- YveHY(Q), AeHY(Q) (52)

tion is determined completely in terms of the particle mowherev and are identified asiu and R, respectively.

tions and pressure gradient across the gap to reduce the numk-et

ber of degrees of freedom by tying the values of the nodes in . .

the lubrication region together; the standard X-FEM ap- U (X)=I2A N(xX)u;, v (X)=|EA N, (X)Vv, (53)

proach allows the variation of these nodes for maximum - ] - )

freedom in the solution. Tying the nodes together as done Wpere A=1,2;-- ,NP. Define a sub index sef,, A,

Wagner allows the entire velocity and pressure solution be-t![l € A,N;(x) #0xeT'y}. And let

tween two particles to be determined in terms of just eight ~ ~

degrees of freedom for the 2D case. This is a good exampleR(x)zmzAb Ni(XIRy ’A(X):lgb NiOIAxeTy - (54)

of multiple scale analysis. Contrary to PUFEM and XFEM ~ : . .
the fine scale lubrication solution is embedded into the stat\}r\{hereN'(X) may be different from, (x) in order to satisfy

dard PUFEM and X-FEM with only two unknown coeffi- he LBB condition. The following algebraic equations may

cients of flow rate and pressure, and the remaining six utrk]\_en be derived,

—f AT.(u—U)ds—f v-RdQ =0,
Fu 1—‘LI

known degrees of freedom are the two particles velocities [ K G/ u | f

and rotations. c" o/\R/ " \q/ (55)
3.3 Enforcement of essential boundary conditions And

One of the key techniqugs of meshfree—Ga_tI_erkin methods iSK,sz BlTDBJdQ (56)
how to enforce an essential boundary condition because most Q

meshfree interpolants do not possess Kronecker delta prop-

erty. This means that in general, the coefficients of the inter- G, = —f N,Nydl, (57)
polant are not the same as the nodal values, that is for Iy

u"(x) =2 N;(x)d;

ul(x,)#d, . (48) fI:thN|tdF+fQN|bdQ (58)
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- of transformation method described here has been used by
QKI—L NyudI (59) the Northwestern Group since 1994. All the particles are
! separated into into two sets: boundary set marked with su-
whereD is elasticity matrix, and perscriptb and interior set marked withb (non-boundary
"Ny, 0] particlg. We distributeN, number of particles on the bound-
’ ary I'Y, and the number of interior particles am;,:=NP
B=| 0 Ny (60) —N,. The essential boundary condition providsg con-
LNy, Njxd straints,
NI,X’ 0 l"Iih(xl ,t):U?(X| .t):=gi(X| !t)1 |:1,--- '!Nb (67)
Nl o, Nl,y ' (61) denoteg; (t):=0;(x;,t), 1=1,---- Np .
B - NP

The Lagrangian multiplier method may run into a stability u-h(x,t)=2 N, (x)d; (t)
problem, if one chooses shape functions without discretion. ' =1

3.3.2 Penalty method Np - Nnp RO

The penalty method is another alternative to impose essential - 21 Ny () djj (1) + 21 N0 d; (L)

boundary conditions, which was first proposed by Be-

lytschko et al [190]. A detailed illustration is given by Zhu =NP(x)dP(t) + N"°(x)d"(t). (68)

et al [225] for the case of 2D linear elastostatics. Conside[\_re

b._ b Np XN nb,_ nb NpXNp
the same problem Eg$49)—(51). One has the Lagrangian, tD%:={Ny (X))} 70", and D™s={N;(x;)} ™" "nb. Thus

the enforced discrete essential conditiot®s,), become

1
He=§fﬂ(é")T.D-é"dQ—fﬂ(uh)T-bdQ DPdP(t)=g;(t) — D"Pd!"®(t) (69)
after inversion d°(t)=(DP) 'g;(t)— (D) *D"°d"(t), a
_f (uh)T.?ds+ ﬁf (uh-mT- (W"-T)ds transformed interpolation is obtained,
r 2 Jr,
t 2 u(x,t) =N(x)(D®) ~'gi(t) + (N"°(x) — N°(x)
by —1mHnbynb
Taking o11,,=0, we have the following algebraic equations, X(D%) DA T(). (70)
(K + aKY)U=f+ af!. (63) Obviously, forx, eI, 1=1,--,Ng,
The additional terms due to essential boundary conditions Ul ,D)=g(t); 8uf(x,)=0, 1=1,2;+,Ny. (71)
are This result can also be interpreted as a new interpolant,
L=1 N/SN,dS 64 N il
N jru o . ulx,)= 2 WO U (0)+ 2, Wdy (1)
ff=f N,SudS (65) =WP(x)u; + W"(x)d!"™ (72)
! By . Nb by—1 nbyyy .1 Nb
Where where WP®(x):=N°(x)(D”)"*, and W"°(x):=[N""(x)

—NP(x)(D") "'D"]. One may notice that the new shape
functions in(72) possess the Kronecker-delta, or interpola-
' tion property at the boundary.

S, 0
“lo s,
5 {1 if u; is prescribed onl,,

3.3.4 Boundary singular kernel method
(66) The idea of using singular kernel function to enforce the
Kronecker delta property should be credited to Lancaster and
In computations, the penalty parameter is taken in the rangelkauska§l189], which they called thénterpolating moving
a=10°~10". least square interoplantSome authors later used it in com-
. utations,eg Kaljevic and Saigal230] and Chen and Wan
3.3.3 Transformation method F227]. The i%ea Jis quite simplge.[Tak]e a set of positive shgpe

The most efficient method to impose essential boundary cqQ{}nction {q)h(x_xl)}lel- Supposex; is on the boundary
ditions for meshfree methods is the transformation method.IlltJ; we modify the shape function basis as,

was first proposed by Chegt al[71], and it has been reiter-

ated by many authof®26-22§. There are two versions of Dp(x—x%)

" : _ g = U Vlel,, p>0

it: full transformation methodsee71]) and boundary trans- D (x—x)= [x—x|P (73)
form method[226,227. An efficient boundary transforma- Oy (x—x), VIe&l

tion algorithm is proposed by @itheret al [229] based on h o .
the intuitive argument of d’Alembert principle. The versiorand then build a new shepard basis{dn,(x—x,)} as

0 if u; is not prescribed od’,, i=1,2.
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= It is easy to verify that for a boundary particle, | B,
W (X—X)= ———— (74) uM(x;)=a, . Thus Dirichlet boundary condition can be speci-
E B (x—x) fied directly. In[217], Hanet al elegantly proved the conver-
= h ! gence of the method.

In fact, one can also utilize the idea of partition of unity
one may verify that for the boundary nodes, ¥.(x, finite element(PUFEM) to enforce essential boundary con-
—X3)=463. In real computations, the procedure works imlition. The procedure is as follows. Deploying a few—layer
certain range of dilation parametdr, but whenh is too finite element mesh around desired boundary and choosing
large, the convergence of interpolation deteriorates rapidlpgrange finite element interpolant as extrinsic bdsjgx),
[227]. such thatl j,(xk) = 8;x- A PUFEM shape function is con-

3.3.5 Coupled finite element and particle approach structed as follows

Another approach is to couple finite element with particles .

close to the boundary and necklace the particle domain with‘b'(x)_l{xlzenj} Ky(x)L(X) (78)

a FEM boundary layer and apply essential boundary condi- ) )

tions to the finite element nodesee Krongauz and Be. WhereK;(x) is a meshfree interpolant. One can show that
lytschko[231] and Liuet al [218]). In this approach, all the q)'(X,J): Ay - . )
boundary and its neighborhood are meshed with finite ele- Itis worth mentioning that even though meshree interpo-
ment nodal points, and there is a buffer zone between rggts have no difficulties in enforcing natural boundary con-
finite element zone and the particle zone, which is connect fyons, the implementation of enforcing natural boundary

with the so-called ramp functions. Denote the finite elemefipnditions in meshiree setting is different from those in FEM

basis agN;(x)}, particle basis ag®,(x)}, and ramp func- setting. In finite eler_nen_t proced_ure, one n_eed onI)_/ calculate a
tion asR(x). The interpolation function in the buffer zone issurface or curved line |nt.egral n evaluatl.ng traction bound-
the combination of FEM and particle interpolant ary conditions; V\_/hereas in meshfreg setpng, one has to take
into account the influences from the interior particles as well,
(1-R(X)D;(X) +R(X)N;(X)  Xe&Qfem though this is seldom mentioned in the literature. P83
i(X)= D(x) xeQ, (75) documented a procedure to treat point loads in an EFG

implementation.

where the ramp function is chosen B%x)=ZXiN;(x), Xi 3.3.6 Quadrature integration and nodal integration
€ ddem- Recently, this approach was used again by Liu angost mesh-free Galerkin methodsig. 5 used background
Gu in a meshfree local Petrov-GalerKiMLPG) implemen-  co|| o background grid to locate the quadrature points to
tation[232]. . . _integrate the weak form. Although the background cell need
. A!though the mgthod works well, it compromises the inpqt pe structured, and can be easily refiiedthe work by
trinsic nature of be!ng meshfree, and subsequeptly loses {h&ss and Sheparf234)), there is, nontheless, still a ghost
advantages of particle methods. For example, in shear bapdsppresent. Moreover, how to place such background cell,
simulations, the mesh alignment sensitivity due to the f|n|_[§*r how to place Gauss quadrature points will directly influ-
element mesh around a boundary could pollute the entigce the accuracy as well as the invertibility of the stiffness
numerical simulation. To enforce the Dirichlet boundary cony,5rix. Early on there were a lot of discussions on patch-test
dition while still retaining the advantage of a particleys meshfree Galerkin method$9,190—192,195,235,236
method, a so-called hierarchical enrichment technique is dgse real concern is the stability of quadrature integration.

veloped to enforce the essential boundary conditiqfiosi meshiree interpolants, for instance MLS interpolant,
[214,217, which is a further development of the wdrk18].

The idea is as follows. Around the boundary, one first deploy
a layer of finite element nodes, and all the nodes on the
boundary are finite element nodes. Right within the boundary
the meshfree particles are blended with the finite element
nodes, and there is no buffer zone. Denote the finite element
shape function ad\,;(x) |1 € B; and denote meshfree shape
function as®,(x),l € A. One can view that particle discreti-
zation as enrichment of finite element discretization at the
boundary.

u“(x)=|§8 N|<x>a.+|§A d(x)d, (76)

where®,(x) is complementary to the finite element bagis,

Is =Tau Ursq

D,(x)=D(x)— >, Ny(x)P,(x 77
1) 1% J;B 0P1(x) (77) Fig. 5 Local meshfree-Galerkin illustratio@Q =L UT)
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are partitions of unity, and in most cases the linear complete- Ju* o
ness, or consistency is also enforcadriori; there is no au(y)=—fﬂ u(x) —- (x,y)dF+L —p 0T (x,y)dl
compatibility issue left to be tested, unlike the incompatible ° S

finite element shape function. However, if there are not —
enough quadrature points in a compact support, or quadra- _Lr u* (x,y)p(x)dQ (81)
ture points are not evenly distributed, spurious modes may °
occur. whereT* is the Green’s function
Today, quadrature integration is one of the two major 1 g
shortcominggthe cost of meshfree methods is the ojHeft T*(x,y)= ﬂlnT' (82)

when meshfree methods compared with finite element meth-
ods. Beissel and Belytschk[®237] proposed a stabilized For each particle in the domaift, one can form a local
nodal integration procedure by adding a residual of the eqeundary  integral equation (81). Letting u"(x)
librium equation to the potential energy functional to avoie: 3, ;(x)d;, one may obtain the following algebraic equa-
use of quadrature integration. However, adding the additiortidns
term in potential energy means sacrificing variational consis- N
tency, hence accuracy of the formulation. Gauss quadrature * *
integration error via different set-up of background cells as a‘u‘_z‘l K+ i (83)
well as quadrature point distribution is studied 288]. It is
found that if the background cell does not match with th\é(here
compact support of the meshfree interpolant, considerable I, JU*
integration error may rise. K ZJ TJ*(X,Yi)&—ndF—f ¢ (Xydl

The simplest remedy is the local, self-similar support in- Fsu Fsq
tegration. Assume the meshfree shape function is compactly Ju*
supported, and the support for each and every particle is _fL b (Xydl (84)
similar in shapegg a circular region in 2D, a sphere in 3D. s
Take the Element Free GalerkiEFG) method for example . Y o i
(Belytschkoet al [59,63). For linear elastostatics, the stiff- i =L u (Xin)qu_j u——(xy)dl
ness matrix is =4 s

*

— | T*(xy;)p(x)dQ. 85
K.J:f B!DB,d (79) fn P (89)
Q
Those local boundary integrals and local domain integrals
where () is the problem domain. If all the shape functiongan be integrated by fixed quadrature rules. SlagteM pre-
have the same shape of compact supfBD sphere in this sented a detailed account on how to deal with singularity in

caseg, the above integration can be rewritten as numerical integration§243]. The obvious advantage of this
formulation is that it does not need to enforce the essential
Ku:f B}DBJdQ (80) boundary condit_ion. Neve_rt_helgs;, this formulation rel?es on

Q, a Green’s function, and it is limited to a handful of linear

. . problems.
where(), is the support of particlé. Subsequently, Atluret al [80,81] formed a local Petrov-
~ Because all shape functions are compactly supported, B§jerkin formulation(MLPG) with meshfree interpolant in
integrals in the rest of domaine /€, vanish. And we o same Iocal regiol), For linear elastostatics problem

only need to evaluat&,, within ,N€) and I'y,. Since (4q) they form N local petrov-Galerkin weak forms. Each of
everyQ;,(I=1,...n) has the same shape, once a quadrgsam around a distinct particleis,

ture rule is fixed for one compact support, it will be the same

for the rest of compact supports as well. We can then inte- N

grate the weak form locally from one compact support to 12::1 Kijdj=f; (86)

another compact support. Therefore, it is free of the back-

ground cell or any implicit mesh. Note that this is differenwhere

from the global domain quadrature integration, since in our

case compact supports are overlapped with each other. K,sz (BL)TDBJdQJraj % %dl“—f v/NDB,dI
This local quadrature idea is extended by Atluri and his Os r r

su su

colleagues to form new meshfree formulati¢8—83,239— (87)

242]. The first formulation proposed by Atluet al is called — — |

the local boundary integral equati¢éhBIE). fi= fr v tdF+aJr viudl' + J'ﬂ v'bd() (88)
st su s

Consider a boundary value problem of Poisson’s equation
[239]. One can form a boundary integral equation for a chégain, () is not the compact suppof},, however, certain
sen subdomairf)s (note that()s has nothing to do with a conditions must be imposed o5, such thaK;;#0 at least
particle’s compact support for somej#i. In practical implementation, the trial func-
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tion’s support isQ); whereas the I-th weighting function’sgration is carried out by sampling the values at the vertices
support is denoted d3,;. Note that all the integrations hereof the Voronoi cell. In the implementatidi’2,245,

are local; no background cell is needed. The term Petrov here

indicates that one uses different trial and téseighting En(xl):f eihj(x)d)(x—x,)dﬂ (89)
function (even though they may be the same function but Q

they have different support siz€), #(}s). This will result \yhered(x) is the characteristic function of small aréq
an unsymmetric stiffness matrix in general. L@{;=Q,,

and the trial function be the same as the weighting function. i xeQ,
Then the above Petrov-Galerkin formulation becomes the ®(x—x,)=1{ Al (90)
conventional Bubnov-Galerkin formulation. In that case, it 0 xe,

returns the local quadrature integration scheme we presented
at the beginning. It is worth mentioning that if one choos@neéreA =meas(},). Therefore,
Qs as ann-dimensional sphere, the numerical integration 1 aul gujh
f —+——]dQ
Q,

. A —h N T
may be carried out by Cubature, which is recently docu- €j;(X;)= 27, ax T

mented in details by De and Bath244].

In order to completely eliminate quadrature points, Chen 1
et al [72] proposed a so-called stabilized conforming nodal = 2_A|fr (u'n;+un;)ds, (91)
integration for meshfree Galerkin method. They first identify :
that for linear exactness in the Galerkin approximation, tHénally, employing an assumed strain method and integrating
shape functions have to be linearly consistent, and the dbe weak form by a nodal integration, the meshfree discrete
main integration has to be able to integrate the derivativesegjuation is obtained. It is shown that if linear basis functions
shape functions to nullity for interior nodes and to meet traere used in the construction of shape function, the strain
tion equilibrium. The argument made by Chenal is that smoothing of Eq(91) in conjunction with the nodal integra-
for meshfree solution of a nodally integrated weak form ttoon of weak form will result the linear exactness in the
be stable and convergent, two conditions need to be satisfi€dlerkin approximation. The main virtue of this approach is
1) derivatives of meshfree shape functions evaluated at tth@t it completely eliminates Gauss quadrature points, which
nodal point must be avoided and Bodal integration must is especially attractive in inelastic large deformation calcula-
satisfy integration constraints. It is shown in their studfton with a Lagrangian formulation.
[245] that a direct integration introduces numerical instabil-
ity due to rank deficiency in the stiffness matrix. To stabilizg.4  Applications

the nodal integration, they proposed a so-called SmOOthiE‘ﬁle of the early incentives to develop meshfree Galerkin

stabilization technique. The basic idea is that one first intﬁiethods was its ability to simulate crack growth—a critical
grates strain in a chosen neighborhood of the particle I, SR

: . ) ! S&%ue in computational fracture mechanics. Belytschko and
{2, 0 replace the strain at point | with the average strain, A% co-workers have systematically applied the EFG method
illustrated in Fig. 6, provided the general triangulation i§ - -

. . o simulate crack growth/propagation problef68,63,190—
possible. Note that her®, is not the compact support of the g propag P 6

cle | +is the = cell th ins th 192,235,246,24]7 Special techniques, such as the visibility
particle | (supp®,)), it is the Voronoi cell that contains t eigéerion’ are developed in modeling a discontinuous field
Irx

particle 1. Then c!ivergen'ce theorem is ysed to replace t 246, Subsequently, a partition of unity method is also
area, or volume mtegratlpn around particle 1 by a cqnto ploited in crack growth simulatiof220]. It is fair to say
integration of the Voronoi cell boundary. The contour 'ntethat at least in 2D crack growth simulation meshfree Galer-
kin procedure offers considerable advantages over the tradi-
tional finite element methods, because remeshing is avoided.
Meshfree simulation has been conducted byt alto simu-

late failure mode transitiof248,249. The simulation has
successfully replicated failure mode transition observed in
Zhou-Rosakis-Ravichadran experimg260], which is re-
lated to the early Kalthoff problen251,253. Figure 7
shows a crack growth from a shear band.

Another area where meshfree Galerkin methods have
clear edge over finite element computations is its ability to
handle large deformation problem&ee Fig. 8. Chen and
his co-workers proposed a concept of Lagrangian kernel and
have been using RKPM to simulate several large deforma-
tion problems, such as metal forming, extrusi@%3,254,
large deformation of rubber materia]255,256, soil me-

Supp@r ) chanics probleni257], shape design sensitivity and optimi-
zation, etc [71,258. Li [226,259,26D and Jun[261] devel-
Fig. 6 Geometry definition of a representative nodal domain oped an explicit RKPM code to compute large deformation




16 Li and Liu: Meshfree and particle methods and applications

' 1 #7B18E.08
1 T2497TE 05
1 B10T4E+08
1 47ES1E+09
1 342 28E408
1 20805E+05
1 O73R3E09
B.30597TE«08
B 05369408
EMTAIE+08
5 A6R13E+08

4 02ERSE+08
2 BB4SRE L08
134228 408

Fig. 7 Asymmetrical impact problerteffective stress contour

MESHFREE
Original Shape

a0% Compression

63% Compression

B0% Compression

(o))

90% Compression

Appl Mech Rev vol 55, no 1, January 2002

problems as well. The explicit RKPM code has been ex-
tended into a 3D parallel code, which has been used to simu-
late 3D large deformations of thin shell structures, shear
band propagatioh248], crack growth. The main advantages
of using meshfree methods in large deformation simulation
area) no remeshingb) relief of volumetric locking for suit-
able choice of support size of shape functfmiich has been
discussed by several auth¢&9,71,236,262,268 andc) no
complicated mixed formulations.

There are three approaches in numerical simulation of
thin plates and shells structurgs):
1) linear/nonlinear plate and shell theory approach;
2) degenerated continuum approach;
3) three-dimensional3D) continuum approach.

Among these three approaches, the 3D continuum direct ap-
proach is the simplest and most accurate one in principle.
Nonetheless, it is the least popular one in practice because
the continuum approach requires deployment of multiple el-

FEM

Fig. 8 Comparison of the defor-
mations at different time stages
for a block of hyperelastic mate-
rial under compression by using
MESHFREE and FEM whemt
=1x10% (9
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ements in the thickness direction of a thin shell structure which can be used as regularization in simulations of strain
order to acquire a reasonable gradient field. This degradesalization problems. It is shown that with proper choice of
the conditioning of the discrete systdiine discrete system reproducing conditions, the method can reproduce a numeri-
becomes too stiffand then accuracy of the numerical solueal gradient theory without introducing additional higher or-
tion. On the other hand, the degenerated continuum approaehn boundary conditions that are required in all physical gra-
as well as shell theory approach have the drawback of eitttdent theory.
shear/membrane locking, or difficulties in embedding inelas- Figure 10 presents a comparison between finite element
tic constitutive relations. Krysl and Belytschk@64] first computations and meshfre€RKPM) computations. The
applied EFG method to thin plate/shell analysis as MLS iproblem is a thin plate with 31 randomly distributed holes
terpolant can easily produdg! interpolation field. On the under uniaxial tension. In both finite element and meshfree
other hand, Donning and Li265] used a spline based par-computations, the same nodal/particle distributions have
ticle method, Noguchj266] used EFG method, and Garcidbeen used, one with a mesh, the other without. The nodal/
et al[267] usedh p-Clouds to compute deformation of Mind-particle distributions are) evenly distributedb) dense in
lin plate problems. The problem is revisited again by Noguhe Y direction, andc) dense in theX direction. One can
chi et al [268], who used a mapping technique to map thelearly observe the mesh alignment sensitivity in finite ele-
curvature surface to a flat 2D space, and discretizationrisent computation, and the relief of such sensitivity in mesh-
being done on this 2D mapped space. In their formulation fiee computation.
convected co-ordinate system is utilized in moving least Using meshfree interpolants to conduct multiple scale
square procedure. Good convergence results have beencosaputation can be rewarding as wéee Fig. 11Liu and
ported in those reports. [[226], Li et al found that one can his co-workers[68,198,273,274,275were the first to use
use a meshfree interpolant in 3D direct continuum approacheshfree interpolant in multiple scale computations. Because
because the smoothness of meshfree interpolant, one canreproducing kernel functions may be viewed as filters with
curately capture the gradient in thickness direction with @ifferent length scales, by choosing different dilation param-
~4 layers of particles while avoiding both shear locking asters, or different kernel functioneg RKPM wavelet$, one
well as volumetric locking in reasonable parameter range. ¢an formulate multiple scale formulations. This multiple
Fig. 9, large deformation of a pinched cylinder simulated bscale meshfree method has been used in many applications
using meshfree interpolant is displaygg®6]. Li et al[269] from acoustics, wave propagation/scatterif@99,273,
utilized the moving least square principle to devise a meshavelet adaptive refinemeifi211,218,27% fluid dynamics
free contact algorithm, which has been used in 3D mef&l74,276,277, large-eddy simulatioi278], large deforma-
forming applications by Qiaet al[50,270,271. tion [275], strain localizatior{211], and damag§279,28Q.
Meshfree methods have been extensively used st ki Recently, Leeet al [281] used a two—scale meshfree
[211,226,248,259,260,269and others(eg [213,273) in method to calculate a 3D stress concentration problem. The
simulations of strain localization problems. By using a mesiRKPM meshfree interpolant provides both error indicator
free interpolant, one can effectively reduce the notoriouw/high filter) as well as excellent frequency responses in
mesh alignment sensitivity in strain localization simulatiomnultiple scale computations. Saigal and Barry suggested a
since there is no mesh involved in meshfree discretizaticslices based element free Galerkin formulation, which, they
whereas in finite element simulations the numerical sheaelieved, can be used in solving problems with multiscale
band tends to grow along a finite element boundary instegdometry, such as a bone blo@82].
of real physical paths. Chest al[213] introduced an intrin-
sic length scale based on reproducing kernel approximation,

(&) FEM 60 = i) (B) FEM 60 = 90

{38) REPM 60 = 60 () REPA 60 = {E) REPM 90 = G0

Fig. 10 Shear band pathes obtained via FEM and RKPM with
Fig. 9 Large deformation of a pinched cylinder different spatial aspect ratios in mesh/patrticle distribution
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It is worth mentioning that Haet al [280] used RKPM  bridging scale hierarchical enrichment, and the associated
combined with finite element method in a micro-mechanigsarallel communication with different processors is pre-
damage simulation. In that study, a multiple scale RKPM isented in that paper.
used to simulate a ductile fracture process involving damageA simple illustration of the multiresolution meshfree
evolution, and multiresolution analysis has also been penethod is given in Figs. 12 and 13. Figure 12 depicts the
formed on shear bands formation. The numerical resufisalysis of large deformation solids and the plastic deforma-
show that the multiple scale RKPM possesses a strong abiliign of a notched bar. The high scale solutiéiig. 1) is an
to capture physical phenomena such as shear band, leegtraction from the total solutioFig. 12o). It shows the
deformation, and the material instability during damage evorack tip field and the localized shear bands. The quantitative
lution. Zhanget al[283] used EFG to model the jointed rockexperimental result is given in Fig. a2 Similarly, Fig. 1&
structures; Alurd 96] used RKPM to analyze microelectro-depicts the high scale solutidgobtained by wavelets decom-
mechanical system. Daniels@t al [284,283 has been de- position of the total scale solutipifor the pressure from the
veloping a new communication scheme for parallel implenalysis of the compressible flow-structure interaction. This
mentation of RKPM formulation. They have tested a quartéigure, labeleHigh scaleclearly indicates the shock location
million particle computations in Cray T3E supercomputer iand this solution can be used as an error indicator to guide
simulations of shear band and fracture. Recently, Zteiraj the adaptivity which is simply implemented by addition of
[286] have developed a parallel version of 3D RKPM codappropriately placed particles in the meshfree method. The
in implicit CFD calculation, which has the capacity to deatotal solution is given in Fig. 13
with more than one million particles. A novel procedure of Due to the difficulties in imposing essential boundary
implementing the essential boundary condition by using tlenditions, a special meshfree contact algorithm is needed

Dynamically progating shear bands < |

SHEAR BAND 28

(a) (D)

Fig. 11 Meshfree simulation of curved dynamic shear bandexperimental observatiof) meshfree calculatiof248]

¥ A~
#:1-. Vel

(D) (c)

Fig. 12 Multi-scale Meshfree Simulation of strain localization of three point bending test
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when solving problems such as impact, sheet metal formirgne the advantages of both finite element metlieEM)
etc Chenet al proposed a static smooth meshfree contaahd meshfree method. In doing so, MPFEM has the ability to
algorithm, in which the contact surface is represented byhandle essential boundary conditions without recourse to
reproducing kernel approximation using a parametric coordipecial methods, it needs no background mesh to integrate
nate. This approach removes slope discontinuity in@e the weak form, and the cost of computing shape functions is
finite element approximation and significantly improves theomparable to the FEM. As demonstrated [288], the
iteration convergence in large sliding contact problemMdPFEM approximation is computed point-wise by enforcing
[287]. This method has been used in shape sensitivity desigestain reproducing conditions. Any degree of polynomial
as well as sheet metal formin@54,256,287. A dynamic can be reproduced by simply using more points to construct
meshfree contact algorithm is implemented by[269], in the approximation. The MPFEM has been shown to be ef-
which a novel meshfree contact detection algorithm is préective in relieving locking in incompressible media prob-
sented. It has been used in computations of both impédeis and also in simulating large deformation penetration
problems and 3D sheet metal forming problei280,271.  problems.

Recently, Hacet al [288] have developed a new particle Figure 14 displayed the meshfree simulation of penetra-
method—the moving particle finite element methotion: contours of damage. Due to the symmetry, a quarter of
(MPFEM). The MPFEM developed out of the desire to comthe nine projectilegalmost rigid penetrating the target was
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Fig. 13 Meshfree Galerkin Simulation of flow past an airfoll
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Fig. 14 Penetration of a concrete block
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modeled with one-quarter projectile at the center, two hal-th eigenfunction(wavefunction as ¥(1,2;--,N), if we

projectiles at 90°, and a single projectile at 45°. It is notedrite the Hamiltonian for the-th electron adH;, the total

that we do not use an erosion algorithm to get rid of thdamiltonian reads

damage material and the size of the crater compares We”H=H1+H2+---+HN 92)

with experimental observation.
which may be explicitly written as

N N N
1 1
4 AB INITIO METHODS AND H==52 Vit 2 prt 2 v, (93)
MOLECULAR DYNAMICS = Sl =

Molecular dynamics is probably the most important antjote that the atomic units o= =m=1) is used in(93).
most widely used particle method in scientific and engineefhe first term in(93) represents the electron kinetic energy,
ing fields [27-32,289. There are two types of molecularthe second term is due to the electron-electron Coulomb in-
dynamics: the-first-principle-based molecular dynamics, &raction, and the third term(r;) denotes the Coulomb po-
ab initio molecular dynamics; and semi-empirical moleculdntial caused by the nuclei. The electron distribution can be
dynamics. Recently, both molecular dynamics have been &gtermined by solving the following steady state Sdiger
plied to traditional engineering areas such as mechanical &quation

gineering, aerospace engineering, electrical engineering, anq_np)\ (1,255 N)

environmental engineering, among others. One fresh ex- Lhar N
ample is the large scale molecular dynamics simulations of =Ex g g g g g (120 0N) (94)
fracture in solids at atomistic scale. ] ]
where Expny a6 ta, o te and €, Iis the ei-
o genvalue of the one electron ScHiager equatiomiszi(i)

4.1 Ab initio methods =€)\i1/f>\i(i). In most cases, the exact solution of the above

Based on our view of the hierarchical structure of the Uné‘ystem is almost impossible. Two approximations are com-

verse, it is believed that if one can understand the mechamﬁgmy used inab initio calculations: the Hartree-Fock ap-
of a small length scale, then one can understand the mech&rb

) ) ; yximation and the density functional theory.

ics at all scales. Though this fool-proof philosophy may be

debatable, its simplicity is attractive, especially as we hatel.2 Hartree-Fock approximation

entered into a new era of super-computing. According to olihe Hartree-Fock approximatid@93—-299, is a Ritz varia-
current knowledge, there are four forces in the universe, tional approximation. Since the exact solution(84) is ob-

i) strong interactior{nuclear force tained by setting the following quadratic functional to mini-
iil) Coulomb force(electrostatic force mum:
iii) weak interactiorn(the force related t@ decay; and
iv) gravitational force. <\p||_||\p>22 2 2 f\p*(l,z;.. N)
Forcesi andiii are short-ranged. They can be neglected in uo2N
conventional engineering applications. The so-called first- XHW(1,2;- ,N)drqdry --dry

principle calculations, oab initio calculations only take into .

account of forcesii and iv in the framework of non- = min{E}=Eo. (95)

relativistic quantum mechanics. Technically speakaigini- The Hartree-Fock approximation is to solve the following

tio methods are used to determine the electron density distiire electron form of the Hartree-Fock equation instead of

bution, and the atomic structures of various materials. By &m. (95),

doing, one may be able to predict the various properties of a

material at the atomic level. Hot (i) +
Comparing to continuum mechanics, atomic scale simula- o

tion is indeedab initio. However, non-relativistic quantum N

mechanics may not be the ultimate theory; besides, there are  _ * - . -

often many approximations involved in simulations of the {21 Es,: J’ ‘//V(J)U(I’J)%(J)dn}w"(l)

quantum state of many-electron systems. The connotation of .

first-principle is used within a specific context. Ultimately, as = e (). (96)

Ohnoet al[289] put it, “only God can use the true method-Here , (i) is a one-electron solution of one-electron Sehro

ology represented by the term, ‘first principle methods’; hu- ) _ 1_,

mans have to use a methodology which is fairly reliable b@nger equationH(i)=— > Vi+u(r;), and

not exact.”

N
212 fw:u)uu,jm(j)dr,}mm

4.1.1 Quantum mechanics of a many-electron system U(ij)= |ri—fj| ; ©7)

In quantum mechanics, the state of an N-electron particle

system can be described by its wave functi¢eg [290— (1) = _2 Z; (98)
I

292]). Denoting the Hamiltonian of the systemds and its - R,—I
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whereZ; is the nucleus charge of theth atom, andR; is the behave like Newtonian particles, but the wavefunction of an
spatial coordinate of thg-th atom. electron is governed by the Scllinger equation. A popular
In [296], the accuracy of large-scal&0,000 basis sizeab algorithm is the Car-Parrinello meth¢d05]. Imagine that a
initio Hartree-Fock calculation is assessed. There is a largrall fictitious mass is attached to each electron; the steady
body of literature on Hartree-Fock quantum molecular dtate Schrdinger equation will become a hyperbolic equa-
namics simulationg297-299. A good survey on researchtion. Then one can find both the electron wave functigp,
work done at the IBM Research Laboratory is presented bg well as the atomic coordinateR;, by integrating the
Clementi[300], who has done pioneering work in this field Newtonian equation of motion. When the fictitious mass at-
) ) tached to each electron approaches zero, the solution should
4.2 Density functional theory converge to the solution of the coupled electron-nucleus
An alternative method to solving an N-particle electron sysarany-body system. The computational task is to integrate
tem is the Density Functional Theof$01-303. The idea is the following equations
similar to SPH—instead of studying a discrete N-body par- 2
ticle system, one assumes that there is a continuous electron _
density cloud,p(r), such that the system’s thermodynamic ~ae Hl’bﬁEp Mt (@)
potential can be expressed as g2 (101)
MigzRi=—VE (b)
- [ otmpnra0 + a1+ ULp)

where ViE is the force acting the nucleus, which is deter-

mined by density functional theory as
+Exc[p(r>]—uf p(r)dr (99) Y Aensly y
whereu(r) is the external potentiall[ p(r)] is the electron ~ —V.E=—V,>, |R R| Jp(r)Vivi(lr—Rl)dr
kinetic energyU[ p(r)] the Coulomb potentiaE, p(r)] is 17
the exchange-correlation energy functional, amdis the SE{p}
chemical potential. Based on this continuous representation, —f 3p Vip(r)dr. (102)

one may be able to solve the N-electron system by determin-
ing the solution of the following effective one-electrorThe time integration of the electron wave function is carried

Schralinger equation—Kohn—Sham equation out by the following predictor-corrector algorithm:
At)?
(_ 2V ”+f =] dr a0 () srim gy M) > A (103)
=e\y\(r) (100) (A1)2
where u, J p](r) = 5E, ./ Sp(r). Prr=2y" -y THwQ (104)

There are otherab initio methods such as pseudo—
potential approach, APW approach, Green’s functiopheren is the time step number. The unknown Lagrangian
method,etc One may consult the monograph by Otetaal multiplier A, , can be obtained from the orthogonality con-
[289] for detailed discussions. dition by solving nonlinear algebraic equations. This method
is called the Ryckaert methd806]. Equation(101b) can be
integrated using either leapfrog or Verlet metf807].
As a particle methodgb initio molecular dynamics is used to A brief review of quantum molecular dynamics on the
study material’s properties at atomic coordinate levelaln simulation of nucleic acids can be found [in99]. A paral-
initio molecular dynamics, one needs to compute the wauetization of general quantum mechanical molecular dynam-
functions of electrons as well as the movement of the nucl@gis (QMMD) is presented if25]. Simulations on liquid
The velocity and the position of an atom is primarily detefrchemicals are reported [1308,309.
mined by the position of the nucleus, which is not only in-
fluenced by the nuclei of other atoms surrounding it, but also
by the electrons surrounding it. In addition, the wavefunctigh4 Classical molecular dynamics
of an electron is also influenced by the presence of the nuchdipresentab initio methods are restricted to simulations of
nearby. several hundreds of atoms within the time scale of nano-

In mostab initio molecular dynamics, the so-called Bornsecond. To simulate any systems larger than that is beyond
OppenheimerBO) adiabatic approximatiofi304] is used. the limit of current computation technology. In order to study
The approximation assumes that the temperature is very loeal systems with large numbers of atoms for a longer time
and hence only the ground state of electrons is considerddration(or time scalg a simpler dynamics model that can
and in addition, the interaction between nuclei and electrorepresent most features of micromechanics at atomic length
is neglected. In fact, up to todagb initio molecular dynam- scale is desirable.
ics can only deal with the systems that obey the Born- Classical molecular dynamics can simulate a system of
Oppenheimer condition. In electron-nuclear system, nuclene million to 1 billion atoms. In classical molecular dy-

4.3 Ab initio molecular dynamics



22 Liand Liu: Meshfree and particle methods and applications Appl Mech Rev vol 55, no 1, January 2002

namics, one does not calculate electron distribution anymore,f,(R;; Ry, i) = hexi ¥(Rij—a) " *+ y(Ry—a) ]
the forces acting on each atom are determined by a potential

function, ie, X[costj +1/3] . (111)
g2 Betweenab initio methods and classical molecular dy-
m WRiz A" (105) namics, there are other semi-empirical methods, such as the

Tight-Binding Method [317-319. The Tight-Binding
which is determined from either empirical knowledge, omethod is a quantum mechanics method, because the forces
from ab initio computations. acting on each atom are based on quantum mechanics, but it

For examp|e’ in a po|ar molecule System of ionic Crystalpises empirical parameters in the construction of the Hamil-
or polar molecule system, the potential is mainly due to elef@nian. Those parameters can be obtained from either experi-

trostatic interaction, thus ments orab initio simulations.
an(R;)
V(Rij) =2, ﬁ (106) 4.5 Applications
] i j

4.5.1 Mechanics of nanotubes filled with fullerenes

whereR;; =|R;,—Rj| andq, is the_ charge_ distribution. The recent resurgence of molecular dynamics, both quantum
The most well-known potential, originally proposed for,

inert-gas elements, is the Lennard-Jonés) potential and classical, is largely due to the emergence of nano-
i S ) . technology. Materials at the nanoscale have demonstrated
[310,311, which is a typical Van der Waals potential. For 9y

. ) ) . pressive physical and chemical properties, thus suggesting
pair of atomsi and ] located atR; andR;, the potential a wide range of areas for applications. For instance, carbon

energy 1S nanotubes are remarkably strong, and have better electrical
Ro\®2 [Ry\® conductance, as well as heat conducivity than copper at room
Vii=4eo|l | =—| —|= (107) temperature. Moreover, nanotubes are such light weight and

: Rj Ri

F.. _(9V(R|J)_ 60
Ry TR

(108)

high-strength(TPg materials that they eventually will play
where e, and R, are the minimum energy and collision di-an important role in reinforced fiber composites, and as both
ameter between the two atoms. respectively. The correspodl@vices and nanowires. In particular, nanotubes having
ing force between the two atoms is given by fullerenes inside could have different physical properties
13 . compared to empty nanotubes. Such structures also hold
5 5) _(E) promise for use in potential functional devices at nanometer
Rij Rij/ | scale: nano-pistons, nano-bearings, nano-writing devices,
. and nano-capsule storage system.
The Lennard-Jonel.J) potential has been used by Falk and \jqdeling of nanotubes filled with fullerenes has two as-
Langer[101,312,31Bto simulate fracture as well as sheapects: 3 the bonded interaction between fullerenes and
band in noncrystalline or amorphous solids. _ _ nanotubes; Pthe bonded interactions among the carbon at-
In general, for simulation of anisotropic crystalline solldOms of the nanotubes. Recently, Qianal [320] used com-
the LJ potential, or pair potential, is not accurate anymorgineq molecular dynamics and meshfree Galerkin approach
and more complex potentials are needed, because the LJ80simyate interaction between fullerenes and a nanotube. In
tential is unable to represent specific interaction patterns dye non-bonded interaction, the nanotube is modeled as a
to specific lattice structures. To remedy this inadequacy, tAgntinuum governed by the Cauchy-Born ritsg Tadmor
embedded-atom potential meth8AM) has been used in gt 511321] and Milstein[322]). For the bonded interaction, a
simulations. The embedded-atom potenti2aw and Baskes g ified potential is used to simulate interactions among
[314]) consists of two sources) the embedding energy for .4 hon atoms. Specifically, Tersoff-Brenner mo¢Eérsoff
each atom to be introduced to the system, apth2 short [323], Brenner 1994324]) is used in simulation,
range core-to-core repulsion between nucleus pairs. Thus, its

potential has the form, D;i(Ri;)=Dg( Rij)_§ij¢A(Rij) (112)
B 1 whered and® , represent the repulsive and attractive po-
V_Zf Filpni)+ EZ EJ: i (Ryj) (109) tential respectively,
. . (€)
where® (R;;) represents the pair potential, aRg(py, ;) rep- _ Djj v (@)
resents the embedding energy of atonandpy, ; is the den- Pr(Rij)=1(Ry) (Sj—-1) exp— V25 B (R~ Ry ™)}

sity of the host at the position &; but without atomi. For (113)
example, in simulation of semiconductors, the fourfold coor-
dinated Stillinger-Weber potential is adoptd@15,314,
which consists of a two-body part of LJ type

DS
DA(R;j) =f(R;j) S —1)
j

exp{ — 2/S;; B (Rij = R{)}.
(114)

For carbon-carbon bondindd{?=6.0eV, S;=1.22, g;;
and a three-body part =2.1A"%, Rf=1.39A, and

fo(R;)=ABR;*—1L)exd (Rj—a) '] (110)
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1 r<Ri(jl) method couples molecular dynamics with the finite element
1 method in a so-callethandshake regiobetween MD and
£(r) ! 1 ﬁ{”(r_Ri(i ))D RU<r<R® (115) finite elements
=14 3|1+cos szy—=ar i/ <r=Ry -
( 2 Rij2 _Rijl ! it (119 Gumbsch and his co-workers also systematically used

0 r>Ri(-2). both MD andab initio methods to simulate brittle fracture
' _ [339-343. They placed emphasis on the atomistic mecha-

The effect of bonding angle is taken into account in t8in  nisms of the fracture. Farkas and co-workers have exten-
(see Brennef324] and Qianet al [320]). In Fig. 15, the sjyely used molecular dynamics with the embedded-atom
length of the nanotubes ate=129 A, and the diameter of method (EAM) potential to study the atomistic aspect of
the nanotube is 6.78 45,5), which is close to the diameterfracture mechanic§344—344. The atomistic simulations
of Ceo. conducted by Farkas have been focused on crack propaga-
45.2 Atomistic simulations of fracture tion algng a grain' boundgry, disloggtions emitted from a
FﬁaCk tip, and ductile-to-brittle transitions. Falk and Langer

During past few years, molecular dynamics simulations ha 01312 313 34 4 classical MD with the LJ o
been used extensively in fracture and crack simulation ,312,313,34Rused classica with the LJ potential to

atomic scale, which is largely promoted and publicized Eymulate fr_acture_and shear transformation 2¢8&2) in
Bulatov et al [325]. The current research in this direction i oncrystalline solids.

often associated with the name of multi-scale simulation and

multi-physics modeling, which is pioneered by the Worlg OTHER PARTICLE METHODS

done by Clementi and his co-workdi3d26—329. Starting in i _

the late 1980s, they have been systematically using sup any particle methods have been pro_posed during the pa_st
computers to carry owb initio modeling, molecular dynam-t ree de_cades. Each ,Of these particle methods has_ Its
ics modeling, Monte Carlo modeling, and phenomenologicﬁY"n merits, and so far it has not been found that there is a

modeling in a single simulations. They mixed quantum m(pjethod that is suitable “for all seasons.” Research on devel-

lecular dynamics with continuum mechanics in a singl%ping new particle methods is still active. A few representa-

simulation having multiple length scales. tives of particlg methods are worth me_ntioning. A very im-
Abraham and his co-workers have conducted extensiE)@rtant one is the vortex method in fluid mechanics

simulations ranging from brittle fracturf98,330-332 to 97,14,15,17,18,350~3%2

ductile fracturg 330,333,334 and brittle to ductile transition

[335-337. They have used both classical molecular dynar®-1 Vortex method

ics and ab initio molecular dynamics to simulate crackn computational fluid mechanics, most of the numerical al-

growth [338]. The current effort is on using multiple scalegorithms for the Navier-Stokes equations are based on the

simulations, or concurrent simulations by combining quaielocity-pressure formulation. An alternative to velocity-

tum electron distributiorab initio method, classical atom pressure formulation is the vorticity-velocity formulation:

dynamics(molecular dynamigs and the continuum soli€fi-

nite element simulation of solid mechani¢99]. They de- (9—&,+(u~V)w=(w~V)u+VAw (116)
veloped a method called MAAD that dynamically couples 9t
continuum mechanics far from the crack, empirical potential AU=-VX (117)

MD near the crack, and quantum tight-bindi(igB) dynam- o
ics at the crack tip to simulate fracture in silicf®9]. The Where vorticityw=V xu.
The Lagrangian form of the above equations are

dx,
gr Uiy (118)
. dw
St ~LVuC D]en+ vAe(x ) (119)

where the velocity field can be obtained from the Poisson’s
equation(117). It can be expressed by the Biot-Savart inte-
gral,

u(x,t)=f G(x—Yy) X wdy (120)

where the Green'’s function is
1 z

- 2D
2m [2?
G(2)= . (121)
Fig. 15 Molecular dynamics simulations @fgy passing through 1z 3D

nanotubg 320] 47 W
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The essence of the vortex method is to discretize above fivet find the velocities and accelerations at each spatial nodal
Lagrangian description by the finite number of moving mgoint based on the information of surrounding material

terial particles. Following the movement of these particleppints. In the same manner, internal and external forces on a
one may construct or evaluate the velocity field as well as tepecific spatial nodal point at each time step are calculated

vorticity field. by summing up the contribution from the surrounding mate-
In early approaches, a poifgingulay vortex method was rial points. The method was first used in computational fluid
employed to represent the vorticity field, dynamics by Brackhil[93,94,356—358 It was reformulated
by Sulsky and co-workers for solid mechanics applications.
o(X)= >, [8(x—x,). (122) Some very good illustrations such as the Taylor bar impact
|

problem and ring collision problem have been shown by Sul-
sky et al[92,95,359.
In the particle-in-cell method, the total mass or total vol-

dx, 1 (X —x3)Xel; ume of the continuum is divided amomy particles
== (123)
dt 27T J |X| XJ|

For example, the 2D discrete velocity field is

X,1)=2, M, 8(x—X,(1)). 128
Today, most researchers use vortex blob or smooth vortexp( ) EI 1ol (1) (128)

methods. I '”.‘p"es th_at a smoothing kern_el function is usP(Eionsider a weak formulation of the momentum equation
to eliminate singularities so that the algorithm may be more

stable. The resulting equation becomes, f pw-adﬂz—f pUZVWdQ+f W.tdS+f pW
Q Q aTy Q

@,()= 2 Ty, (x=x) (124) bdQ. (129)
wherey,(X)=p~%y(x/p) is the smoothing kernel. It may beSubstituting(128) into (129, a Lagrangian type of discreti-
noted that the idea of the vortex blob method is very simil@ation can be achieved

to that of SPH or RKPM. When using the vortex blob n

P
method, the velocity field in 2D may be written as Z M, w(X,(t),t)-a(X(t),t)
=1
dx; 1 (xi—x3) X &I 39(]x —x;|/py)
- = N
dt 2 J |X|_X\]|2 (125)

p

=-2 M|o-(X,(t),t):VW(X,t)|X=X|(t))+f w-tdS
whereG(y)=27[¥y(z)zdz =t ft

The vortex method was first used in computations of in- Np
compressible and inviscid floveg [97,351. Later, it was + 2 MW(X(1),1)-b(X, (1), 1). (130)
applied to solve viscous flow probleni44,353,354, and =
show that the method has the ability to provide accuraince the kinemetic variables are discretized in an Eulerian
simulation of complex high Reynolds number flowgrid, the accelerations are governed by the discrete equation
[13,352,355 Two versions of vortex methods were used if motion at spatial nodal points,

early implementation: Chorin’s random wdlk4,15 and Le- Ny,
onard’s core spreading techniqud7,18. Today, most 2 mi_a_:fint+f§3xt_ (131)
people use the following re-sampling scheme: =

The exchange of information between the particles and spa-

X
d—tl = 2 VK (X = X5) X @ (126) tial nodal points is described [859]. The main advantage of
the particle-in-cell method is to avoid using a Lagrangian
de, mesh and to automatically track material boundaries. Recent
T 2;4 V3VK (X = X3) X o applications of the particle-in-cell method are plasma physics

(such as magneto-hydrodynamics, Maxwell-Lorentz equa-
72 tions), astrophysics, and shallow-water/free-surface flow
Frp 22 Valey—en]y, (b= xal). (127)  simulations[89,90,360,36]1

5.2 Particle-in-cell method 5.3 Lattice Boltzmann method

Like the vortex-in-cell approach, the particle-in-cell metho@here have been several excellent reviews on the Lattice
is a dual descriptiofiLagrangian and Euleriammethod. The Boltzmann methodLBM) [52,54,362. The discussion pre-
main idea is to trace the motions of a set of material pointsented here is intended to put the method in comparison with
which carry the information of all the state variables, in &@s peers and look at it from a different perspective. The
Lagrangian manner; whereas the spatial discretization, heareestor of LBM is the Lattice Gas Cellular Automaton
the displacement interpolation, is made with respect to sgaGCA) method, which is also regarded as a special case of
tial coordinate detached from the material body as an Euleolecular dynamic$27]. LBM is designed to improve its
rian description. At the beginning of each time step, one mayatisticalresolution
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Currently, LBM is a very active research front in compuscale model, one can averagein) the particle distribution
tational fluid dynamics because of its easy implementatiaver the discrete velocity space to obtain the macro-scale
and parallelization. The LBM technology has been used particle density at nodal positian
simulations of low Mach number combusti¢863], multi- M
phase flow and Rayleigh-Taylor instabilit$64], flow past a p=> f,. (133)
cylinder [365], flow through porous medif366], turbulent i=1

flow, and thermal flow. One may also find some related ref- . .
Y .e{'he particle velocity momentum at macro-scale can also be

erences iM367-37Q and a convergence study of LBM N Sptained by averaging the meso-scale variables

[371].

The basic equation, or the kinetic equation, of the lattice M
Boltzmann method is Puzizl fie . (134)
fi(x+gAx,t+At)—fi(x,t)=Q;(f(x,t)), i=0,1,2;--,M

(132) Unlike most of the other particle methods, the lattice Boltz-
mann method is a mesh based method. In the LBM, the
wheref; is the particle velocity distribution function alongspatial space is discretized in a way that it is consistent with
thei-th direction, and}; is the collision operator that repre-the kinetic equationie the coordinates of the nearest points
sents the rate change ff during the collision. aroundx arex+e . Therefore, it requires not only grid, but

Note that in the lattice Boltzmann method, for a particle &fiso the grid has to be uniform. This actually causes prob-
a given node, there are only a finite number of velocity diems at general curved boundaries. Recently, efforts have
rections €,i=0,1;--,M) that the particle can have. Figurepeen made to extend LBM to irregular grif&72,373, and
16 illustrates examples of plane lattice, and the discrete \gecific techniques are developed to enforce boundary con-
|0City paths. Figure 17 shows a 3D lattice with the aSSOCiatgﬁions [367,374 During a simulation, partide moves from
discrete velocity set. Viewing Eq132) as a discrete meso-gne lattice node to another. Most likely, there is a probability
that the next node is also occupied by other particles. The
non-zero density of particle distribution at that point indi-
cates the possibility of collision.

There are two approaches to choosing collision operator
Q);. Using the Chapman-Enskog expansion or multi-scale
singular perturbatiofi375], one may find that the following
continuum form of the kinetic equation,

of; 1 of  10°%f\

E+Q'V'fi+€ EQQVV'“QVE"‘EW —?

(135)

is consistent with the discrete kinetic equatid82 up to
the second order of—a small number proportional to the
(@) (b) Knudsen number. By choosing a proper collision operator,

Fig. 16 Lattice and velocity directions) triangular lattice;b) for instance using_the Iat_tice BGK theofgfter Bhatnagar,
square lattice Gross, and Krook in continuum kinetic thedt§76]),

QG eq
— = (fi= 9. (136)

Equation (135 may recover Navier-Stokes hydrodynamics
equations, provided the equilibrium state of particle density
is well defined,eg that of Qianet al [50],

9 3
f89=pw;| 1+3¢-u+ E(qu)z—zuz : (137)

The alternative is to consider E(L32) as the discrete ver-
sion of the continuum Boltzmann equation, and one may
derive the discrete collision operator by discretizing the
Maxwell-Boltzmann equilibrium distributiof54,364. The
resulting difference equations may reproduce Navier-Stokes
hydrodynamic equations in the limit of small Knudsen num-
ber, ie particle mean-free path much smaller than typical
macroscopic variation scal¢370].

In principle, the Lattice Boltzmann method ishana fide
Fig. 17 Cubic Lattice with 15 molecular spee@3Q15 computational meso-mechanics paradigm. It has batho-
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mechanicart, the statistical movement of the molecules-equation statistically, whereas the proposeithic Feynman
Boltzmann equation, and theomogenizatiorpart, the as- integral is equivalent to the Navier equation with the second
semble or averaging in the phaselocity) space. In fact, to order accuracy. The discrete mimic path integral is built on a
extend the Boltzmann Lattice method to irregular lattice, @€t of infinitesimal propagators of local supports, and the
quasi-lattice structure is the current research topic. In 19gfiscretization is truly meshfree.

Succi[362] wrote: Besides SPH, one of the early contributions of strong
“Most of the excitement behind LGCA was driven by form collocation meshfree methods was Liszka and Orkisz's
the ‘Grand-dreant generalized finite difference meth§#9,20. Another impor-

LGCA: Turbulence-lsing Model:Phase Transitions. tant contribution is Yagawa and Furukawa's free mesh

Ten years later, all reasonable indications are that the Method[86-88. The free mesh method is a meshless FEM,
‘Grand_dream' has turned into a ‘Grand_i”usion’ (but, which sounds paradOXical from its name. The idea here is to

who knows the future ?) abandon the global finite element mesh, and it does not re-
LBE was born on a much less ambitious footing: just quire connectivity information between element and nodes.
provide a useful tool to investigate fluid dynamics and, The stiffness matrix is assembled node by node. For each
maybe mesoscopic phenomena, on parallel machines.node, at each time step, there may be several satellite nodal
And in that respect, it appears hard to deny that, even pOintS SUrrOUnding it to form a temporary mesh, which will
though much remains to be done, the method has in-allow one to build shape function at that particular node.

deed lived up to the initial expectatians.” After that, one can move to the next nodal point. Although
This assessment has been both accurate and modest, 888-Still relies on Delaunay triangulation to set up the initial
sidering the recent development of LBM. mesh, the topological data structure here is very different
from conventional FEM and it is suitable for massively par-

5.4 Natural element method allel computations, especially using domain decomposition.

This is because the moving element schdaiemoving par-
ticle FEM [288]) is an element-by-element scheme and
matrix-storage free formulation.

The natural element methadNEM) was first proposed by
Braun and Sambridgl877,378, and was used for geophys
ical applications. TraversofB79] proposed the method in-
dependently, and he used it in hydraulic engineering applica-
tion. The natural element or natural neighbor method is
based on the so-called Sibson co-ordinates to constructGts CONCLUSIONS AND DISCUSSION

interpolation functior{ 380,381, which relies on the concept |y this survey, particle methods and their applications in ap-
of the Voronoi diagram and Delaunay triangulations. plied mechanics have been reviewed. Most of the methods
Sukumaret al [382-384 have systematically used thegiscussed here are based on approximations that do not re-
natural neighbor method to solve the solid mechanics profire a mesh structure, and therefore they are called mesh-
lems. Buecheet al[385] studied the dispersive properties ofree methods. Modeling with these methods only requires a
the natural element when using it to solve wave and reducgst of unstructured points that cover the domain of interest.
wave equations. Cuetet al [386] modified it by means of Since meshfree/particle methods have simple topological
density-scaledr-shapes to impose essential boundary condiata structures, they allow easy adaptive refinement, easy
tion over non-convex boundaries. Recently, Belikeval parallelization, and flexible interpolation in a deformable do-
[387] presented a non-Sibsonian interpolation scheme, whigfhin. It has been shown that many problems that currently
claims to have several advantages over the Sibsonian intennot be solved by finite element or finite difference meth-

polation schemes. ods are tractable by meshfree methods. This class of methods
show great potential to meet the demands of modern soft-
5.5 Other meshfree methods ware, error estimators, hp adaptivity, multiresolution analy-

In a series of papers, @teet al proposed a so-called finite sis, sampling approximations, edge detectietie, These are
point method, mesh-free point methi@88-391, which is a the traits that represent the future generation of computa-
gridless numerical procedure based on the combination tmfnal methods, and will benefit applications in the many
weighted least square interpolations on a cloud of points witinanches of engineering and physical sciences.
point collocation for evaluating the approximation integrals. Although much has been achieved in the past decade,
It has been used to solve advection-diffusion problems atitere are still many tasks and challenges remaining. These
fluid flow mechanics. challenges include the cost-effective meshfree-Galerkin
An interesting meshfree proposal has been made recentigthod; scalable implementation of essential boundary con-
by Pardo[392], who is seeking a middle ground betweemlitions; accurate nodal integration strategies, and stabiliza-
continuum mechanics formulation and statistical formuldaion schemes for both discretized weak form as well as col-
tion. The intention is to solve continuum mechanics prolecated strong form formulations. Besides the algorithmic
lems by actually solving animic Feynmarpath integral for- improvements, it is believed that meshfree particle methods
mulation, an analogy to the Lattice Boltzmann methodill play a significant role in the next generation computa-
(instead of solving the Euler equation, one solves a discréienal meso-mechanics, or computational micro-mechanics,
Boltzmann equation The well-known Feynman path inte-which is the integrated part of nano-technology and super-
gral of quantum mechanics is equivalent to the Sdimger computing technology.
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Today, computational meso-mechanics is still in its infant
stage. Few paradigms are available. An outstanding examéﬂgJ
in CFD is the Lattice Boltzmann Method. A future direction[13]
may be developing a Boltzmann-type method without a lat-
tice. In solid mechanics applications, the most ambitio
project in computational micro-mechanics has been the muyis)
tiple scale method, which combines quantum molecular dy-
namics, classical molecular dynamics, and continuum me-
chanics in a single simulation. It has been extensively used[itv]
large scale simulationénvolving 10 to 1 billion atomp of
fracture and crack growth. The current multiple scale conh®
putation is a coupling between particle methods and finife]
element methods, which israechanical bridgingf various
length scales with different physics models. A future diregyg
tion, we believe, is to develop multiple scale method of pure
particle methods at all scales, which might have better niAll
merical data structure. [22]

The computational meso-mechanics models in solid me-
chanics, such as Needleman-Xu-Ortiz's cohesive finite elf\2-3]
ment model[393-396, Tadmor’s quasi-continuum model
[321], and Gao and Klein's virtual internal bon@/IB)
model[397], are all built upon finite element discretization,
and all of them have been reported to have mesh alignment
sensitivities in numerical simulations. An immediate task i£25]
to develop a computational meso-mechanics model based on
particle methods, or meshfree methods. A number of regg)
searchers have been working towards this directemn
(185,392, [

(28]
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