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Recent developments of meshfree and particle methods and their applications in applied mechan-
ics are surveyed. Three major methodologies have been reviewed. First, smoothed particle
hydrodynamics~SPH! is discussed as a representative of a non-local kernel, strong form collo-
cation approach. Second, mesh-free Galerkin methods, which have been an active research
area in recent years, are reviewed. Third, some applications of molecular dynamics~MD! in
applied mechanics are discussed. The emphases of this survey are placed on simulations of
finite deformations, fracture, strain localization of solids; incompressible as well as compress-
ible flows; and applications of multiscale methods and nano-scale mechanics. This review ar-
ticle includes 397 references.@DOI: 10.1115/1.1431547#
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1 INTRODUCTION

Since the invention of the finite element method~FEM! in
the 1950s, FEM has become the most popular and wi
used method in engineering computations. A salient fea
of the FEM is that it divides a continuum into discrete e
ments. This subdivision is called discretization. In FEM,
individual elements are connected together by a topolog
map, which is usually called a mesh. The finite element
terpolation functions are then built upon the mesh, wh
ensures the compatibility of the interpolation. However, t
procedure is not always advantageous, because the num
compatibility condition is not the same as the physical co
patibility condition of a continuum. For instance, in a L
grangian type of computations, one may experience m
distortion, which can either end the computation altoge
or result in drastic deterioration of accuracy. In additio
FEM often requires a very fine mesh in problems with h
gradients or a distinct local character, which can be com
tationally expensive. For this reason, adaptive FEM has
come a necessity.

Today, adaptive remeshing procedures for simulation
impact/penetration problems, explosion/fragmentation p
lems, flow pass obstacles, and fluid-structure interac
problemsetc have become formidable tasks to underta
The difficulties involved are not only remeshing, but a
mapping the state variables from the old mesh to the
mesh. This process often introduces numerical errors,
frequent remeshing is thus not desirable. Therefore, th
called Arbitrary Lagrangian Eulerian~ALE! formulations
Transmitted by Associate Editor JN Reddy
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have been developed~see,eg@1–4#!. For a complete descrip-
tion on this subject, readers may consult Chapter 7 of
book by Belytschko, Liu, and Moran@5#. The objective of
the ALE formulation is to make the mesh independent of t
material so that the mesh distortion can be minimized. U
fortunately, in computer simulations of very large deform
tion and/or high-speed mechanical and structural syste
even with the ALE formulation, a distorted mesh introduc
severe errors in numerical computations. Furthermore,
convective transport effects in ALE often lead to spurio
oscillation that needs to be stabilized by artificial diffusion
a Petrov-Galerkin stabilization. In other cases, a mesh m
carry inherent bias in numerical simulations, and its prese
becomes a nuisance in computations. A well known exam
is the simulation of the strain localization problem, which
notorious for its mesh alignment sensitivity@6,7#. Therefore,
it would be computationally efficacious to discretize a co
tinuum by only a set of nodal points, or particles, witho
mesh constraints. This is theleitmotif of contemporary mesh-
free Galerkin methods.

The advantages of the meshfree particle methods may
summarized as follows:
1! They can easily handle very large deformations, since

connectivity among nodes is generated as part of
computation and can change with time;

2! The methodology can be linked more easily with a CA
database than finite elements, since it is not necessar
generate an element mesh;

3! The method can easily handle damage of the compone
such as fracture, which should prove very useful in mo
elings of material failure;
© 2002 American Society of Mechanical Engineers
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4! Accuracy can be controlled more easily, since in are
where more refinement is needed, nodes can be ad
quite easily~h-adaptivity!;

5! The continuum meshfree methods can be used to mo
large deformations of thin shell structures, such as na
tubes;

6! The method can incorporate an enrichment of fine sc
solutions of features, such as discontinuities as a funct
of current stress states, into the coarse scale; and

7! Meshfree discretization can provide accurate represe
tion of geometric object.

In general, particle methods can be classified based
two different criteria: physical principles, or computation
formulations. According to the physical modeling, they ma
be categorized into two classes: those based on determin
models, and those based on probabilistic models. On
other hand, according to computational modelings, they m
be categorized into two different types as well: those serv
as approximations of the strong forms of partial different
equations~PDEs!, and those serving as approximations
the weak forms of PDEs. In this survey, the classificati
based on computational strategies is adopted.

To approximate the strong form of a PDE using a partic
method, the partial differential equation is usually discretiz
by a specific collocation technique. Examples are smooth
particle hydrodynamics~SPH! @8–12#, the vortex method
@13–18#, the generalized finite difference method@19,20#,
and many others. It is worth mentioning that some partic
methods, such as SPH and vortex methods, were initia
developed as probabilistic methods@10,14#, and it turns out
that both SPH and the vortex method are most frequen
used as deterministic methods today. Nevertheless, the
jority of particle methods in this category are based
probabilistic principles, or used as probabilistic simulatio
tools. There are three major methods in this category:!
molecular dynamics~both quantum molecular dynamic
@21–26# and classical molecular dynamics@27–32#!; 2! di-
rect simulation Monte Carlo~DSMC!, or Monte Carlo
method based molecular dynamics, such as quantum Mo
Carlo methods@33–41#! ~It is noted that not all the Monte
Carlo methods are meshfree methods, for instance, a pro
bilistic finite element method is a mesh-based method@42–
44#!; and 3! the lattice gas automaton~LGA!, or lattice gas
cellular automaton@45–49# and its later derivative, the Lat-
tice Boltzmann Equation method~LBE! @50–54#. It may be
pointed out that the Lattice Boltzmann Equation method
not a meshfree method, and it requires a grid; this exam
shows that particle methods are not always meshfree.

The second class of particle methods is used with vario
Galerkin weak formulations, which are called meshfr
Galerkin methods. Examples in this class are Diffuse E
ment Method ~DEM! @55–58#, Element Free Galerkin
Method ~EFGM! @59–63#, Reproducing Kernel Particle
Method ~RKPM! @64–72#, h-p Cloud Method@73–76#, Par-
tition of Unity Method @77–79#, Meshless Local Petrov-
Galerkin Method~MLPG! @80–83#, Free Mesh Method@84–
88#, and others.
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There are exceptions to this classification, because some
particle methods can be used in both strong form collocation
as well as weak form discretization. The particle-in-cell
~PIC! method is such an exception. The strong form colloca-
tion PIC is often called the finite-volume particle-in-cell
method@89–91#, and the weak form PIC is often called the
material point method@92#, or simply particle-in-cell method
@93–95#. RKPM also has two versions as well: a collocation
version@96# and a Galerkin weak form version@66#.

In areas such as astrophysics, solid state physics, biophys-
ics, biochemistry and biomedical research, one may encoun-
ter situations where the object under consideration is not a
continuum, but a set of particles. There is no need for dis-
cretization to begin with. A particle method is the natural
choice in numerical simulations. Relevant examples are the
simulation of formation of a star system, the nano-scale
movement of millions of atoms in a non-equilibrium state,
folding and unfolding of DNA, and dynamic interactions of
various molecules,etc. In fact, the current trend is not only
to use particle methods as discretization tools to solve con-
tinuum problems~such as SPH, vortex method@14,15,97#
and meshfree Galerkin methods!, but also to use particle
methods as a physical model~statistical model, or atomistic
model! to simulate continuum behavior of physics. The latest
examples are using the Lattice Boltzmann method to solve
fluid mechanics problems, and using molecular dynamics to
solve fracture mechanics problems in solid mechanics@98–
103#.

This survey is organized as follows: The first part is a
critical review of smoothed particle hydrodynamics~SPH!.
The emphasis is placed on the recent development of correc-
tive SPH. The second part is a summary of meshfree Galer-
kin methods, which includes DEM, EFGM, RKPM, hp-
Cloud method, partition of unity method, MLPGM, and
meshfree nodal integration methods. The third part reviews
recent applications of molecular dynamics in fracture me-
chanics as well as nanomechanics. The last part is a survey
on some other meshfree/particle methods, such as vortex
methods, the Lattice Boltzmann method, the natural element
method, the particle-in-cell method,etc. The survey is con-
cluded with the discussions of some emerging meshfree/
particle methods.

2 SMOOTHED PARTICLE HYDRODYNAMICS

2.1 Overview

Smoothed Particle Hydrodynamics is one of the earliest par-
ticle methods in computational mechanics. Early contribu-
tions have been reviewed in several articles@8,12,104#. In
1977, Lucy @10# and Gingold and Monaghan@9# simulta-
neously formulated the so-called Smoothed Particle Hydro-
dynamics, which is known today as SPH. Both of them were
interested in the astrophysical problems, such as the forma-
tion and evolution of proto-stars or galaxies. The collective
movement of those particles is similar to the movement of a
liquid, or gas flow, and it may be modeled by the governing
equations of classical Newtonian hydrodynamics. Today,
SPH is being used in simulations of supernovas@105#, col-
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lapse as well as formation of galaxies@106–109#, coales-
cence of black holes with neutron stars@110,111#, single and
multiple detonations in white dwarfs@112#, and even in
‘‘Modeling the Universe’’@113#. Because of the distinct ad
vantages of the particle method, soon after its debut, the S
method was widely adopted as one of the efficient compu
tional techniques to solve applied mechanics proble
Therefore, the termhydrodynamicsreally should be inter-
preted asmechanicsin general, if the methodology is applie
to other branches of mechanics rather than classical hy
dynamics. To make distinction with the classical hydrod
namics, some authors,eg Kum et al @114,115#, called it
Smoothed Particle Applied Mechanics.

This idea of the method is somewhat contrary to the c
cepts of the conventional discretization methods, which d
cretize a continuum system into a discrete algebraic syst
In astrophysical applications, the real physical system is
crete; in order to avoid singularity, a local continuous field
generated by introducing a localized kernel function, wh
can serve as a smoothing interpolation field. If one wishe
interpret the physical meaning of the kernel function as
probability of a particle’s position, one is dealing with
probabilistic method. Otherwise, it is only a smoothing tec
nique. Thus, the essence of the method is to choose a sm
kernel,W(x,h) ~h is the smoothing length!, and to use it to
localize the strong formof a partial differential equation
through a convoluted integration. Define SPH averagi
localization operator as

Ak~x!5^A~x!&5E
Rn

W~x2x8,h!A~x8!dVx8

'(
I 51

N

W~x2xI ,h!A~xI !DVI (1)

One may derive a SPH discrete equation of motion from
continuous counterpart@12,116#,

K r
dv

dt L
I

52^¹•s& I⇒r I

dvI

dt

'2 (
J51

N

~sI1sJ!•¹W~xI2xJ ,h!DVJ (2)

wheres is Cauchy stress,r is density,v is velocity, andDVJ

is the volume element carried by the particleJ.
Usually a positive function, such as the Gaussian fu

tion, is chosen as the kernel function

W~x,h!5
1

~ph2!n/2expF2
x2

h2G , 1<n<3 (3)

where the parameterh is the smoothing length. In genera
the kernel function has to satisfy the following conditions

i ) W~x,h!>0 (4)

i i ) E
Rn

W~u,h!dVu51 (5)

i i i ) W~u,h!→d~u!, h→0 (6)

iv) W~u,h!PCp~Rn!, p>1 (7)
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The third property ensures the convergence, and the las
property comes from the requirement that the smoothing ker
nel must be differentiable at least once. This is because th
derivative of the kernel function should be continuous to
prevent a large fluctuation in the force felt by the particle.
The latter feature gives rise to the namesmoothedparticle
hydrodynamics.

In computations, compact supported kernel functions such
as spline functions are usually employed@117#. In this case,
the smoothing length becomes the radius of the compact sup
port. Two examples of smooth kernel functions are depicted
in Fig. 1.

The advantage of using an analytical kernel is that one
can evaluate a kernel function at any spatial point without
knowing the local particle distribution. This is no longer true
for the latest corrective smoothed particle hydrodynamics
methods@66,118#, because the corrective kernel function de-
pends on the local particle distribution.

The kernel representation is not only an instrument tha
can smoothly discretize a partial differential equation, but it
also furnishes an interpolant scheme on a set of moving pa
ticles. By utilizing this property, SPH can serve as a La-
grangian type method to solve problems in continuum me
chanics. Libersky and his co-workers apply the method to
solid mechanics@117,119,120#, and they successfully simu-
late 3D thick-wall bomb explosion/fragmentation problem,
tungsten/plate impact/penetration problem,etc. The impact
and penetration simulation has also been conducted b
Johnson and his co-workers@121–123#, and an SPH option
is implemented in EPIC code for modeling inelastic, dam-
age, large deformation problems. Attawayet al @124# devel-
oped a coupling technique to combine SPH with the finite
element method, and an SPH option is also included in PR
ONTO 2D ~Taylor and Flanagan@125#!.

SPH technology has been employed to solve problems o
both compressible flow@126# and incompressible flow

Fig. 1 Examples of kernel functions
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@116,127–129#, multiple phase flow and surface tensio
@114,115,129,130,131,132,133#, heat conduction @134#,
electro-magnetic~Maxwell equations! @90,104,135#, plasma/
fluid motion @135#, general relativistic hydrodynamics@136–
138#, heat conduction@134,139#, and nonlinear dynamics
@140#.

2.2 Corrective SPH and other improvements
in SPH formulations

Various improvements of SPH have been developed thro
the years@104,141–149#. Most of these improvement are
aimed at the following shortcomings, or pathologies, in n
merical computations:
• tensile instability@150–154#;
• lack of interpolation consistency, or completene

@66,155,156#;
• zero-energy mode@157#;
• difficulty in enforcing essential boundary conditio

@120,128,131#.

2.2.1 Tensile instability
So-called tensile instability is the situation where particl
are under a certain tensile~hydrostatic! stress state, and the
motion of the particles become unstable. To identify the c
prit, a von Neumann stability analysis was carried out
Swegleet al @150#, and by Balsara@158#. Swegle and his
co-workers have identified and explained the source of
tensile instability. Recently, by using von Neumann and Co
rant stability criterion, Belytschkoet al @151# revisited the
problem in the general framework of meshfree particle me
ods. In their analysis, finite deformation effects are also co
sidered.

Several remedies have been proposed to avoid such
sile instability. Morris proposed using special kernel fun
tions. While successful in some cases, they do not alw
yield satisfactory results@152#. Randles and Libersky@120#
proposed adding dissipative terms, which is related to c
servative smoothing. Notably, Dykaet al @153,154# proposed
a so-called stress point method. The essential idea of
approach is to add additional points other than SPH partic
when evaluating, or sampling, stress and other state v
ables. Whereas the kinematic variables such as displacem

Fig. 2 A 2D Stress point distribution
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velocity, and acceleration are still sampled at particle points
In fact, the stress point plays a similar role as the ‘‘Gauss
quadrature point’’ does in the numerical integration of the
Galerkin weak form. This analogy was first pointed out by
Liu et al @66#. This problem was revisited again recently by
Chen et al @159# as well as Monaghan@148#. The former
proposes a special corrective smoothed-particle metho
~CSPM! to address the tensile instability problem by enforc-
ing the higher order consistency, and the latter proposes t
add an artificial force to stabilize the computation. Randles
and Libersky@160# combined normalization with the usual
stress point approach to achieve better stability as well a
linear consistency. Apparently, the SPH tensile instability is
related to the lack of consistency of the SPH interpolant. A
2D stress point deployment is shown in Fig. 2.

2.2.2 Zero-energy mode
The zero energy mode has been discovered in both finit
difference and finite element computations. A comprehensiv
discussion of the subject can be found in the book by Be
lytschko et al @5#. The reason that SPH suffers similar zero
energy mode deficiency is due to the fact that the derivative
of kinematic variables are evaluated at particle points by ana
lytical differentiation rather than by differentiation of inter-
polants. In many cases, the kernel function reaches a max
mum at its nodal position, and its spatial derivatives becom
zero. To avoid a zero-energy mode, or spurious stress osc
lation, an efficient remedy is to adopt the stress point ap
proach@157#.

2.2.3 Corrective SPH
As an interpolation among moving particles, SPH is not a
partition of unity, which means that SPH interpolants canno
represent rigid body motion correctly. This problem was first
noticed by Liuet al @64–66#. They then set forth a key no-
tion, a correction function, which has become the centra
theme of the so-called corrective SPH. The idea of a correc
tive SPH is to construct a corrective kernel, a product of the
correction function with the original kernel. By doing so, the
consistency, or completeness, of the SPH interpolant can b
enforced. This new interpolant is named the reproducing ker
nel particle method@64–66#.

SPH kernel functions satisfy zero-th order moment condi-
tion ~5!. Most kernel functions satisfy higher order moment
condition as well@104#, for instance

E
R
xW~x,h!dx50. (8)

These conditions only hold in the continuous form. In gen-
eral they are not valid after discretization,ie

(
I 51

NP

W~x2xI ,h!DxIÞ1 (9)

(
I 51

NP

~x2xI !W~x2xI ,h!DxIÞ0 (10)

where NP is the total number of the particles. Note that con
dition ~9! is the condition of partition of unity. Since the
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kernel function can not satisfy the discrete moment con
tions, a modified kernel function is introduced to enforce
discrete consistency conditions

W̃h~x2xI ;x!5Ch~x2xI ;x!W~x2xI ,h! (11)

whereCh(x;x2xI) is the correction function, which can b
expressed as

Ch~x;x2xI !5b0~x,h!1b1~x,h!
x2xI

h
1b2~x,h!

3S x2xI

h D 2

1¯¯ (12)

where b0(x),b1(x),¯ .,bn(x) are unknown functions. We
can determine them to correct the original kernel functi
Supposef (x) is a sufficiently smooth function. By Taylo
expansion,

f I5 f ~xI !5 f ~x!1 f 8~x!S xI2x

h Dh

1
f 9~x!

2! S xI2x

h D 2

h21¯¯ (13)

the modified kernel approximation can be written as,

f h~x!5(
I 51

NP

W̃h~x2xI ;x! f IDxI

5S (
I 51

NP

W̃h~x2xI ,x!DxI D f ~x!h0

2S (
I 51

NP S x2xI

h D W̃h~x2xI ,x!DxI D f 8~x!h

1¯¯1S (
I 51

NP

~21!nS x2xI

h D n

W̃h

3~x2xI ,x!DxI D f n~x!

n!
hn1O~hn11!. (14)

To obtain ann-th order reproducing condition, the momen
of the modified kernel function must satisfy the followin
conditions:

M0~x!5(
I 51

NP

W̃h~x2xI ,x!DxI51;

M1~x!5(
I 51

NP S x2xI

h D W̃h~x2xI ,x!DxI50;

A

Mn~x!5(
I 51

NP S x2xI

h D n

W̃h~x2xI ,x!DxI50;
6 (15)

Substituting the modified kernel expressions,~11! and ~12!
into Eq.~15!, we can determine then11 coefficients,bi(x),
by solving the followingmoment equations:
i-
e

n.

s

S m0~x! m1~x! ¯ mn~x!

m1~x! m2~x! ¯ mn11~x!

A A A A

mn~x! mn11~x! ¯ m2n~x!

D S b0~x,h!

b1~x,h!

A
bn~x,h!

D
5S 1

0
A
0
D (16)

It is worth mentioning that after introducing the correction
function, the modified kernel function may not be a positive
function anymore,

K~x2xI !>” 0. (17)

Within the compact support,K(x2xI) may become negative.
This is the reason why Duarte and Oden refer to it asthe
signed partition of unity@73,74,76#.

There are other approaches to restoring completeness o
the SPH approximation. Their emphases are not only consis
tency, but also on cost effectiveness. Using RKPM, or a
moving-least-squares interpolant@155,156# to construct
modified kernels, one has to know all the neighboring par-
ticles that are adjacent to a spatial point where the kerne
function is in evaluation. This will require an additional CPU
to search, update the connectivity array, and calculate th
modified kernel function pointwise. It should be noted that
the calculation of the modified kernel function requires
pointwise matrix inversions at each time step, since particles
are moving and the connectivity map is changing as well.
Thus, using a moving least square interpolant as the kerne
function may not be cost-effective, and it destroys the sim-
plicity of SPH formulation.

Several compromises have been proposed throughout th
years, which are listed as follows:
1! Monaghan’s symmetrization on derivative approximation

@104,145#;
2! Johnson-Beissel correction@123#;
3! Randles-Libersky correction@120#;
4! Krongauz-Belytschko correction@61#;
5! Chen-Beraun correction@139,140,161#;
6! Bonet-Kulasegaram integration correction@118#;
7! Aluru’s collocation RKPM@96#.

Since the linear reproducing condition in the interpolation is
equivalent to the constant reproducing condition in the de-
rivative of the interpolant, some of the algorithms directly
correct derivatives instead of the interpolant. The Chen-
Beraun correction corrects even higher order derivatives, bu
it may require more computational effort in multi-
dimensions.

Completeness, or consistency, closely relates to conver
gence. There are two types of error estimates: interpolation
error and the error between exact solution and the numerica
solution. The former usually dictates the latter. In conven-
tional SPH formulations, there is no requirement for the
completeness of interpolation. The particle distribution is as-
sumed to be randomly distributed and the summations ar
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Monte Carlo estimates of integral interpolants. The error
random interpolation was first estimated by Niedereiter@162#
as being}N21 logNn21 where N is total particle number an
n is the dimension of space. This result was further improv
by Wozniakowski@163# as being}N21 logNn21/2. Accord-
ing to reference@104#, ‘‘this remarkable result was produce
by a challenge with a payoff of sixty-four dollars !’’ Twenty
one years after its invention, in 1998 Di Lisioet al @164#
gave a convergence proof of smoothed particle hydrodyn
ics method for regularized Euler flow equations.

Besides consistency conditions, the conservation pro
ties of a SPH formulation also strongly influence its perf
mance. This has been a critical theme throughout SPH
search, see@12,104,120,145,155,165#. It is well known that
classical SPH enjoys Galilean invariance, and if certain
rivative approximations, or Golden rules as Monaghan p
it, are chosen, the corresponding SPH formulations can
serve some discrete conservation laws. This issue was
cently revisited by Bonetet al @166#, and they set forth a
discrete variational SPH formulation, which can automa
cally satisfy the balance of linear momentum and balance
angular momentum conservation laws. Here is the basic i
Assume the discrete potential energy in a SPH system is

P~x!5(
I

VI
0U~JI ! (18)

where VI
0 is the initial volume element, andU(JI) is the

internal energy density, which is assumed to be the func
of determinant of the Jacobian—ratio between the initial a
current volume element,

J5
VI

VI
0 5

r I
0

r I
(19)

wherer I
0 andr I are pointwise density in initial configuratio

and in current configuration.
For adiabatic processes, the pressure can be obtained

]UI /]J 5pI . Thus, the stationary condition of potential e
ergy gives

Fig. 3 TheGhost particleapproach for boundary treatment
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dP5DP@dv#5(
I

VI
0DUI@dv#

5(
I

H(
J

mImJS pI

r I
2 1

pJ

rJ
2D¹WI~xJ!J dvI (20)

wheremI is the mass associated with particleI .
On the other hand,

DP@dv#5(
I

]P

]xI
dvI5(

I
TI•dvI (21)

where T is the internal force~summation of stress!. Then
through the variational principle, one can identify,

TI5(
I

mImJS pI

r I
2 1

pJ

rJ
2D¹WI~xJ! (22)

and establish the discrete SPH equation of motion~balance
of linear momentum!,

mI

dvI

dt
52(

I
mImJS pI

r I
2 1

pJ

rJ
2D¹WI~xJ!. (23)

2.2.4 Boundary conditions
SPH, and in fact particle methods in general, have difficulties
in enforcing essential boundary condition. For SPH, some
effort has been devoted to address the issue. Takeda’s image
particle method@131# is designed to satisfy the no-slip
boundary condition; it is further generalized by Morriset al
@128# to satisfy boundary conditions along a curved bound-
ary. Based on the same philosophy, Randles and Libersky
@120# proposed a so-calledghost particleapproach, which is
outlined as follows: Suppose particlei is a boundary particle.
All the other particles within its support,N( i), can be di-
vided into three subsets:
1! I ( i): all the interior points that are the neighbors ofi;
2! B( i): all the boundary points that are the neighbors ofi;
3! G( i): all the exterior points that are the neighbors ofi, ie,

all the ghost particles.

ThereforeN( i)5I ( i)øB( i)øG( i). Figure 3 illustrates such
an arrangement.

In the ghost particle approach, the boundary correction
formula for general scalar fieldf is given as follows

f i5 f bc1

(
j PI „i…

~ f j2 f bc!DVjWi j

S 12 (
j PB„i…

DVjWi j D (24)

wheref bc is the prescribed boundary value atx5xi . One of
the advantages of the above formula is that the sampling
formula only depends on interior particles.

2.3 Other related issues and applications

Besides resolving the above fundamental issues, there have
been some other progresses in improving the performance of
SPH, which have focused on applications as well as algorith-
mic efficiency. How to choose an interpolation kernel to en-
sure successful simulations is discussed in@167#; how to
modify the kernel functions without correction is discussed
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in @168,169#; and how to use SPH to compute incompre
ible flow, and to force incompressibility conditions are st
ied in @126#. How to use SPH to simulate contact is revisi
by Campell et al @170#, which is critical in SPH impact
fragmentation simulation. In astrophysics, the SPH metho
now used in some very complex computations, includ
simulations of various protostellar encounters@171–174#,
dissipative formation of elliptical galaxies, supernova fe
back, and thermal instability of galaxies@105,175#.

By considering a smoothing operator as a filter, it
been found that an adaptive smoothing filter is an effic
tool to resolve large-scale structure~astrophysical problems!
as well as small-scale structure~micro-mechanics problems!.
Owen @176,177# has recently developed an adaptive S
~ASPH! technique—an anisotropic smoothing algorit
which uses an ellipsoidal kernel function with a ten
smoothing length to replace the traditional isotropic~or
spherical! kernel function with a scalar smoothing leng
The method has been tested in various computations,egcos-
mological pancake collapse, the Riemann shock tube, S
blast waves, the collision of two strong shock waves. S
@178# used perturbation theory to adjust adaptive param
in SPH formulation to count the fluctuations present i
statistical environment.

Much effort has been devoted to develop paralleliza
of SPH. Daveet al @179# developed a parallelized co
based on TreeSPH, which is a unification of conventio
SPH with the hierarchical tree method@180#. The paralle
protocol of TreeSPH is called PTreeSPH. Using a mes
passing interface~MPI!, it is executed through a domain d
composition procedure and a synchronous hypercube
munication paradigm to build self-contained subvolume
the simulation on each processor at every time step. W
used on Cray T3D, it can achieve a communications o
head of;8% and load balanced up to 95%, while deal
with up to 107 particles in specific astrophysics simulatio
Recently, Lia and Carraro@181# also presented their versio
of parallel TreeSPH implementation, which has been use
the simulation of the formation of an X-ray galaxy cluste
a flat cold dark matter cosmology. In solid mechanics ap
cations, Plimpton and his co-workers@182# have imple-
mented a parallelization of a multi-physics code PRON
3D, which combines transient structural dynamics w
smoothed particle hydrodynamics, and they have carried
some simulations of complex impact and explosions
coupled structure/fluid systems.

The traditional Newtonian SPH has been generalize
the form of general relativistic hydrodynamic equations
perfect fluids with artificial viscosity in a given arbitra
space-time background@136,138#. With this formulation,
both Chow and Monaghan@136# and Siegleret al have simu-
lated@138# ultrarelativistic shocks with relativistic velocitie
up to 0.9999 the speed of light. On the small scale end,
methodology has been used in simulation of cohesive gr
Recently, both Gutfraindet al @183# and Ogeret al @184#
used SPH to simulate a broken-ice field floating on w
under the influence of wind. The broken-ice field is sim
lated as a cohesive material with rheology based on
Mohr-Coulomb yield criterion. In comparison with the cla
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sical Lagrangian method, it has been found that SPH c
eliminate problems of artificial diffusion at the free bound
aries of the ice region, and it can handle discontinuities at t
free surface and also the cohesive effects between mov
particles by proper choice of the kernel functions. Moreove
Gutfraindet al @185# have been trying to connect SPH with
discrete-element method to make a particle-cohesive mod

Birnbaumet al @186# recently tested a coupling technique
between SPH with the Lagrangian finite element method
well as with the arbitrary Lagrangian Eulerian finite elemen
method to simulate fluid-structural interaction problem
which is called the SPH-Lagrange coupling technique. I
stead of forming smoothed hydrodynamics from stron
forms of the governing equation, Fahrenthold and Koo@187#
argued that one may form a hydrodynamics directly from th
Hamiltonian of the mechanical system. By doing so, on
may end up with discrete equations that will have an intrins
energy conserving property. An example was given in@187#
to solve a wall shock problem.

3 MESH-FREE GALERKIN METHODS

There have been several review articles on meshfree Ga
kin methods,eg, @60,68#, and two special issues are devote
to meshfree Galerkin methods~Computer Methods in Ap-
plied Mechanics and Engineering, Vol 139, 1996;Computa-
tional Mechanics, Vol. 25, 2000!. The focus of this review is
placed on the latest developments and perspectives that
different from previous surveys.

3.1 Overviews

Unlike SPH, meshfree Galerkin methods are relative
young. In the early 1990s, there were several resea
groups, primarily the French group~P Villon, B Nayroles, G
Touzot! and the Northwestern group~T Belytschko and W K
Liu! who were looking for either meshless interpolant
@55,57,58# to relieve the heavy burden of structured mes
generation that is required in traditional finite element refin
ment process, or interpolants having multiple scale comp
tation capability@64,65,188#. Nayroleset al basically redis-
covered the moving least square interpolant derived in
landmark paper by Lancaster and Salkauskas@189#. Foresee-
ing its potential use in numerical computations, they nam
it the diffuse element method~DEM!. Meanwhile, Liuet al
@64–66,188# derived the so-called reproducing kernel pa
ticle interpolant in an attempt to construct a corrective SP
interpolant.

Then in 1994, another landmark paper was published
Belytschko, Lu, and Gu@59#, in which the MLS interpolant
was used in the first time in a Galerkin procedure. B
lytschkoet al formed a variational formulation to accommo
date the interpolant to solve linear elastic problems, spec
cally the fracture and crack growth problems@63,190–192#.
The authors named their method the element free Galer
method. Meanwhile, Liu and his co-workers used the repr
ducing kernel particle interpolant, which is an advanced ve
sion of the MLS interpolant, to solve structural dynamic
problems@66,193#.
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Meshfree interpolants are constructed among a set of s
tered particles that have no particular topological connec
among them. The commonly-used meshfree interpolati
are constructed by a data fitting algorithm that is based
the inverse distance weightedprinciple. The most primitive
one of the kind is the well-known Shepard’s interpola
@194#. In the Shepard’s method, one chooses a decaying p
tive window functionw(x).0, and interpolate only arbitrary
function, f (x), as

f h~x!5(
i 51

N

f i

w~x2xi !

(
i 51

N

w~x2xi !

(25)

where the decaying positive window function,w(x2xi), lo-
calizes aroundxi . The Shepard’s interpolant then has t
form

f i~x!5
w~x2xi !

(
i 51

N

w~x2xi !

(26)

Obviously,( i 51
N f i(x)51, ie Shepard’s interpolant is a pa

tition of unity, hence the interpolant reproduces a const
Note that the partition of unity condition is a discrete su
mation, which may be viewed as normalized zero-th or
discrete moments. To generalize Shepard’s interpolant,
needs to normalize higher order discrete moments of the
sis function. There are two approaches to generalize S
ard’s interpolant: 1! moving least square interpolant by La
caster and Salkauskas@189#; and 2! moving least square
reproducing kernel by Liu, Li and Belytschko@70#. The pro-
cedures look alike, but subtleties remain. For instance, w
out employing theshiftedbasis, ill-conditioning may arise in
the stiffness matrix.

The reproducing kernel interpolant may be interpreted
a moving least square interpolant, if one chooses the foll
ing shifted local basis

f h~x,x̄!5 (
i 51

n11

Pi~ x̄2x!bi~x!5P~ x̄2x!b~ x̄! (27)

where b5(b1(x),b2(x),¯ ,bn11(x))T and P(x)
5(P1(x),P2(x),¯ ,Pn11(x)), Pi(x)PCn11(V). One may
notice that there is a difference between Eq.~27! and the
orginal choice of the local approximation by Lancaster a
Salkauskas@189# or Belytschkoet al @59#. To determine the
unknown vectorb(x), we minimize the local interpolation
error

J~b~ x̄!!5(
I 51

NP

F~ x̄2xI !@P~ x̄2xI !b~ x̄!2 f ~xI !#
2DVI (28)

such that

]J

]b
52(

I 5L
PT~ x̄2xI !F~ x̄2xI !

3@P~ x̄2xI !b~ x̄!2 f ~xI !#DVI

50. (29)
at-
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Let

M ~ x̄!ª(
I PL

PT~ x̄2xI !F~ x̄2xI !P~ x̄2xI !DVI . (30)

One can obtain b( x̄)5M21( x̄)( I PLPT( x̄2xI)F( x̄
2xI)DVI f (xI). Then the modified local kernel function
would be W̃( x̄)5P( x̄2x)M21( x̄)( I PLPT( x̄2xI)F( x̄
2xI)DVI . To this end, only a standard least square proce-
dure has been used, to complete the process, one has to mo
the fixed pointx̄ to any pointxPV; this is why the method
is calledmoving least square method. By so doing, the cor-
rective kernel becomes

W̃I~x!5 lim
x̄→x

5P~0!M21~x!PT~x2xI !F~x2xI !DVI ,

I PL. (31)

If we let P5(1,x,x2,¯ ,xn11), the moving least square in-
terpolant is exactly the same as reproducing kernel interpo
lant. For comparison, the Lancaster-Salkauskas interpolant i
listed as follows

KI~x!5P~x!M21~x!PT~xI !F~x2xI !, I PL. (32)

Two things are obviously different: 1! Lancaster and
Salkauskas did not use the shifted basis, or local basis, and 2!
they usedDVI51 for all particles. In our experience, the
variable weight is more accurate than the uniform weight,
especially along boundaries.

There has been a conjecture that Eqs.~31! and ~32! are
equivalent. In general, this may not be true, because interpo
lant ~31! can reproduce basis vectorP globally, if only Pi is
monomial @70#. For general bases, such asP(x)
5$1,sin(x),sin(2x)%, the global basis may differ from the lo-
cal basis. To show the global reproducing property of~32!
@66#, let f(x)5P(x)

(
I PL

KI~x!fI5 (
I PL

KI~x!P~xI !

5P~x!M21~x! (
I PL

PT~xI !F~x2xI !P~xI !

5P~x!. (33)

A variation of the above prescription is that the basis vec-
tor P need not be polynomial, and it can include other inde-
pendent basis functions as well such as trigonometric func
tions. Utilizing the reproducing property, Belytschkoet al
@195# and Fleming@196# used the following basis to approxi-
mate crack tip displacement field,

P~x!5F1,x,y,Ar cos
u

2
,Ar sin

u

2

1Ar sin
u

2
sinu,Ar cos

u

2
sinuG . (34)

The same trigonometric basis was used again by Rao an
Rahman@197# in fracture mechanics. The similar bases,

P~x!5$1,cos~kx!,sin~kx!% (35)
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P~x!5$1,cos~kxcosu1ky sinu!,sin~kx cosu

1ky sinu!,cos~2kx sinu1ky cosu!,

sin~2kx sinu1ky cosu!%, (36)

are employed by Liuet al @198# in Fourier analysis of
RKPM, and it is used in computational acoustics applicati
by Uraset al @199# and Suleauet al @200,201#. For given a
wave number,k, the meshfree interpolant built upon th
above bases reproduces desired mode function, and it i
lieved to be able to minimize dispersion error. A detai
analysis was performed by Bouillardet al @202# to assess the
pollution error of EFG, when it is used to solve Helmho
equations. It is worth mentioning that Christon and Vo
@203# performed von Neumann analysis for reproducing k
nel semi-discretization of both one and two-dimension
first- and second-order hyperbolic differential equations.
cellent dispersion characteristics are found for the consis
mass matrix with the proper choice of dilation parameter
contrast, row-sum lumped mass matrix is demonstrate
introduce lagging phase errors.

3.2 Completeness, convergence, adaptivity,
and enrichment

The reproducing property of RKPM interpolant leads to a
of very interesting consistency conditions. Denote$KI

r(x)%
as the basis of RKPM interpolant, the so-calledm-th order
consistency condition derived by Liet al in @70,204# reads as

(
I

PS x2xI

r DKI
r~x!5P~0! . (37)

If P(x) is a polynomial basis, the consistency condition
equivalent to reproducing condition,

(
I

P~xI !KI
r~x!5P~x!. (38)

For instance,

(
I

xI
mKI

r~x!5xm, m50,1,2,̄ . (39)

Moreover, it has been showed in@70,204# that there is am-th
order consistency condition for the derivatives of meshf
interplant,

(
I

~xI2x!aDx
bKI

r~x!5a!dab (40)

which is equivalent to

(
I

xI
aDx

bKI
r~x!5

a!

~a2b!!
xa2b. (41)

These consistency conditions firmly establish the basis
the convergence of mesh-free Galerkin meth
@70,73,74,204#, which is far more systematic than the ea
convergence study done by Farwig@205,206# for MLS inter-
polant.

The m-th order consistency for the derivatives of RKP
interpolant has a profound consequence. Based on this
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dition, one can construct a multiple scale meshfree interpo
lant on a set of scattered data@207# by enforcing different
vanishing moment conditions,

M ~x!b(a)~x!5$P(a)~0!% t (42)

The procedure resembles the construction of wavelet ba
sis on the regular grid,eg, @208,209#. Indeed, Li et al
@204,207,210# showed that the higher order RKPM interpo-
lants indeed satisfy the primitive definition of wavelet
transformation/function. Figure 4 illustrates the build-up of
meshfree wavelet function on a set of randomly distributed
points. These wavelets functions have been used by Li an
Liu @210,211# to calculate reduced wave equation—
Helmholtz equation, advection diffusion problem and Stoke
flow problems, and used by Gu¨ntheret al @212# to compute
compressible flow problems as a stabilization agent. Che
et al @213# utilized the meshfree wavelet basis as a numerica
regularization agent to introduce an intrinsic length, and con
sequently stabilize the numerical simulation of strain local-
ization problem.

Them-th consistency condition~37! is further generalized
by Wagner and Liu@214#, Huerta and Ferna´ndez-Méndez
@215,216#, and Hanet al @217# for the hybrid finite-element–
meshfree refinement, which has been used in either meshfr
h-adaptivity @218,215#, or to enforce the essential boundary
conditions@217#. Denoting finite element basis as$NI

h(x)%
and meshfree basis as$KI

r(x)%, the hybrid interpolation has
the following m-order consistency condition

(
I

PS x2xI

r DKI
r~x!1(

I
PS x2xI

h DNI
h~x!5P~0! (43)

and the corresponding reproducing property,

(
I

P~xI !KI
r~x!1(

I
P~xI !NI

h~x!5P~x!. (44)

This generalized consistency condition is instrumental in th
convergence study of mixed hierarchical finite-element
meshfree approximation. In fact, the mixed finite-meshfree
enrichment procedure has been a success, which is mu
easier to implement than the conventional finite elemen
h-type refinement, which may require structured mesh. In
practice, one can simply sprinkle particles onto a finite ele
ment mesh expecting much improvement in numerical solu
tions @215#.

Another important enrichment is the so-calledp-type en-
richment. Since moving least square interpolant is a partitio
of unity, Duarte and Oden@73,74# used Legendre polynomial
to construct a firstp-version meshfree interpolant, which
they named ash-p Clouds. In one dimensional case, it takes
the form of

uh~x!5 (
I PL

f I
n11~x!S uIL01(

i 51

l

biI Li~x!D (45)



r
x

s

r

d

10 Li and Liu: Meshfree and particle methods and applications Appl Mech Rev vol 55, no 1, January 2002
wheref I
n11(x) is then11 order moving least square inte

polant. In general,Li(x) may be regarded as the Taylor e
pansion ofu(x) at point xI . The reason using Legendr
polynomial asp-enrichment is its better conditioning; a sim
lar procedure is well established inp-version finite element
@219#. An early paper by Liuet al @188# proposed an inter-
polation formula that is aslo similar to Eq.~45!; it is called
the multiple-scale spectral finite element method. The Leg-
endre polynomial enrichment basis is called by Belytsch
et al @60# as extrinsic basis, and it is attached to the intrin
basis,f I

n11(x) to form a p-cloud. There is a seldom men
tioned belief among the advocates ofh-p clouds. That is one
can buildh-p clouds on the simplest meshless partition
unity—the Shepard interpolant,ie, one can pile up highe
-
-

e
i-

ko
ic

-

of

order polynomial to Shepard interpolant. By so doing, one
does not need the matrix inversion when constructing higher
order meshfree shape function; one may still be able to enjoy
good interpolation convergence.

This line of thinking leads to a more general formulation,
for instance, the so-calledpartition of unity methodset forth
by Babuška and Melenk@77,79#. The essence of the partition
of unity method is: take a partition of unity and multiply it
with any independent basis to form a new and better basis.
This flexibility provides leverage in computation practice.
Sometimes the choices of the independent basis can be base
on users’ prior knowledge and experience about the problem
that they are solving. For instance, Babusˇka and Melenk@79#
used the following basis,
Fig. 4 An illustration of 2D hierarchical partition of unity
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uh~x!5 (
I PL

f I~a0I1a1Ix1a2I y1b1Isin~nx!

1b2Icos~nx!! (46)

to solve Helmholtz equation. Dolbowet al @220# used the
following interpolant to simulate strong discontinuity,ie the
crack surfaces,

uh~x!5(
I

f IFuI1H~x!bI1(
J

cIJLFL~x!G (47)

where H(x) is the Heaviside function andFL(x) are
asymptotic fields in front of crack tip. Iff I(x) is a meshfree
interpolant, then the method is a meshfree method; iff I(x)
is a finite elment interpolant, the method is called PUFE
an acronym ofpartition of unity finite element method. Re-
cently, Wagneret al @221# used a discontinuous version
PUFEM to simulate rigid particle movement in a Stok
flow. By embedding a discontinuous function to a partition
unity, the interpolant can accurately represent the shape
finite size particle, and the particle surface need not to c
form to the finite element boundary. By doing so, the pr
lem of moving particles in a flow can be simulated witho
remeshing. A so-called X-FEM technique, a variant
PUFEM, is used by Dauxet al @222# to model cracks, espe
cially cracks with arbitrary branches, or intersecting crac

A slight modification of the X-FEM technique was us
by Wagner@223# to simulate concentrated particulate susp
sions on a fixed mesh. In this work, the velocity and press
function spaces are enriched with the lubrication theory
lution for flow between two particles in close proximity. Th
allows particles to approach each other at distances m
smaller than the element size, avoiding the need to refin
adapt the mesh to capture these small-scale flow de
Wagner took advantage of the fact that the lubrication s
tion is determined completely in terms of the particle m
tions and pressure gradient across the gap to reduce the
ber of degrees of freedom by tying the values of the node
the lubrication region together; the standard X-FEM
proach allows the variation of these nodes for maxim
freedom in the solution. Tying the nodes together as don
Wagner allows the entire velocity and pressure solution
tween two particles to be determined in terms of just ei
degrees of freedom for the 2D case. This is a good exam
of multiple scale analysis. Contrary to PUFEM and XFE
the fine scale lubrication solution is embedded into the s
dard PUFEM and X-FEM with only two unknown coeffi
cients of flow rate and pressure, and the remaining six
known degrees of freedom are the two particles veloci
and rotations.

3.3 Enforcement of essential boundary conditions

One of the key techniques of meshfree-Galerkin method
how to enforce an essential boundary condition because
meshfree interpolants do not possess Kronecker delta p
erty. This means that in general, the coefficients of the in
polant are not the same as the nodal values, that is
uh(x)5( INI(x)dI ,

uh~xI !ÞdI . (48)
,
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However, there are exceptions. For instance, if the bound
is piece-wise linear, and the particle distribution can be
ranged such that they are evenly distributed along the bou
ary, one may obtain Kronecker delta property along t
boundary. This is because the correction function not o
can enforce consistency conditions, but also can correct
normality due to the finite domain. This is a hardly know
fact, which was discussed in a paper by Gosz and Liu@224#.
This procedure, nevertheless, is only feasible for cert
simple geometries. In general, a systematic treatment is
needed.

3.3.1 Lagrangian multiplier method
In the first EFG paper@59#, Belytschkoet al enforced the
essential boundary via Lagrangian multiplier method. L
et al @63# slightly modified the formulation. Consider an
elastostatics problem

¹•s1b50, xPV (49)
with the boundary conditions

s•n5T̄, ;xPG t (50)

u5ū, ;xPGu . (51)

To accommodate the non-interpolating shape function,
introduce the reaction force,R, on Gu as another unkown
variable, which is complementary to the primary unknow
u, the displacement. A weak form of the original proble
can be written as,

E
V

@~¹sv
T!:s2vT:b#dV2E

G t

vT
•T̄dS

2E
Gu

lT
•~u2ū!dS2E

Gu

vT
•RdV50,

;vPH1~V!, lPH0~V! (52)

wherev andl are identified asdu anddR, respectively.
Let

uh~x!5 (
I PL

NI~x!uI , vh~x!5 (
I PL

NI~x!vI (53)

where L51,2,̄ ,NP. Define a sub index setLb , Lb

5$I uI PL,NI(x)Þ0,xPGu%. And let

R~x!5 (
I PLb

ÑI~x!RI ,l~x!5 (
I PLb

ÑI~x!lI ,xPGu (54)

whereÑI(x) may be different fromNI(x) in order to satisfy
the LBB condition. The following algebraic equations ma
then be derived,

S K G

GT 0 D S u
RD5S f

qD . (55)

And

K IJ5E
V

BI
TDBJdV (56)

GIK52E
Gu

NIÑKdG, (57)

fI5E
G t

NI t̄dG1E
V

NIbdV (58)
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qK52E
Gu

ÑKūdG (59)

whereD is elasticity matrix, and

BI5F NI ,x , 0

0, NI ,y

NI ,y , NI ,x

G (60)

ÑI5F ÑI ,x , 0

0, ÑI ,y
G . (61)

The Lagrangian multiplier method may run into a stabili
problem, if one chooses shape functions without discretio

3.3.2 Penalty method
The penalty method is another alternative to impose essen
boundary conditions, which was first proposed by B
lytschko et al @190#. A detailed illustration is given by Zhu
et al @225# for the case of 2D linear elastostatics. Consid
the same problem Eqs.~49!–~51!. One has the Lagrangian,

P%5
1

2 EV
~eh!T

•D•ehdV2E
V

~uh!T
•bdV

2E
G t

~uh!T
•T̄dS1

a

2 E
Gu

~uh2ū!T
•~uh2ū!dS.

(62)

Taking dPh50, we have the following algebraic equations

~K1aKu!U5f1afu. (63)

The additional terms due to essential boundary conditio
are

K IJ
u 5E

Gu

NISNJdS (64)

fI
u5E

Gu

NISūdS (65)

where

S5FSx , 0

0, Sy
G ,

Si5H 1 if ui is prescribed onGu ,

0 if ui is not prescribed onGu , i 51,2.
(66)

In computations, the penalty parameter is taken in the ra
a5103;107.

3.3.3 Transformation method
The most efficient method to impose essential boundary c
ditions for meshfree methods is the transformation method
was first proposed by Chenet al @71#, and it has been reiter-
ated by many authors@226–228#. There are two versions of
it: full transformation method~see:@71#! and boundary trans-
form method@226,227#. An efficient boundary transforma-
tion algorithm is proposed by Gu¨nther et al @229# based on
the intuitive argument of d’Alembert principle. The versio
y
n.

tial
-

er

,

ns

ge

n-
. It

of transformation method described here has been used b
the Northwestern Group since 1994. All the particles are
separated into into two sets: boundary set marked with su
perscriptb and interior set marked withnb ~non-boundary
particle!. We distributeNb number of particles on the bound-
ary Gu, and the number of interior particles are:NnbªNP
2Nb . The essential boundary condition providesNb con-
straints,

ui
h~xI ,t !5ui

0~xI ,t !5..gi~xI ,t !, I 51,̄ .,Nb (67)

denotegiI (t)ªgi(xI ,t), I 51,̄ ¯ ,Nb .

ui
h~x,t !5(

I 51

NP

NI~x!diI ~ t !

5(
I 51

Nb

NI
b~x!diI

b ~ t !1(
I 51

Nnb

NI
nb~x!diI

nb~ t !

5Nb~x!di
b~ t !1Nnb~x!di

nb~ t !. (68)

Let Db
ª$NI

b(xJ)%
Nb3Nb, and Dnb

ª$NI
nb(xJ)%

Nb3Nnb. Thus
the enforced discrete essential conditions,~67!, become

Dbdi
b~ t !5gi~ t !2Dnbdi

nb~ t ! (69)

after inversion di
b(t)5(Db)21gi(t)2(Db)21Dnbdi

nb(t), a
transformed interpolation is obtained,

ui
h~x,t !5Nb~x!~Db!21gi~ t !1~Nnb~x!2Nb~x!

3~Db!21Dnb!di
nb~ t !. (70)

Obviously, forxIPGu, I 51,̄ ,Nb ,

ui
h~xI ,t !5giI ~ t !; dui

h~xI ,t !50, I 51,2,̄ ,Nb . (71)

This result can also be interpreted as a new interpolant,ie

ui
h~x,t !5(

I 51

Nb

WI
b~x!uiI ~ t !1(

I 51

Nnb

WI
nbdiI ~ t !

5Wb~x!ui1Wnb~x!di
nb (72)

where Wb(x)ªNb(x)(Db)21, and Wnb(x)ª@Nnb(x)
2Nb(x)(Db)21Dnb#. One may notice that the new shape
functions in ~72! possess the Kronecker-delta, or interpola-
tion property at the boundary.

3.3.4 Boundary singular kernel method
The idea of using singular kernel function to enforce the
Kronecker delta property should be credited to Lancaster an
Salkauskas@189#, which they called theinterpolating moving
least square interoplant. Some authors later used it in com-
putations,eg Kaljevic and Saigal@230# and Chen and Wang
@227#. The idea is quite simple. Take a set of positive shape
function $Fh(x2xI)% I 51

N . SupposexJ is on the boundary
Gu ; we modify the shape function basis as,

F̃h~x2xI !5H Fh~x2xI !

ux2xI up , ;I PGu , p.0

Fh~x2xI !, ;I ¹Gu

(73)

and then build a new shepard basis on$Fh(x2xI)% as
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Ch~x2xI !5
F̃h~x2xI !

(
I

F̃h~x2xI !

(74)

one may verify that for the boundary nodesxJ , Ch(xI

2xJ)5d IJ . In real computations, the procedure works
certain range of dilation parameter,h, but whenh is too
large, the convergence of interpolation deteriorates rap
@227#.

3.3.5 Coupled finite element and particle approach
Another approach is to couple finite element with partic
close to the boundary and necklace the particle domain
a FEM boundary layer and apply essential boundary co
tions to the finite element nodes~see Krongauz and Be
lytschko @231# and Liu et al @218#!. In this approach, all the
boundary and its neighborhood are meshed with finite
ment nodal points, and there is a buffer zone between
finite element zone and the particle zone, which is conne
with the so-called ramp functions. Denote the finite elem
basis as$Ni(x)%, particle basis as$F i(x)%, and ramp func-
tion asR(x). The interpolation function in the buffer zone
the combination of FEM and particle interpolant

F̃ i~x!5H ~12R~x!!F i~x!1R~x!Ni~x! xPV f em

F~x! xPVp
(75)

where the ramp function is chosen asR(x)5( iNi(x), xi

P]V f em. Recently, this approach was used again by Liu
Gu in a meshfree local Petrov-Galerkin~MLPG! implemen-
tation @232#.

Although the method works well, it compromises the
trinsic nature of being meshfree, and subsequently loses
advantages of particle methods. For example, in shear
simulations, the mesh alignment sensitivity due to the fin
element mesh around a boundary could pollute the en
numerical simulation. To enforce the Dirichlet boundary c
dition while still retaining the advantage of a partic
method, a so-called hierarchical enrichment technique is
veloped to enforce the essential boundary condi
@214,217#, which is a further development of the work@218#.
The idea is as follows. Around the boundary, one first dep
a layer of finite element nodes, and all the nodes on
boundary are finite element nodes. Right within the bound
the meshfree particles are blended with the finite elem
nodes, and there is no buffer zone. Denote the finite elem
shape function asNI(x) I PB; and denote meshfree sha
function asF I(x),I PA. One can view that particle discret
zation as enrichment of finite element discretization at
boundary.

uh~x!5 (
I PB

NI~x!aI1 (
I PA

F̃ I~x!dI (76)

whereF̃ I(x) is complementary to the finite element basisie

F̃ I~x!5F I~x!2 (
JPB

NJ~x!F I~xJ! (77)
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It is easy to verify that for a boundary particlexI , I PB,
uh(xI)5aI . Thus Dirichlet boundary condition can be spec
fied directly. In@217#, Hanet al elegantly proved the conver
gence of the method.

In fact, one can also utilize the idea of partition of uni
finite element~PUFEM! to enforce essential boundary con
dition. The procedure is as follows. Deploying a few–lay
finite element mesh around desired boundary and choo
Lagrange finite element interpolant as extrinsic basis,LJI(x),
such thatLJI(xK)5dJK . A PUFEM shape function is con-
structed as follows

F I~x!5 (
J:$xIPVJ%

KJ~x!LJI~x! (78)

whereKJ(x) is a meshfree interpolant. One can show th
F I(xJ)5d IJ .

It is worth mentioning that even though meshfree interp
lants have no difficulties in enforcing natural boundary co
ditions, the implementation of enforcing natural bounda
conditions in meshfree setting is different from those in FE
setting. In finite element procedure, one need only calcula
surface or curved line integral in evaluating traction boun
ary conditions; whereas in meshfree setting, one has to
into account the influences from the interior particles as w
though this is seldom mentioned in the literature. Pang@233#
documented a procedure to treat point loads in an E
implementation.

3.3.6 Quadrature integration and nodal integration
Most mesh-free Galerkin methods~Fig. 5! used background
cell, or background grid to locate the quadrature points
integrate the weak form. Although the background cell ne
not be structured, and can be easily refined~eg the work by
Klass and Shepard@234#!, there is, nontheless, still a ghos
meshpresent. Moreover, how to place such background c
or how to place Gauss quadrature points will directly infl
ence the accuracy as well as the invertibility of the stiffne
matrix. Early on there were a lot of discussions on patch-t
of meshfree Galerkin methods@59,190–192,195,235,236#.
The real concern is the stability of quadrature integratio
Most meshfree interpolants, for instance MLS interpola

Fig. 5 Local meshfree-Galerkin illustration (]Vs5LsøGs)
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are partitions of unity, and in most cases the linear comp
ness, or consistency is also enforceda priori; there is no
compatibility issue left to be tested, unlike the incompati
finite element shape function. However, if there are
enough quadrature points in a compact support, or qua
ture points are not evenly distributed, spurious modes
occur.

Today, quadrature integration is one of the two ma
shortcomings~the cost of meshfree methods is the other! left
when meshfree methods compared with finite element m
ods. Beissel and Belytschko@237# proposed a stabilize
nodal integration procedure by adding a residual of the e
librium equation to the potential energy functional to av
use of quadrature integration. However, adding the additi
term in potential energy means sacrificing variational con
tency, hence accuracy of the formulation. Gauss quadra
integration error via different set-up of background cells
well as quadrature point distribution is studied in@238#. It is
found that if the background cell does not match with
compact support of the meshfree interpolant, consider
integration error may rise.

The simplest remedy is the local, self-similar support
tegration. Assume the meshfree shape function is comp
supported, and the support for each and every partic
similar in shape,eg a circular region in 2D, a sphere in 3D
Take the Element Free Galerkin~EFG! method for example
~Belytschkoet al @59,63#!. For linear elastostatics, the stif
ness matrix is

K IJ5E
V

BI
tDBJdV (79)

whereV is the problem domain. If all the shape functio
have the same shape of compact support~a 3D sphere in this
case!, the above integration can be rewritten as

KIJ5E
VùV I

BI
tDBJdV (80)

whereV I is the support of particleI .
Because all shape functions are compactly supported

integrals in the rest of domain,ie V/V I , vanish. And we
only need to evaluateKIJ within V IùV and G Iu . Since
everyV I ,(I 51, . . . ,n) has the same shape, once a qua
ture rule is fixed for one compact support, it will be the sa
for the rest of compact supports as well. We can then i
grate the weak form locally from one compact support
another compact support. Therefore, it is free of the ba
ground cell or any implicit mesh. Note that this is differe
from the global domain quadrature integration, since in
case compact supports are overlapped with each other.

This local quadrature idea is extended by Atluri and
colleagues to form new meshfree formulations@80–83,239–
242#. The first formulation proposed by Atluriet al is called
the local boundary integral equation~LBIE!.

Consider a boundary value problem of Poisson’s equa
@239#. One can form a boundary integral equation for a c
sen subdomainVs ~note thatVs has nothing to do with a
particle’s compact support!,
te-
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au~y!52E
Vs

u~x!
]ũ*

]n
~x,y!dG1E

Gs

]u

]n
~x!ũ* ~x,y!dG

2E
]Gs

ũ* ~x,y!p~x!dV (81)

whereũ* is the Green’s function

ũ* ~x,y!5
1

2p
ln

r 0

r
. (82)

For each particle in the domainV, one can form a local
boundary integral equation ~81!. Letting uh(x)
5( if i(x)di , one may obtain the following algebraic equa
tions

a iui5(
j 51

N

Ki j* dj1 f i* (83)

where

Ki j* 5E
Gsu

ũ* ~x,yi !
]f j

]n
dG2E

Gsq

f j

]ũ*

]n
~x.yi !dG

2E
Ls

f j

]ũ*

]n
~x,yi !dG (84)

f i* 5E
Gsq

ũ* ~x,yi !q̄dG2E
Gsu

ū
]ũ*

]n
~x,y!dG

2E
Vs

ũ* ~x,yi !p~x!dV. (85)

Those local boundary integrals and local domain integra
can be integrated by fixed quadrature rules. Sladeket al pre-
sented a detailed account on how to deal with singularity
numerical integrations@243#. The obvious advantage of this
formulation is that it does not need to enforce the essent
boundary condition. Nevertheless, this formulation relies o
a Green’s function, and it is limited to a handful of linea
problems.

Subsequently, Atluriet al @80,81# formed a local Petrov-
Galerkin formulation~MLPG! with meshfree interpolant in
the same local regionVs For linear elastostatics problem
~49!, they form N local petrov-Galerkin weak forms. Each o
them around a distinct particleI is,

(
j 51

N

Ki j dj5 f j (86)

where

K IJ5E
Vs

~Bv
I !TDBJdV1aE

Gsu

vIfJdG2E
Gsu

vINDBJdG

(87)

f I5E
Gst

vI t̄dG1aE
Gsu

vI ūdG1E
Vs

vIbdV (88)

Again, Vs is not the compact supportV I , however, certain
conditions must be imposed toVs , such thatKi j Þ0 at least
for some j Þ i . In practical implementation, the trial func-
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tion’s support isV I whereas the I-th weighting function
support is denoted asV Is. Note that all the integrations he
are local; no background cell is needed. The term Petrov
indicates that one uses different trial and test~weighting!
function ~even though they may be the same function
they have different support size,V IÞV Is). This will result
an unsymmetric stiffness matrix in general. LetV Is5V I ,
and the trial function be the same as the weighting func
Then the above Petrov-Galerkin formulation becomes
conventional Bubnov-Galerkin formulation. In that case
returns the local quadrature integration scheme we pres
at the beginning. It is worth mentioning that if one cho
V Is as ann-dimensional sphere, the numerical integra
may be carried out by Cubature, which is recently do
mented in details by De and Bathe@244#.

In order to completely eliminate quadrature points, C
et al @72# proposed a so-called stabilized conforming no
integration for meshfree Galerkin method. They first iden
that for linear exactness in the Galerkin approximation,
shape functions have to be linearly consistent, and the
main integration has to be able to integrate the derivativ
shape functions to nullity for interior nodes and to meet t
tion equilibrium. The argument made by Chenet al is that
for meshfree solution of a nodally integrated weak form
be stable and convergent, two conditions need to be sati
1! derivatives of meshfree shape functions evaluated a
nodal point must be avoided and 2! nodal integration mus
satisfy integration constraints. It is shown in their st
@245# that a direct integration introduces numerical insta
ity due to rank deficiency in the stiffness matrix. To stabi
the nodal integration, they proposed a so-called smoo
stabilization technique. The basic idea is that one first
grates strain in a chosen neighborhood of the particle I
V I , to replace the strain at point I with the average strain
illustrated in Fig. 6, provided the general triangulation
possible. Note that hereV I is not the compact support of t
particle I (supp(C I)), it is the Voronoi cell that contains th
particle I. Then divergence theorem is used to replace
area, or volume integration around particle I by a con
integration of the Voronoi cell boundary. The contour in

Fig. 6 Geometry definition of a representative nodal doma
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gration is carried out by sampling the values at the vertic
of the Voronoi cell. In the implementation@72,245#,

ē i j
h ~xI !5E

V
e i j

h ~x!F~x2xI !dV (89)

whereF(x) is the characteristic function of small areaV I

F~x2xI !5H 1

AI
xPV I

0 x¹V I

(90)

whereAI5meas(V I). Therefore,

ē i j
h ~xI !5

1

2AI
E

V I

S ]ui
h

]xj
1

]uj
h

]xi
DdV

5
1

2AI
E

G I

~ui
hnj1uj

hni !dS. (91)

Finally, employing an assumed strain method and integrati
the weak form by a nodal integration, the meshfree discre
equation is obtained. It is shown that if linear basis function
are used in the construction of shape function, the stra
smoothing of Eq.~91! in conjunction with the nodal integra-
tion of weak form will result the linear exactness in th
Galerkin approximation. The main virtue of this approach
that it completely eliminates Gauss quadrature points, whi
is especially attractive in inelastic large deformation calcul
tion with a Lagrangian formulation.

3.4 Applications

One of the early incentives to develop meshfree Galerk
methods was its ability to simulate crack growth—a critica
issue in computational fracture mechanics. Belytschko a
his co-workers have systematically applied the EFG meth
to simulate crack growth/propagation problems@60,63,190–
192,235,246,247#. Special techniques, such as the visibilit
criterion, are developed in modeling a discontinuous fie
@60,246#. Subsequently, a partition of unity method is als
exploited in crack growth simulation@220#. It is fair to say
that at least in 2D crack growth simulation meshfree Gale
kin procedure offers considerable advantages over the tra
tional finite element methods, because remeshing is avoid
Meshfree simulation has been conducted by Liet al to simu-
late failure mode transition@248,249#. The simulation has
successfully replicated failure mode transition observed
Zhou-Rosakis-Ravichadran experiment@250#, which is re-
lated to the early Kalthoff problem@251,252#. Figure 7
shows a crack growth from a shear band.

Another area where meshfree Galerkin methods ha
clear edge over finite element computations is its ability
handle large deformation problems.~See Fig. 8.! Chen and
his co-workers proposed a concept of Lagrangian kernel a
have been using RKPM to simulate several large deform
tion problems, such as metal forming, extrusion@253,254#,
large deformation of rubber materials@255,256#, soil me-
chanics problem@257#, shape design sensitivity and optimi
zation,etc @71,258#. Li @226,259,260# and Jun@261# devel-
oped an explicit RKPM code to compute large deformation
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Fig. 7 Asymmetrical impact problem~effective stress contour!
problems as well. The explicit RKPM code has been ex
tended into a 3D parallel code, which has been used to sim
late 3D large deformations of thin shell structures, shea
band propagation@248#, crack growth. The main advantages
of using meshfree methods in large deformation simulatio
area! no remeshing;b! relief of volumetric locking for suit-
able choice of support size of shape function~which has been
discussed by several authors@59,71,236,262,263#!; andc! no
complicated mixed formulations.

There are three approaches in numerical simulation o
thin plates and shells structures@5#:
1! linear/nonlinear plate and shell theory approach;
2! degenerated continuum approach;
3! three-dimensional~3D! continuum approach.

Among these three approaches, the 3D continuum direct a
proach is the simplest and most accurate one in principl
Nonetheless, it is the least popular one in practice becau
the continuum approach requires deployment of multiple e
Fig. 8 Comparison of the defor-
mations at different time stages
for a block of hyperelastic mate-
rial under compression by using
MESHFREE and FEM whenDt
5131026 ~s!
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ements in the thickness direction of a thin shell structure
order to acquire a reasonable gradient field. This degr
the conditioning of the discrete system~the discrete system
becomes too stiff! and then accuracy of the numerical so
tion. On the other hand, the degenerated continuum appr
as well as shell theory approach have the drawback of e
shear/membrane locking, or difficulties in embedding ine
tic constitutive relations. Krysl and Belytschko@264# first
applied EFG method to thin plate/shell analysis as MLS
terpolant can easily produceC1 interpolation field. On the
other hand, Donning and Liu@265# used a spline based pa
ticle method, Noguchi@266# used EFG method, and Garc
et al @267# usedhp-Clouds to compute deformation of Mind
lin plate problems. The problem is revisited again by No
chi et al @268#, who used a mapping technique to map
curvature surface to a flat 2D space, and discretizatio
being done on this 2D mapped space. In their formulatio
convected co-ordinate system is utilized in moving le
square procedure. Good convergence results have bee
ported in those reports. In@226#, Li et al found that one can
use a meshfree interpolant in 3D direct continuum appro
because the smoothness of meshfree interpolant, one ca
curately capture the gradient in thickness direction with
;4 layers of particles while avoiding both shear locking
well as volumetric locking in reasonable parameter range
Fig. 9, large deformation of a pinched cylinder simulated
using meshfree interpolant is displayed@226#. Li et al @269#
utilized the moving least square principle to devise a me
free contact algorithm, which has been used in 3D m
forming applications by Qianet al @50,270,271#.

Meshfree methods have been extensively used by Liet al
@211,226,248,259,260,269#, and others~eg @213,272#! in
simulations of strain localization problems. By using a me
free interpolant, one can effectively reduce the notori
mesh alignment sensitivity in strain localization simulatio
since there is no mesh involved in meshfree discretizat
whereas in finite element simulations the numerical sh
band tends to grow along a finite element boundary ins
of real physical paths. Chenet al @213# introduced an intrin-
sic length scale based on reproducing kernel approxima

Fig. 9 Large deformation of a pinched cylinder
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which can be used as regularization in simulations of stra
localization problems. It is shown that with proper choice o
reproducing conditions, the method can reproduce a nume
cal gradient theory without introducing additional higher o
der boundary conditions that are required in all physical gr
dient theory.

Figure 10 presents a comparison between finite elem
computations and meshfree~RKPM! computations. The
problem is a thin plate with 31 randomly distributed hole
under uniaxial tension. In both finite element and meshfr
computations, the same nodal/particle distributions ha
been used, one with a mesh, the other without. The nod
particle distributions area! evenly distributed,b! dense in
the Y direction, andc! dense in theX direction. One can
clearly observe the mesh alignment sensitivity in finite el
ment computation, and the relief of such sensitivity in mes
free computation.

Using meshfree interpolants to conduct multiple sca
computation can be rewarding as well.~See Fig. 11! Liu and
his co-workers@68,198,273,274,275# were the first to use
meshfree interpolant in multiple scale computations. Becau
reproducing kernel functions may be viewed as filters wi
different length scales, by choosing different dilation param
eters, or different kernel functions~egRKPM wavelets!, one
can formulate multiple scale formulations. This multipl
scale meshfree method has been used in many applicati
from acoustics, wave propagation/scattering@199,273#,
wavelet adaptive refinement@211,218,275#, fluid dynamics
@274,276,277#, large-eddy simulation@278#, large deforma-
tion @275#, strain localization@211#, and damage@279,280#.

Recently, Leeet al @281# used a two–scale meshfree
method to calculate a 3D stress concentration problem. T
RKPM meshfree interpolant provides both error indicato
~low/high filter! as well as excellent frequency responses
multiple scale computations. Saigal and Barry suggested
slices based element free Galerkin formulation, which, th
believed, can be used in solving problems with multisca
geometry, such as a bone block@282#.

Fig. 10 Shear band pathes obtained via FEM and RKPM wi
different spatial aspect ratios in mesh/particle distribution
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It is worth mentioning that Haoet al @280# used RKPM
combined with finite element method in a micro-mechan
damage simulation. In that study, a multiple scale RKPM
used to simulate a ductile fracture process involving dam
evolution, and multiresolution analysis has also been p
formed on shear bands formation. The numerical res
show that the multiple scale RKPM possesses a strong ab
to capture physical phenomena such as shear band,
deformation, and the material instability during damage e
lution. Zhanget al @283# used EFG to model the jointed roc
structures; Aluru@96# used RKPM to analyze microelectro
mechanical system. Danielsonet al @284,285# has been de-
veloping a new communication scheme for parallel imp
mentation of RKPM formulation. They have tested a quar
million particle computations in Cray T3E supercomputer
simulations of shear band and fracture. Recently, Zhanget al
@286# have developed a parallel version of 3D RKPM co
in implicit CFD calculation, which has the capacity to de
with more than one million particles. A novel procedure
implementing the essential boundary condition by using
cs
is
ge
er-
lts

ility
arge
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er
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he

bridging scale hierarchical enrichment, and the assoc
parallel communication with different processors is p
sented in that paper.

A simple illustration of the multiresolution meshfre
method is given in Figs. 12 and 13. Figure 12 depicts
analysis of large deformation solids and the plastic defor
tion of a notched bar. The high scale solution~Fig. 12c! is an
extraction from the total solution~Fig. 12b!. It shows the
crack tip field and the localized shear bands. The quantita
experimental result is given in Fig. 12a. Similarly, Fig. 13a
depicts the high scale solution~obtained by wavelets decom
position of the total scale solution! for the pressure from th
analysis of the compressible flow-structure interaction. T
figure, labeledHigh scaleclearly indicates the shock locatio
and this solution can be used as an error indicator to g
the adaptivity which is simply implemented by addition
appropriately placed particles in the meshfree method.
total solution is given in Fig. 13b.

Due to the difficulties in imposing essential bound
conditions, a special meshfree contact algorithm is nee
Fig. 11 Meshfree simulation of curved dynamic shear band:a! experimental observation;b! meshfree calculation@248#

Fig. 12 Multi-scale Meshfree Simulation of strain localization of three point bending test
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when solving problems such as impact, sheet metal form
etc. Chenet al proposed a static smooth meshfree con
algorithm, in which the contact surface is represented b
reproducing kernel approximation using a parametric coo
nate. This approach removes slope discontinuity in theC0

finite element approximation and significantly improves
iteration convergence in large sliding contact proble
@287#. This method has been used in shape sensitivity des
as well as sheet metal forming@254,256,287#. A dynamic
meshfree contact algorithm is implemented by Li@269#, in
which a novel meshfree contact detection algorithm is p
sented. It has been used in computations of both im
problems and 3D sheet metal forming problems@270,271#.

Recently, Haoet al @288# have developed a new partic
method—the moving particle finite element meth
~MPFEM!. The MPFEM developed out of the desire to co
g,
ct
a

di-

e
s

gn,

e-
act

d
-

bine the advantages of both finite element method~FEM!
and meshfree method. In doing so, MPFEM has the ability to
handle essential boundary conditions without recourse t
special methods, it needs no background mesh to integra
the weak form, and the cost of computing shape functions i
comparable to the FEM. As demonstrated in@288#, the
MPFEM approximation is computed point-wise by enforcing
certain reproducing conditions. Any degree of polynomia
can be reproduced by simply using more points to construc
the approximation. The MPFEM has been shown to be ef
fective in relieving locking in incompressible media prob-
lems and also in simulating large deformation penetration
problems.

Figure 14 displayed the meshfree simulation of penetra
tion: contours of damage. Due to the symmetry, a quarter o
the nine projectiles~almost rigid! penetrating the target was
Fig. 13 Meshfree Galerkin Simulation of flow past an airfoil

Fig. 14 Penetration of a concrete block
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modeled with one-quarter projectile at the center, two h
projectiles at 90°, and a single projectile at 45°. It is no
that we do not use an erosion algorithm to get rid of
damage material and the size of the crater compares
with experimental observation.

4 AB INITIO METHODS AND
MOLECULAR DYNAMICS

Molecular dynamics is probably the most important a
most widely used particle method in scientific and engin
ing fields @27–32,289#. There are two types of molecul
dynamics: the-first-principle-based molecular dynamics
ab initio molecular dynamics; and semi-empirical molecu
dynamics. Recently, both molecular dynamics have been
plied to traditional engineering areas such as mechanica
gineering, aerospace engineering, electrical engineering
environmental engineering, among others. One fresh
ample is the large scale molecular dynamics simulation
fracture in solids at atomistic scale.

4.1 Ab initio methods

Based on our view of the hierarchical structure of the u
verse, it is believed that if one can understand the mecha
of a small length scale, then one can understand the mec
ics at all scales. Though this fool-proof philosophy may
debatable, its simplicity is attractive, especially as we h
entered into a new era of super-computing. According to
current knowledge, there are four forces in the universe

i! strong interaction~nuclear force!;
ii ! Coulomb force~electrostatic force!;
iii ! weak interaction~the force related tob decay!; and
iv! gravitational force.

Forcesi and i i i are short-ranged. They can be neglected
conventional engineering applications. The so-called fi
principle calculations, orab initio calculations only take into
account of forcesi i and iv in the framework of non-
relativistic quantum mechanics. Technically speaking,ab ini-
tio methods are used to determine the electron density d
bution, and the atomic structures of various materials. B
doing, one may be able to predict the various properties
material at the atomic level.

Comparing to continuum mechanics, atomic scale sim
tion is indeedab initio. However, non-relativistic quantum
mechanics may not be the ultimate theory; besides, ther
often many approximations involved in simulations of
quantum state of many-electron systems. The connotatio
first-principle is used within a specific context. Ultimately,
Ohnoet al @289# put it, ‘‘only God can use the true metho
ology represented by the term, ‘first principle methods’;
mans have to use a methodology which is fairly reliable
not exact.’’

4.1.1 Quantum mechanics of a many-electron system
In quantum mechanics, the state of an N-electron par
system can be described by its wave functions~eg, @290–
292#!. Denoting the Hamiltonian of the system asH, and its
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j-th eigenfunction~wavefunction! as Cj(1,2,̄ ,N), if we
write the Hamiltonian for thei -th electron asHi , the total
Hamiltonian reads

H5H11H21¯1HN (92)

which may be explicitly written as

H52
1

2 (
i 51

N

¹ i
21(

i . j

N
1

ur i2r j u
1(

i 51

N

v~r i !. (93)

Note that the atomic units of (e5\5m51) is used in~93!.
The first term in~93! represents the electron kinetic energy,
the second term is due to the electron-electron Coulomb in-
teraction, and the third termv(r i) denotes the Coulomb po-
tential caused by the nuclei. The electron distribution can be
determined by solving the following steady state Schro¨dinger
equation

HCl1 ,l2 ,¯ ,lN
~1,2,̄ ,N!

5El1 ,l2 ,¯ ,lN
Cl1 ,l2 ,¯ ,lN

~1,2,̄ ,N! (94)

where El1 ,l2 ,¯ ,lN
5el1

1el2
1¯1elN

and el i
is the ei-

genvalue of the one electron Schro¨dinger equationHicl i
( i )

5el i
cl i

( i ). In most cases, the exact solution of the above
system is almost impossible. Two approximations are com-
monly used inab initio calculations: the Hartree-Fock ap-
proximation and the density functional theory.

4.1.2 Hartree-Fock approximation
The Hartree-Fock approximation@293–295#, is a Ritz varia-
tional approximation. Since the exact solution of~94! is ob-
tained by setting the following quadratic functional to mini-
mum:

^CuHuC&5(
s1

(
s2

¯(
sN

E C* ~1,2,̄ ,N!

3HC~1,2,̄ ,N!dr1dr2¯drN

5min$E%5E0 . (95)

The Hartree-Fock approximation is to solve the following
one electron form of the Hartree-Fock equation instead of
Eq. ~95!,

H0cl~ i !1F (
n51

N

(
si

E cn* ~ j !U~ i , j !cn~ j !dr j Gcl~ i !

2F (
n51

N

(
si

E cn* ~ j !U~ i , j !cl~ j !dr j Gcm~ i !

5elcl~ i !. (96)

Herecl i
( i ) is a one-electron solution of one-electron Schro¨-

dinger equation,H0( i )52
1
2 ¹ i

21v(r i), and

U~ i , j !5
1

ur i2r j u
; (97)

v~r i !52(
i

Zj

ur i2Rj u
(98)
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whereZj is the nucleus charge of thej -th atom, andRj is the
spatial coordinate of thej -th atom.

In @296#, the accuracy of large-scale~10,000 basis size! ab
initio Hartree-Fock calculation is assessed. There is a la
body of literature on Hartree-Fock quantum molecular d
namics simulations@297–299#. A good survey on researc
work done at the IBM Research Laboratory is presented
Clementi@300#, who has done pioneering work in this fiel

4.2 Density functional theory

An alternative method to solving an N-particle electron s
tem is the Density Functional Theory@301–303#. The idea is
similar to SPH—instead of studying a discrete N-body p
ticle system, one assumes that there is a continuous ele
density cloud,r(r ), such that the system’s thermodynam
potential can be expressed as

V5E v~r !r~r !dV1T@r~r !#1U@r~r !#

1Exc@r~r !#2mE r~r !dr (99)

wherev(r ) is the external potential,T@r(r )# is the electron
kinetic energy,U@r(r )# the Coulomb potential,Exc@r(r )# is
the exchange-correlation energy functional, andm is the
chemical potential. Based on this continuous representa
one may be able to solve the N-electron system by determ
ing the solution of the following effective one-electro
Schrödinger equation—Kohn-Sham equation

H 2
1

2
¹21v~r !1E r~r 8!

ur2r 8u
dr 81mxc@r#~r !J cl~r !

5elcl~r ! (100)

wheremxc@r#(r )5dExc /dr(r ).
There are otherab initio methods such as pseudo

potential approach, APW approach, Green’s funct
method,etc. One may consult the monograph by Ohnoet al
@289# for detailed discussions.

4.3 Ab initio molecular dynamics

As a particle method,ab initio molecular dynamics is used t
study material’s properties at atomic coordinate level. Inab
initio molecular dynamics, one needs to compute the wa
functions of electrons as well as the movement of the nuc
The velocity and the position of an atom is primarily dete
mined by the position of the nucleus, which is not only
fluenced by the nuclei of other atoms surrounding it, but a
by the electrons surrounding it. In addition, the wavefunct
of an electron is also influenced by the presence of the nu
nearby.

In mostab initio molecular dynamics, the so-called Bor
Oppenheimer~BO! adiabatic approximation@304# is used.
The approximation assumes that the temperature is very
and hence only the ground state of electrons is conside
and in addition, the interaction between nuclei and electr
is neglected. In fact, up to today,ab initio molecular dynam-
ics can only deal with the systems that obey the Bo
Oppenheimer condition. In electron-nuclear system, nu
rge
y-

by
.

s-

r-
tron
c

on,
in-

n

e-
ei.
r-
-
so
n
lei

-

ow,
ed,
ns

n-
lei

behave like Newtonian particles, but the wavefunction of
electron is governed by the Schro¨dinger equation. A popula
algorithm is the Car-Parrinello method@305#. Imagine that a
small fictitious mass is attached to each electron; the ste
state Schro¨dinger equation will become a hyperbolic equ
tion. Then one can find both the electron wave function,cl ,
as well as the atomic coordinates,Ri , by integrating the
Newtonian equation of motion. When the fictitious mass
tached to each electron approaches zero, the solution sh
converge to the solution of the coupled electron-nucl
many-body system. The computational task is to integ
the following equations

H m
d2

dt2
cl52Hcl1(

n
Llncn , ~a!

Mi

d2

dt2
Ri52¹iE, ~b!

(101)

where ¹iE is the force acting the nucleus, which is det
mined by density functional theory as

2¹iE52¹i(
j Þ i

ZiZj

uRi2Rj u
2E r~r !¹iv i~ ur2Ru!dr

2E dE$r%

dr
¹ir~r !dr . (102)

The time integration of the electron wave function is carr
out by the following predictor-corrector algorithm:

cl
n115fn111

~Dt !2

m (
n

Llncn
n (103)

cn1152cn2cn211
~Dt !2

m
Hcl

n (104)

wheren is the time step number. The unknown Lagrang
multiplier Lln can be obtained from the orthogonality co
dition by solving nonlinear algebraic equations. This meth
is called the Ryckaert method@306#. Equation~101b! can be
integrated using either leapfrog or Verlet method@307#.

A brief review of quantum molecular dynamics on t
simulation of nucleic acids can be found in@299#. A paral-
lelization of general quantum mechanical molecular dyna
ics ~QMMD! is presented in@25#. Simulations on liquid
chemicals are reported in@308,309#.

4.4 Classical molecular dynamics

At present,ab initio methods are restricted to simulations
several hundreds of atoms within the time scale of na
second. To simulate any systems larger than that is bey
the limit of current computation technology. In order to stu
real systems with large numbers of atoms for a longer t
duration~or time scale!, a simpler dynamics model that ca
represent most features of micromechanics at atomic le
scale is desirable.

Classical molecular dynamics can simulate a system
one million to 1 billion atoms. In classical molecular d
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namics, one does not calculate electron distribution anym
the forces acting on each atom are determined by a pote
function, ie,

mi

d2

dt2
Ri52¹V (105)

which is determined from either empirical knowledge,
from ab initio computations.

For example, in a polar molecule system of ionic crys
or polar molecule system, the potential is mainly due to el
trostatic interaction, thus

V~Ri j !5(
j

qn~Rj !

uRi2Rj u
(106)

whereRi j 5uRi2Rj u andqn is the charge distribution.
The most well-known potential, originally proposed f

inert-gas elements, is the Lennard-Jones~LJ! potential
@310,311#, which is a typical Van der Waals potential. For
pair of atomsi and j located atRi and Rj , the potential
energy is

Vi j 54e0F S R0

Ri j
D 12

2S R0

Ri j
D 6G (107)

wheree0 and R0 are the minimum energy and collision d
ameter between the two atoms. respectively. The corresp
ing force between the two atoms is given by

Fi j 52
]V~Ri j !

]Ri j
524

e0

R F2S R

Ri j
D 13

2S R

Ri j
D 7G . (108)

The Lennard-Jones~LJ! potential has been used by Falk a
Langer @101,312,313# to simulate fracture as well as she
band in noncrystalline or amorphous solids.

In general, for simulation of anisotropic crystalline soli
the LJ potential, or pair potential, is not accurate anymo
and more complex potentials are needed, because the L
tential is unable to represent specific interaction patterns
to specific lattice structures. To remedy this inadequacy,
embedded-atom potential method~EAM! has been used in
simulations. The embedded-atom potential~Daw and Baskes
@314#! consists of two sources: 1! the embedding energy fo
each atom to be introduced to the system, and 2! the short
range core-to-core repulsion between nucleus pairs. Thu
potential has the form,

V5(
i

Fi~rh,i !1
1

2 (
i

(
j

f i j ~Ri j ! (109)

whereF(Ri j ) represents the pair potential, andFi(rh,i) rep-
resents the embedding energy of atomi , andrh,i is the den-
sity of the host at the position ofRi but without atomi . For
example, in simulation of semiconductors, the fourfold co
dinated Stillinger-Weber potential is adopted@315,316#,
which consists of a two-body part of LJ type

f 2~Ri j !5A~BRi j
2421!exp@~Ri j 2a!21# (110)

and a three-body part
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f 3~Ri j ,Rik ,u i jk !5lexp@g~Ri j 2a!211g~Rik2a!21#

3@cosu j ik11/3#22. (111)

Betweenab initio methods and classical molecular dy-
namics, there are other semi-empirical methods, such as t
Tight-Binding Method @317–319#. The Tight-Binding
method is a quantum mechanics method, because the forc
acting on each atom are based on quantum mechanics, bu
uses empirical parameters in the construction of the Hami
tonian. Those parameters can be obtained from either expe
ments orab initio simulations.

4.5 Applications

4.5.1 Mechanics of nanotubes filled with fullerenes
The recent resurgence of molecular dynamics, both quantu
and classical, is largely due to the emergence of nano
technology. Materials at the nanoscale have demonstrat
impressive physical and chemical properties, thus suggesti
a wide range of areas for applications. For instance, carbo
nanotubes are remarkably strong, and have better electric
conductance, as well as heat conducivity than copper at roo
temperature. Moreover, nanotubes are such light weight an
high-strength~TPa! materials that they eventually will play
an important role in reinforced fiber composites, and as bot
devices and nanowires. In particular, nanotubes havin
fullerenes inside could have different physical propertie
compared to empty nanotubes. Such structures also ho
promise for use in potential functional devices at nanomete
scale: nano-pistons, nano-bearings, nano-writing device
and nano-capsule storage system.

Modeling of nanotubes filled with fullerenes has two as-
pects: 1! the bonded interaction between fullerenes and
nanotubes; 2! the bonded interactions among the carbon at
oms of the nanotubes. Recently, Qianet al @320# used com-
bined molecular dynamics and meshfree Galerkin approac
to simulate interaction between fullerenes and a nanotube.
the non-bonded interaction, the nanotube is modeled as
continuum governed by the Cauchy-Born rule~eg Tadmor
et al @321# and Milstein@322#!. For the bonded interaction, a
modified potential is used to simulate interactions amon
carbon atoms. Specifically, Tersoff-Brenner model~Tersoff
@323#, Brenner 1990@324#! is used in simulation,

F i j ~Ri j !5FR~Ri j !2B̄i j FA~Ri j ! (112)

whereFR andFA represent the repulsive and attractive po-
tential respectively,

FR~Ri j !5 f ~Ri j !
Di j

(e)

~Si j 21!
exp$2A2Si j b i j ~Ri j 2Ri j

(e)!%

(113)

FA~Ri j !5 f ~Ri j !
Di j

(e)Si j

~Si j 21!
exp$2A2/Si j b i j ~Ri j 2Ri j

(e)!%.

(114)

For carbon-carbon bonding,Di j
(e)56.0 eV, Si j 51.22, b i j

52.1A21, Ri j
e 51.39A, and
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f ~r !55
1 r ,Ri j

(1)

1

2 S 11cosFp~r 2Ri j
(1)!

Ri j
(2)2Ri j

(1) G D Ri j
(1)<r<Ri j

(2)

0 r .Ri j
(2) .

(115)

The effect of bonding angle is taken into account in termB̄i j

~see Brenner@324# and Qianet al @320#!. In Fig. 15, the
length of the nanotubes areL5129 Å, and the diameter o
the nanotube is 6.78 Å~5,5!, which is close to the diamete
of C60.

4.5.2 Atomistic simulations of fracture
During past few years, molecular dynamics simulations h
been used extensively in fracture and crack simulation
atomic scale, which is largely promoted and publicized
Bulatov et al @325#. The current research in this direction
often associated with the name of multi-scale simulation
multi-physics modeling, which is pioneered by the wo
done by Clementi and his co-workers@326–329#. Starting in
the late 1980s, they have been systematically using su
computers to carry outab initio modeling, molecular dynam
ics modeling, Monte Carlo modeling, and phenomenolog
modeling in a single simulations. They mixed quantum m
lecular dynamics with continuum mechanics in a sin
simulation having multiple length scales.

Abraham and his co-workers have conducted exten
simulations ranging from brittle fracture@98,330–332# to
ductile fracture@330,333,334# and brittle to ductile transition
@335–337#. They have used both classical molecular dyna
ics and ab initio molecular dynamics to simulate crac
growth @338#. The current effort is on using multiple sca
simulations, or concurrent simulations by combining qu
tum electron distribution~ab initio method!, classical atom
dynamics~molecular dynamics!, and the continuum solid~fi-
nite element simulation of solid mechanics! @99#. They de-
veloped a method called MAAD that dynamically coup
continuum mechanics far from the crack, empirical poten
MD near the crack, and quantum tight-binding~TB! dynam-
ics at the crack tip to simulate fracture in silicon@99#. The

Fig. 15 Molecular dynamics simulations ofC60 passing through
nanotube@320#
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method couples molecular dynamics with the finite elemen
method in a so-calledhandshake regionbetween MD and
finite elements.

Gumbsch and his co-workers also systematically use
both MD andab initio methods to simulate brittle fracture
@339–343#. They placed emphasis on the atomistic mecha
nisms of the fracture. Farkas and co-workers have exte
sively used molecular dynamics with the embedded-ato
method ~EAM! potential to study the atomistic aspect of
fracture mechanics@344–348#. The atomistic simulations
conducted by Farkas have been focused on crack propag
tion along a grain boundary, dislocations emitted from
crack tip, and ductile-to-brittle transitions. Falk and Lange
@101,312,313,349# used classical MD with the LJ potential to
simulate fracture and shear transformation zone~STZ! in
noncrystalline solids.

5 OTHER PARTICLE METHODS

Many particle methods have been proposed during the pa
three decades. Each of these particle methods has
own merits, and so far it has not been found that there is
method that is suitable ‘‘for all seasons.’’ Research on deve
oping new particle methods is still active. A few representa
tives of particle methods are worth mentioning. A very im-
portant one is the vortex method in fluid mechanics
@97,14,15,17,18,350–352#.

5.1 Vortex method

In computational fluid mechanics, most of the numerical a
gorithms for the Navier-Stokes equations are based on t
velocity-pressure formulation. An alternative to velocity-
pressure formulation is the vorticity-velocity formulation:

]v

]t
1~u•¹!v5~v•¹!u1nDv (116)

Du52¹3v (117)

where vorticityv5¹3u.
The Lagrangian form of the above equations are

dxI

dt
5u~xI ,t ! (118)

dv

dt
5@¹u~xI ,t !#vI1nDv~xI ,t ! (119)

where the velocity field can be obtained from the Poisson
equation~117!. It can be expressed by the Biot-Savart inte
gral,

u~x,t !5E G~x2y!3vdy (120)

where the Green’s function is

G~z!5H 2
1

2p

z

uzu2 2D

1

4p

z

uzu3
3D

. (121)
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The essence of the vortex method is to discretize above
Lagrangian description by the finite number of moving m
terial particles. Following the movement of these particl
one may construct or evaluate the velocity field as well as
vorticity field.

In early approaches, a point~singular! vortex method was
employed to represent the vorticity field,

v~x!5(
I

G Id~x2xI !. (122)

For example, the 2D discrete velocity field is

dxI

dt
5

1

2p (
J

~xI2xJ!3ezGJ

uxI2xJu2
. (123)

Today, most researchers use vortex blob or smooth vo
methods. It implies that a smoothing kernel function is us
to eliminate singularities so that the algorithm may be mo
stable. The resulting equation becomes,

vr~x!5(
I

G IvIgr~x2xI ! (124)

wheregr(x)5r2dg(x/r) is the smoothing kernel. It may be
noted that the idea of the vortex blob method is very simi
to that of SPH or RKPM. When using the vortex blo
method, the velocity field in 2D may be written as

dxI

dt
52

1

2p (
J

~xI2xJ!3ezGJg~ uxI2xJu/rJ!

uxI2xJu2 (125)

whereG(y)52p*0
yg(z)zdz.

The vortex method was first used in computations of
compressible and inviscid flow,eg @97,351#. Later, it was
applied to solve viscous flow problems@14,353,354#, and
show that the method has the ability to provide accur
simulation of complex high Reynolds number flow
@13,352,355#. Two versions of vortex methods were used
early implementation: Chorin’s random walk@14,15# and Le-
onard’s core spreading technique@17,18#. Today, most
people use the following re-sampling scheme:

dxI

dt
5(

J
VJKr~xI2xJ!3vJ (126)

dvI

dt
5F(

J
VJ¹Kr~xI2xJ!3vJG

1nr22(
J

VJ@vJ2vI #gr~ uxI2xJu!. (127)

5.2 Particle-in-cell method

Like the vortex-in-cell approach, the particle-in-cell metho
is a dual description~Lagrangian and Eulerian! method. The
main idea is to trace the motions of a set of material poin
which carry the information of all the state variables, in
Lagrangian manner; whereas the spatial discretization, he
the displacement interpolation, is made with respect to s
tial coordinate detached from the material body as an Eu
rian description. At the beginning of each time step, one m
the
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first find the velocities and accelerations at each spatial no
point based on the information of surrounding materi
points. In the same manner, internal and external forces o
specific spatial nodal point at each time step are calcula
by summing up the contribution from the surrounding mat
rial points. The method was first used in computational flu
dynamics by Brackbill@93,94,356–358#. It was reformulated
by Sulsky and co-workers for solid mechanics application
Some very good illustrations such as the Taylor bar impa
problem and ring collision problem have been shown by S
sky et al @92,95,359#.

In the particle-in-cell method, the total mass or total vo
ume of the continuum is divided amongN particles

r~x,t !5(
I

M Id~x2XI~ t !!. (128)

Consider a weak formulation of the momentum equation

E
V

rw•adV52E
V

rs:¹wdV1E
]G t

w•tdS1E
V

rw

•bdV. (129)

Substituting~128! into ~129!, a Lagrangian type of discreti-
zation can be achieved

(
I 51

Np

MIw~XI~ t !,t !•a~XI~ t !,t !

52(
I 51

Np

MIs~XI~ t !,t !:¹w~x,t !ux5XI (t))
1E

G t

w•tdS

1(
I 51

Np

MIw~XI~ t !,t !•b~XI~ t !,t !. (130)

Since the kinemetic variables are discretized in an Euler
grid, the accelerations are governed by the discrete equa
of motion at spatial nodal points,

(
j 51

Nn

mi j aj5f i
int1f i

ext . (131)

The exchange of information between the particles and s
tial nodal points is described in@359#. The main advantage of
the particle-in-cell method is to avoid using a Lagrangia
mesh and to automatically track material boundaries. Rec
applications of the particle-in-cell method are plasma phys
~such as magneto-hydrodynamics, Maxwell-Lorentz equ
tions!, astrophysics, and shallow-water/free-surface flo
simulations@89,90,360,361#.

5.3 Lattice Boltzmann method

There have been several excellent reviews on the Latt
Boltzmann method~LBM ! @52,54,362#. The discussion pre-
sented here is intended to put the method in comparison w
its peers, and look at it from a different perspective. Th
ancestor of LBM is the Lattice Gas Cellular Automato
~LGCA! method, which is also regarded as a special case
molecular dynamics@27#. LBM is designed to improve its
statisticalresolution.
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Currently, LBM is a very active research front in comp
tational fluid dynamics because of its easy implementa
and parallelization. The LBM technology has been used
simulations of low Mach number combustion@363#, multi-
phase flow and Rayleigh-Taylor instability@364#, flow past a
cylinder @365#, flow through porous media@366#, turbulent
flow, and thermal flow. One may also find some related r
erences in@367–370# and a convergence study of LBM i
@371#.

The basic equation, or the kinetic equation, of the latt
Boltzmann method is

f i~x1eiDx,t1Dt !2 f i~x,t !5V i~ f ~x,t !!, i 50,1,2,̄ ,M
(132)

where f i is the particle velocity distribution function alon
the i -th direction, andV i is the collision operator that repre
sents the rate change off i during the collision.

Note that in the lattice Boltzmann method, for a particle
a given node, there are only a finite number of velocity
rections (ei ,i 50,1,̄ ,M ) that the particle can have. Figur
16 illustrates examples of plane lattice, and the discrete
locity paths. Figure 17 shows a 3D lattice with the associa
discrete velocity set. Viewing Eq.~132! as a discrete meso

Fig. 16 Lattice and velocity directions:a! triangular lattice;b!
square lattice

Fig. 17 Cubic Lattice with 15 molecular speeds~D3Q15!
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scale model, one can average~sum! the particle distribution
over the discrete velocity space to obtain the macro-scal
particle density at nodal positioni ,

r5(
i 51

M

f i . (133)

The particle velocity momentum at macro-scale can also b
obtained by averaging the meso-scale variables

ru5(
i 51

M

f iei . (134)

Unlike most of the other particle methods, the lattice Boltz-
mann method is a mesh based method. In the LBM, th
spatial space is discretized in a way that it is consistent with
the kinetic equation,ie the coordinates of the nearest points
aroundx arex1ei . Therefore, it requires not only grid, but
also the grid has to be uniform. This actually causes prob
lems at general curved boundaries. Recently, efforts hav
been made to extend LBM to irregular grids@372,373#, and
specific techniques are developed to enforce boundary co
ditions @367,374#. During a simulation, particle moves from
one lattice node to another. Most likely, there is a probability
that the next node is also occupied by other particles. Th
non-zero density of particle distribution at that point indi-
cates the possibility of collision.

There are two approaches to choosing collision operato
V i . Using the Chapman-Enskog expansion or multi-scale
singular perturbation@375#, one may find that the following
continuum form of the kinetic equation,

] f i

]t
1ei•¹• f i1eS 1

2
eiei :¹¹ f iei¹

] f

]t
1

1

2

]2f i

]t2 D5
V i

e
(135)

is consistent with the discrete kinetic equation~132! up to
the second order ofe—a small number proportional to the
Knudsen number. By choosing a proper collision operator
for instance using the lattice BGK theory~after Bhatnagar,
Gross, and Krook in continuum kinetic theory@376#!,

V i

e
52

d i j

et
~ f j2 f j

eq!. (136)

Equation ~135! may recover Navier-Stokes hydrodynamics
equations, provided the equilibrium state of particle density
is well defined,eg that of Qianet al @50#,

f i
eq5rwi S 113ei•u1

9

2
~ei•u!22

3

2
u2D . (137)

The alternative is to consider Eq.~132! as the discrete ver-
sion of the continuum Boltzmann equation, and one may
derive the discrete collision operator by discretizing the
Maxwell-Boltzmann equilibrium distribution@54,362#. The
resulting difference equations may reproduce Navier-Stoke
hydrodynamic equations in the limit of small Knudsen num-
ber, ie particle mean-free path much smaller than typical
macroscopic variation scales@370#.

In principle, the Lattice Boltzmann method is abona fide
computational meso-mechanics paradigm. It has bothmicro-
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mechanicspart, the statistical movement of the molecule
Boltzmann equation, and thehomogenizationpart, the as
semble or averaging in the phase~velocity! space. In fact, t
extend the Boltzmann Lattice method to irregular lattice
quasi-lattice structure is the current research topic. In 1
Succi @362# wrote:

‘‘ Most of the excitement behind LGCA was driven b
the ‘Grand-dream’:
LGCA: Turbulence5Ising Model:Phase Transitions.
Ten years later, all reasonable indications are that the
‘Grand-dream’ has turned into a ‘Grand-illusion’ (but,
who knows the future ?).
LBE was born on a much less ambitious footing: jus
provide a useful tool to investigate fluid dynamics and
maybe mesoscopic phenomena, on parallel machine
And in that respect, it appears hard to deny that, eve
though much remains to be done, the method has i
deed lived up to the initial expectations. . . . ’’
This assessment has been both accurate and modes

sidering the recent development of LBM.

5.4 Natural element method

The natural element method~NEM! was first proposed b
Braun and Sambridge@377,378#, and was used for geophy
ical applications. Traversoni@379# proposed the method i
dependently, and he used it in hydraulic engineering app
tion. The natural element or natural neighbor metho
based on the so-called Sibson co-ordinates to constru
interpolation function@380,381#, which relies on the conce
of the Voronoi diagram and Delaunay triangulations.

Sukumaret al @382–384# have systematically used t
natural neighbor method to solve the solid mechanics p
lems. Buecheet al @385# studied the dispersive properties
the natural element when using it to solve wave and red
wave equations. Cuetoet al @386# modified it by means o
density-scaleda-shapes to impose essential boundary co
tion over non-convex boundaries. Recently, Belikovet al
@387# presented a non-Sibsonian interpolation scheme, w
claims to have several advantages over the Sibsonian
polation schemes.

5.5 Other meshfree methods

In a series of papers, On˜ateet al proposed a so-called fini
point method, mesh-free point method@388–391#, which is a
gridless numerical procedure based on the combinatio
weighted least square interpolations on a cloud of points
point collocation for evaluating the approximation integr
It has been used to solve advection-diffusion problems
fluid flow mechanics.

An interesting meshfree proposal has been made rec
by Pardo@392#, who is seeking a middle ground betwe
continuum mechanics formulation and statistical form
tion. The intention is to solve continuum mechanics p
lems by actually solving amimic Feynmanpath integral for
mulation, an analogy to the Lattice Boltzmann met
~instead of solving the Euler equation, one solves a dis
Boltzmann equation!. The well-known Feynman path int
gral of quantum mechanics is equivalent to the Schro¨dinger
—

or
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equation statistically, whereas the proposedmimic Feynman
integral is equivalent to the Navier equation with the second
order accuracy. The discrete mimic path integral is built on a
set of infinitesimal propagators of local supports, and the
discretization is truly meshfree.

Besides SPH, one of the early contributions of strong
form collocation meshfree methods was Liszka and Orkisz’s
generalized finite difference method@19,20#. Another impor-
tant contribution is Yagawa and Furukawa’s free mesh
method@86–88#. The free mesh method is a meshless FEM,
which sounds paradoxical from its name. The idea here is to
abandon the global finite element mesh, and it does not re
quire connectivity information between element and nodes
The stiffness matrix is assembled node by node. For eac
node, at each time step, there may be several satellite nod
points surrounding it to form a temporary mesh, which will
allow one to build shape function at that particular node.
After that, one can move to the next nodal point. Although
one still relies on Delaunay triangulation to set up the initial
mesh, the topological data structure here is very differen
from conventional FEM and it is suitable for massively par-
allel computations, especially using domain decomposition
This is because the moving element scheme~cf, moving par-
ticle FEM @288#! is an element-by-element scheme and
matrix-storage free formulation.

6 CONCLUSIONS AND DISCUSSION

In this survey, particle methods and their applications in ap-
plied mechanics have been reviewed. Most of the method
discussed here are based on approximations that do not r
quire a mesh structure, and therefore they are called mesh
free methods. Modeling with these methods only requires a
set of unstructured points that cover the domain of interest
Since meshfree/particle methods have simple topologica
data structures, they allow easy adaptive refinement, eas
parallelization, and flexible interpolation in a deformable do-
main. It has been shown that many problems that currently
cannot be solved by finite element or finite difference meth-
ods are tractable by meshfree methods. This class of method
show great potential to meet the demands of modern soft
ware, error estimators, hp adaptivity, multiresolution analy-
sis, sampling approximations, edge detection,etc. These are
the traits that represent the future generation of computa
tional methods, and will benefit applications in the many
branches of engineering and physical sciences.

Although much has been achieved in the past decade
there are still many tasks and challenges remaining. Thes
challenges include the cost-effective meshfree-Galerkin
method; scalable implementation of essential boundary con
ditions; accurate nodal integration strategies, and stabiliza
tion schemes for both discretized weak form as well as col-
located strong form formulations. Besides the algorithmic
improvements, it is believed that meshfree particle method
will play a significant role in the next generation computa-
tional meso-mechanics, or computational micro-mechanics
which is the integrated part of nano-technology and super
computing technology.
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Today, computational meso-mechanics is still in its infa
stage. Few paradigms are available. An outstanding exam
in CFD is the Lattice Boltzmann Method. A future directio
may be developing a Boltzmann-type method without a
tice. In solid mechanics applications, the most ambitio
project in computational micro-mechanics has been the m
tiple scale method, which combines quantum molecular
namics, classical molecular dynamics, and continuum
chanics in a single simulation. It has been extensively use
large scale simulations~involving 10 to 1 billion atoms! of
fracture and crack growth. The current multiple scale co
putation is a coupling between particle methods and fin
element methods, which is amechanical bridgingof various
length scales with different physics models. A future dire
tion, we believe, is to develop multiple scale method of p
particle methods at all scales, which might have better
merical data structure.

The computational meso-mechanics models in solid m
chanics, such as Needleman-Xu-Ortiz’s cohesive finite
ment model@393–396#, Tadmor’s quasi-continuum mode
@321#, and Gao and Klein’s virtual internal bond~VIB !
model @397#, are all built upon finite element discretizatio
and all of them have been reported to have mesh alignm
sensitivities in numerical simulations. An immediate task
to develop a computational meso-mechanics model base
particle methods, or meshfree methods. A number of
searchers have been working towards this directioneg
@185,392#.
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@50# Qian YH, d’Humiéres D, and Lallemand P~1992!, Lattice BGK mod-

els for the Navier-Stokes equation,Europhys. Lett.17, 479–484.
@51# Qian YH and Orszag SA~1993!, Lattice BGK models for the Navier-

Stokes equation: Nonlinear deviation in compressible regimes,Euro-
phys. Lett.21, 255–259.

@52# Qian YH, Succi S, and Orszag SA~2000!, Recent advances in lattice
Boltzmann computing, In:Annual Reviews of Computational Physic
Volume III, D Stauffer~ed! World Scientific, Singapore, 195–242.

@53# Chen S, Wang Z, Shan XW, and Doolen GD~1992!, Lattice Boltz-
mann computational fluid dynamics in three dimensions,J. Stat.
Phys.68, 379–400.

@54# Chen S and Doolen GD~1998!, Lattice Boltzmann method for fluid
flows, Annu. Rev. Fluid Mech.30, 329–364.

@55# Nayroles B, Touzot G, and Villon P~1992!, Generalizing the finite
element method: Diffuse approximation and diffuse elements,Com-
putational Mech., Berlin10, 307–318.

@56# Breitkopf P, Touzot G, and Villon P~1998!, Consistency approach and
diffuse derivation in element free methods based on moving le
squares approximation,Comp. Assist. Mech. Eng. Sci.5, 479–501
ISSN:1232-308X.

@57# Breitkopf P, Touzot G, and Villon P~2000!, Double grid diffuse col-
location method.Computational Mech., Berlin25, 199–206.

@58# Breitkopf P, Rassineux A, Touzot G, and Villon P~2000!, Explicit
form and efficient computation of MLS shape function and their d
rivatives,Int. J. Numer. Methods Eng.48, 451–466.

@59# Belytschko T, Lu YY, and Gu L~1994!, Element free galerkin meth-
ods.Int. J. Numer. Methods Eng.37, 229–256.

@60# Belytschko T, Krongauz Y, Organ D, Fleming M, and Krysl P~1996!,
Meshless methods: An overview and recent developments,Comput.
Methods Appl. Mech. Eng.139, 3–48.

@61# Belytschko T, Krongauz Y, Dolbow J, and Gerlach C~1998!, On the
completeness of meshfree particle methods,Int. J. Numer. Methods
Eng.43, 785–819.

@62# Belytschko T, Organ D, and Gerlach C~2000!, Element-free Galerkin
methods for dynamic fracture in concrete,Comput. Methods Appl.
Mech. Eng.187, 385–399.

@63# Lu YY, Belytschko T, and Tabbara M~1995!, Element-free Galerkin
method for wave propagation and dynamic fracture,Comput. Meth-
ods Appl. Mech. Eng.126, 131–153.

@64# Liu WK, Adee J, and Jun S~1993!, Reproducing kernel and wavelet
particle methods for elastic and plastic problems, In:Advanced Com-
putational Methods for Material Modeling, AMD 180/PVP 268
ASME, 175–190.

@65# Liu WK and Oberste-Brandenburg C~1993!, Reproducing kernel and
wavelets particle methods, In:Aerospace Structures: Nonlinear Dy
namics and System Response, AD 33 ASME, 39–56.

@66# Liu WK, Jun S, and Zhang YF~1995!, Reproducing kernel particle
methods,Int. J. Numer. Methods Eng.20, 1081–1106.

@67# Liu WK, Jun S, Li S, Adee J, and Belytschko T~1995!, Reproducing
kernel particle methods for structural dynamics,Int. J. Numer. Meth-
ods Eng.38, 1655–1679.

@68# Liu WK, Chen Y, Chang CT, and Belytschko T~1996!, Advances in
multiple scale kernel particle methods,Computational Mech., Berlin
18, 73–111.

@69# Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Uras RA, and Cha
CT ~1996!, Overview and applications of the reproducing kernel pa
ticle methods,Arch. Comput. Mech. Eng.: State of Rev.3, 3–80.

@70# Liu WK, Li S, and Belytschko T~1997!, Moving least square repro-
ducing kernel method Part I: Methodology and convergence,Comput.
Methods Appl. Mech. Eng.143, 422–453.

@71# Chen JS, Pan C, Wu CT, and Liu WK~1996!, Reproducing kernel
particle methods for large deformation analysis of nonlinear str
tures,Comput. Methods Appl. Mech. Eng.139, 195–227.

@72# Chen JS, Wu CT, Yoon S, and You Y~2001!, A stabilized conforming
nodal integration for Galerkin meshfree methods,Int. J. Numer. Meth-
ods Eng.50, 435–466.

@73# Duarte CA, and Oden JT~1996!, hp Clouds—an hp meshless metho
Numer. Methods Partial Diff. Eqs.12, 673–705.
st

-

g
-

-

@74# Duarte CA, and Oden JT~1996!, An hp adaptive method using
clouds,Comput. Methods Appl. Mech. Eng.139, 237–262.

@75# Liszka T, Duarte CAM, and Tworzydlo WW~1996!, hp-meshless
cloud method,Comput. Methods Appl. Mech. Eng.139, 263–288.

@76# Oden JT, Duarte CAM, and Zienkiewicz OC~1998!, A new Cloud-
based hp finite element method,Comput. Methods Appl. Mech. Eng.
153, 117–126.
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@295# Fock V ~1930!, Näherungsmethode zur lo¨sung des quantenmechanis
chen mehrko¨rperproblems,Z. Phys.61, 126.

@296# Takashima H, Kitamura K, Tanabe K, and Nagashima U~2000!, Is
large-scale Ab initio Hartree-Fock calculation chemically accura
towards improved calculation of biological molecule properties,J.
Comput. Chem.20, 443–454.

@297# Tu Y and Laaksonen A~2000!, Combined Hartree-Fock quantum me
chanical and molecular mechanical dynamics simulations of wate
ambient and supercritical conditions,J. Chem. Phys.133, 11264–
11269.

@298# Li X, Millam JM, and Sohlegel HB~2000!, Ab initio molecular dy-
namics studies of the photodissociation of formaldehyd
H2CO2H21CO: Direct classical trajectory calculations by MP2 an
density function theory,J. Chem. Phys.113, 10062–10067.

@299# Starikov EB ~2000!, Nucleic acids as objects of material scienc
importance of quantum chemical and quantum mechanical stud
Int. J. Quantum Chem.77, 859–870.

@300# Clementi E~2000!, Ab initio computations in atoms and molecule
IBM J. Res. Dev.44, 228–245.

@301# Kohn W and Sham LJ~1965!, Self-consistent equations including
exchange and correlation effects,Phys. Rev.140, 1133.

@302# Hohenberg P and Kohn W~1964!, Inhomogeneous electron gas,Phys.
Rev.136, B864.

@303# Harris J ~1985!, Simplified method for calculating the energy o
weakly interacting fragments,Phys. Rev. B31, 1770–1779.

@304# Born M and Oppenheimer JR~1927!, Zur quantentheorie,Ann. Phys.
(Leipzig)84, 457.
-

?

at

,

:
s,

@305# Car R and Parrinello M~1985!, Unified approach for molecular dy-
namics and density-functional theory,Phys. Rev. Lett.55, 2471–2474.

@306# Ryckaert JP, Ciccotti G, and Berendsen HJC~1977!, Numerical inte-
gration of the Cartesian equations of motion of a system with con-
straints: Molecular dynamics of n-alkanes,J. Comput. Phys.23, 327–
341.

@307# Verlet L ~1967!, Computer experiments on classical fluids I: Thermo-
dynamical properties of Lennard-Jones molecules,Phys. Rev.159, 98.

@308# Ishikawa Y, Binning Jr RC, and Shramek NS~1999!, Direct ab initio
molecular dynamics study ofNO2

11(H2O)4 to HNO3(H7O3)1,
Chem. Phys. Lett.313, 341–350.

@309# Belosludov RV, Sluiter M, Li ZQ, and Kawazoe Y~1999!, Ab initio
and lattice dynamics studies of the vibrational and geometrical prop-
erties of the molecular complex of hydroquinone andC60 , Chem.
Phys. Lett.312, 299–305.

@310# Jones JE~1924!, On the determination of molecular fields I: From the
variation of the viscosity of a gas with temperature,Proc of Royal
Society (London)106A, 441–462.

@311# Jones JE~1924!, On the determination of molecular fields II: From
the equation of state of a gas,Proc of Royal Society (London)106A,
463.

@312# Falk ML and Langer JS~1998!, Dynamics of viscoplastic deformation
in amorphous solids,Phys. Rev. E57, 7192–7205.

@313# Falk ML ~1999!, Molecular-dynamics study of ductile and brittle frac-
ture in model noncrystalline solids,Phys. Rev. B60, 7062–7070.

@314# Daw MS and Baskes MI~1984!, Embedded-atom method: Derivation
and application to impurities, surfaces, and other defects in solids,
Phys. Rev. B29, 6443–6453.

@315# Schuller IK ~1988!, Molecular dynamics simulation of epitaxial
growth,MRS Bull.13, 23–27.

@316# Baskes M, Daw M, Dodson B, and Foiles S~1988!, Atomic-scale
simulation in materials science,MRS Bull.13, 28–35.

@317# Slater JC and Koster GF~1954!, Simplified LCAO method for the
periodic potential problem,Phys. Rev.94, 1498.

@318# Anderson PW~1968!, Self-consistent pseudo-potentials and ultralo-
calized functions for energy bands. Phys. Rev. Lett.21:13.

@319# Anderson PW~1969!, Localized orbitals for molecular quantum
theory I: The hu¨ckel theory.Phys. Rev.181, 25.

@320# Qian D, Liu WK, and Ruoff RS~2001!, Mechanics of nanotube filled
with fullerenes,J. Phys. Chem. B105, 10753–10758.

@321# Tadmor EB, Ortiz M, and Phillips R~1996!, Quasicontinuum analysis
of defects in solids.Philos. Mag. A73, 1529–1563.

@322# Milstein F ~1982!, Crystal elasticity, In:Mechanics of Solids, Perga-
mon, Oxford, 417–452.

@323# Tersoff J~1988!, Empirical interatomic potential for carbon, with ap-
plication to amorphous carbon,Phys. Rev. Lett.61, 2879–2882.

@324# Brenner DW~1990!, Empirical potential for hydrocarbons for use in
simulating chemical vapor deposition of diamond films,Phys. Rev. B
42, 9458–9471.

@325# Bulatov V, Abraham FF, Kubin L, Devincre B, and Yip S~1998!,
Connecting atomistic and mesoscale simulations of crystal plasticity,
Nature (London)391, 669–672.

@326# Clementi E~1988!, Global scientific and engineering simulations on
scalar, vector and parallel LCAP-type supercomputer,Philos. Trans.
R. Soc. London, Ser. A326, 445–470.

@327# Clementi E, Chin S, Corongiu G, Detrich JH, Dupuis M, Folsom D,
Lie GC, Logan D, and Sonnad V~1989!, Supercomputing and super-
computers for science and engineering in general and for chemistry
and biosciences in particular,Int. J. Quantum Chem.35, 3–89.

@328# Given JA and Clementi E~1989!, Molecular dynamics and Rayleigh-
Benard convection,J. Chem. Phys.90, 7376–7383.

@329# Hermansson K, Lei GC, and Clementi E~1988!, An ab initio pair
potential for the interaction between a water molecular and a formate
ion, Theor. Chim. Acta74, 1–10.

@330# Abraham FF~1996!, Dynamics of brittle fracture with variable elas-
ticity, Phys. Rev. Lett.77, 869–872.

@331# Abraham FF~1997!, Portrait of a crack: rapid fracture mechanics
using parallel molecular dynamics,IEEE Comput. Sci. Eng.4, 66–77.

@332# Abraham FF, Brodbeck D, Rudge WE, and Xu X~1997!, A molecular
dynamics investigation of rapid fracture mechanics,J. Mech. Phys.
Solids45, 1595–1619.

@333# Abraham FF, Brodbeck D, Rudge WE, and Xu X~1997!, Instability
dynamics in three-dimensional fracture: An atomistic simulation,J.
Mech. Phys. Solids45, 1461–71.

@334# Abraham FF, Broughton JQ, and Davidson BN~1997!, Large-scale
simulation of crack-void and void-void plasticity in metallic fcc crys-
tals under high strain rates,J. Comput.-Aided Mater. Des.5, 73–80.

@335# Abraham FF~1997!, On the transition from brittle to plastic failure in



f

e

r
o
.

-

-

ry

e

in

y,

L.

ure
m,

a

to

el

e

-
es

t-
pit
ro

.

-

n.

-

r-

ss

w

r
o

n

u-

l

s

P
s,

neu-

h-

.

led

f
s,

s,

e

a

-

Appl Mech Rev vol 55, no 1, January 2002 Li and Liu: Meshfree and particle methods and applications 33
breaking a nanocrystal under tension~NUT!, Europhys. Lett.38,
103–106.

@336# Abraham FF and Broughton JQ~1997!, Large-scale simulations o
brittle and ductile failure in fcc crystals,Comput. Mater. Sci.10, 1–9.

@337# Abraham FF and Gao H~1998!, Anomalous ductile-brittle fractur
behavior in fcc crystals,Philos. Mag. Lett.78, 307–312.

@338# Abraham FF, Brodbeck D, Rudge WE, Broughton JQ, Schneide
Land B, Lifka D, Gerber J, Rosenkrantz M, Skovira J, and Ga
~1998!, Ab initio dynamics of rapid fracture,Modell. Simul. Mater
Sci. Eng.6, 639–670.

@339# Gumbsch P and Cannon RM~2000!, Atomistic aspects of brittle frac
ture,MRS Bull.25, 15–20.

@340# Gumbsch P and Gao H~2000!, Driving force and nucleation of su
personic dislocations,J. Computer-Aided Mat. Des.6, 137–144.

@341# Trebin HR, Mikulla R, Stadler J, Schaaf G, and Gumbsch P~1999!,
Molecular dynamics simulations of crack propagation in quasic
tals,Comput. Phys. Commun.121–122, 536–539.

@342# Hartmaier A and Gumbsch P~2000!, The brittle-to-ductile transition
and dislocation activity at crack tips,J. Comput.-Aided Mater. Des.6,
145–155.

@343# Perez R and Gumbsch P~2000!, An ab initio study of the cleavag
anisotropy in silicon,Acta Mater.48, 4517–4530.

@344# Farkas D~2000!, Atomistic theory and computer simulation of gra
boundary structure and diffusion,J. Phys.: Condens. Matter12,
R497–516.

@345# Farkas D~2000!, Atomistic studies of intrinsic crack-tip plasticit
MRS Bull.25, 35–38.

@346# Farkas D~2000!, Bulk and intergranular fracture behavior of NiA
Philos. Mag. A80, 1425–1444.

@347# Farkas D~2000!, Mechanisms of intergranular fracture. In: Fract
and Ductile vs Brittle Behavior, GE Beltz, RLB Selinger, K-S Ki
and MP Marder~eds!, Mat Res Soc, Warrendale PA, 291–298.

@348# Mishin Y, Farkas D, Mehl MJ, and Papaconstantopoulos DA~1999!,
Interatomic potentials for Al and Ni from experimental data and
initio calculations, in:Multiscale Modeling of Materials, VV Bulatov,
TD de la Rubia, R Phillips, E Kaziras, and N Ghoniem~eds!, Mat Res
Soc, Warrendale PA, 535–540.

@349# Langer JS~2000!, Numerical and analytic routes from microscale
macroscales in theories of deformation and fracture,J. Comput.-Aided
Mater. Des.1999, 89–94.

@350# Monaghan JJ~1994!, Vortex particle methods for periodic chann
flow, J. Comput. Phys.107, 152–159.

@351# Beale JT~1986!, A convergent 3-D vortex method with grid-fre
stretching,Math. Comput.46, 401–424.

@352# Winckelmans GS and Leonard A~1993!, Contributions to vortex par
ticle methods for the computation of three-dimensional incompr
ible unsteady flows,J. Comput. Phys.109, 247–273.

@353# Fishelov D~1990!, A new vortex scheme for viscous flows,J. Com-
put. Phys.86, 211–224.

@354# Cotte GH, Koumoutsakos P, and Salihi MLO~2000!, Vortex methods
with spatially varying cores,J. Comput. Phys.162, 164–185.

@355# Lin H and Vezza M,~1996!, A pure vortex sheet method for simula
ing unsteady, incompressible, separated flows around static and
ing aerofoils, In: Proc of 20th Congress of Int Council of the Ae
nautical Sciences, Sorento, Italy, 2184–2193.

@356# Brackbill JU, Kothe DB, and Ruppel HM~1988!, FLIP: A low-
dissipation, particle-in-cell method for fluid flow,Comput. Phys
Commun.48, 25–38.

@357# Brackbill JU ~1988!, The ringing instability in particle-in-cell calcu
lation of low speed flow,J. Comput. Phys.75, 469.

@358# Burgess D, Sulsky D, and Brackbill JU~1992!, Mass matrix formu-
lation of the FLIP particle-in-cell method,J. Comput. Phys.103,
1–15.

@359# Sulsky D, Zhou SJ, and Schreyer HL~1995!, Application of a
particle-in-cell method to solid mechanics,Comput. Phys. Commu
87, 236–252.

@360# Brackbill JU ~1991!, FLIP-MHD: A particle-in-cell method of mag
netohydrodynamics,J. Comput. Phys.96, 163–192.

@361# Hockney R and Eastwood J~1988!, Computer Simulation Using Pa
ticles, Adam Hilger, Bristol.

@362# Succi S ~1997!, Lattice Boltzmann equation: Failure or succe
Physica A240, 221–228.

@363# Filippova O and Ha¨nel D ~2000!, A novel lattice bgk approach for lo
mach number combustion,J. Comput. Phys.158, 139–160.

@364# He X, Chen S, and Zhang R~2000!, A lattice Boltzmann scheme fo
incompressible multiphase flow and its application in simulation
Rayleigh-Taylor instability,J. Comput. Phys.152, 642–663.

@365# Mazzocco F and Arrighetti C~2000!, Multiscale lattice Boltzman
D,
H

s-

b

s-

ch-
-

?

f

schemes: A preliminary application to axial turbomachine flow sim
lations,Int. J. Mod. Phys.11, 233–245.

@366# van der Sman RGM~1997!, Lattice Boltzmann scheme for natura
convection in porous media,Int. J. Mod. Phys.8, 879–888.

@367# Maier RS ~1986!, Boundary conditions for the lattice Boltzmann
method,Phys. Fluids8, 1788–1801.

@368# McNamara G and Zanetti G~1988!, Use of the Boltzmann equation to
simulate lattice-gas automata,Phys. Rev. Lett.61, 2332.

@369# Ziegler DP~1993!, Boundary conditions for lattice Boltzmann simu-
lations,J. Stat. Phys.71, 1171.

@370# Benzi R, Succi S, and Vergassola M~1992!, The lattice Boltzmann
equation: Theory and applications,Phys. Rep.222, 145.

@371# Reider MB and Sterling JD~1995!, Accuracy of discrete-velocity
BGK models for the simulation of the impressible Navier-Stoke
equations,Comput. Fluids24, 459–467.

@372# Karlin IV, Succi S, and Orszag S~1999!, Lattice Boltzmann method
for irregular grids,Phys. Rev. Lett.26, 5245–5248.

@373# van der Sman RGM and Ernst MH~2000!, Convection-diffusion lat-
tice Boltzmann scheme for irregular lattices,J. Comput. Phys.160,
766–782.

@374# Mei R, Shyy W, Yu D, and Luo LS~2000!, Lattice Boltzmann method
for 3-d flows with curved boundary,J. Comput. Phys.161, 680–699.
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