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power of the wrinkling and its post-buckling behavior. Therefore,

. . . the effects on the stress state can be accurately accounted for in
The smulaﬂop of manufapturlng processes §uch as shget m simulation.

forming is crucial to reducing design cycle times and time 0 1pe objective of this paper is to simulate the flanging operation
market. As one of the most common processes for sheet mefa{d springback by using an analytical model, the FEM and the
flanging is used to deform the edge of the part to increase thfeshfree method using the Reproducing Kernel Particle Methods
stiffness of the sheet panel and/or to create the mating surface fRKPM). The contact algorithm in the RKPM method and the
subsequent assembly. Flanging is performed after the drawingcoimputing of springback angle are developed here. Comparison
almost all the sheet metal parts and can have three different @i-the data with experimental results for a straight flanging pro-
plane curvaturesstraight, concave and convex as shown in Fig. €SS is given. Investigations are under way for cases where more
[1]). The shape discrepancy between the fully loaded and UfRmMplex geometries and deformation are involved.

loaded configurations is called springback. The challenge is how

to predict the springback angle and thus design a tooling to co@- Experiment

pensate for the amount of springback. _ A schematic of a flanging operation is shown in Fig. 2. A flat
Efforts to springback prediction of flanging operation have ensjank of thicknest is initially placed between a holder and a die
ployed both analytical and numerical approaches. For instang@der a binder force of. The blank will experience elastic-
Wang [2] conducted the analytical study by assuming that thglastic deformation to reach a constrained configuration that con-
bending moment vanishes as the elastic recovery occurs. Monfsigts of a(nearly straight partl and a curved par§ when the
and Bragard3] extended this procedure by using a cantileverepunch moves down. Springback occurs as the tooling is removed.
model with a nonuniform moment distribution from the contadPesign parameters in the flanging operation include the die radius
point to the outer sheet. Recently, Cao eff4].proposed a linear R the gap distance, the flanging lengthL, and the flanging
moment distribution in the contact area and that model compai@§Vature o, in the direction out of the paper plane in Fig. 2,

favorably with the experimental results of Li{ig]. The major and the material state at flanging, etc. Wrinkling, tearing and sur-
difficulty with the analytical solution is due to the lack of under-{ﬁﬁﬁitg's(é%rrg'ggvgc}llj;ﬂgr;ggpoincgntcsxﬂf?:%ﬁgCurvatw&t Is not
standing of the stress distribution throughout the sheet, which I|m-A straight flanging test was performed on a 150 Ton Computer

its the analytical approach to simple geometries and simple def?f(')ntrolled HPM Hydraulic Press. The material for the test was

mation. Numerical method_s are needed for_ more con_wplicat_g\g&5182_ov an aluminum alloy commonly used in industry. The
cases. However, shortcomings in the numerical modeling arigfyterial is assumed to follow the power hardening law (
because current finite element-based simulation methods lack thg z") and the material parameters are listed in Table 1. The
resolution and smoothness to effectively capture the mechanicshdnk’s size was 150 mm in length, 150 mm in width and 1 mm in
the flanging process. thickness with the rolling direction placed in the direction.

One promising way of circumventing these difficulties is to usElange lengths of 20 mm and around 10 mm at different gaps
meshfree method, a recently developed computational metheanging from 1.02 mm to 2.1 mm were tested against a die radius
The advantage of meshfree method is that it can handle a la@fé3 mm. The binder force was set at 460 KN during the flanging
variety of material models and account for geometric nonlineaffocess resulting an applied pressure of 20 MPa on the blank and
ties such as contact. Furthermore, the additional wavelet modilubricant was used. Since the die radius and gap sizes are very

from the meshfree approximation can effectively capture t nall compared to the sheet thickness, it is a challenging task to
eliminate the noise in the system to obtain the exact relation be-

mespondence author: email: jcao@northwestern edu tween springback and gap. Considerable efforts have been made
Contributed by the Materials Division for publication in theURNAL OF ENGI- to both control the gap and record the gap correctly. The gap is

NEERING MATERIALS AND TECHNOLOGY. Manuscript received by the Materials Measured by feeler gauge each time before and after the flanging
Division July 25, 2000. Guest Editors: Jian Cao and Z. Cedric Xia. operation to reach 0.0245 mm in accuracy. Springback angle is

1 Introduction
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Table 1 Material property parameters used in flanging simula- 2
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~ + <P1+n 2
measured by a Coordinate Measurement Mach@iéM), which 70Tt 2(1+n) 0 (29
results in a 0.09 deg standard deviation. The experiment results 1 1+8n2 1-2n 1

are presented in Fig. 6 and Fig. 7.

n 3 1+3nt2n2  1+n 3 Loon (on
3 Analytical Model n+2
As reviewed in the introduction section, an analytical model of 7R, ) )
calculating the springback angle in a straight flanging operation 6=—— (Ry=Punch Radius (2i)
was proposed by Cao et g4], which utilized a non-constant
moment distribution in the contact zone. The illustration of the L.=S+I+6 (L.: Critical Flange Length @)

analytical model is shown in Fig. 3. The springback an@flecan
be calculated in a simple way by following Ed4)—(2a—k). Note
that the calculation of springback is only valid when the flang
lengthL, is greater than the critical flange length,, defined in

In the above equation® is the die radius of flangingR, is the
%unch radiusg is the gap between the die and the punghis the
Initial yield stress of the sheet materi&ljs the Young’s modulus,

Eq. (2i)) tis the original sheet thickness, ands the hardening exponent in
q- V- the power law. The only unsettled parameter in these equations is
0" = 0F + 0% = 1|+<1 b)s 1 M3, le.
=6+ o5=a-is 7 (1) "
Mi=—  (0sM;<1) (2k)
where Mg
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whereM, is the moment at the origin O alMdg is the momentat ~ Construct the correction function using a polynomial basis
the separation point B. This ratio is a function of material prop-

n

erties and flanging geometry, which is under investigation and B i
will be presented in Song and C46. C(x,x—y)—;) b ) (x—y)’ (6)
4 Numerical Simulation Using The Finite Element whereb;(x) are the coefficients to be determined.
Method (FEM) Enforcing the reproducing condition by E¢) gives

The straight flanging problenfFig. 2 was modeled using a n
commercial Finite Element package ABAQUS/standard and simu- 2 bj(x)m;  (a,x)=dgy for k=0,1,...n @)
lated as a plane strain problem and therefore, eight-node plane 1=0

strain solid elements with reduced integratiOhBAQU_S type  Equation(7) givesn+1 linear equations for solving the+ 1
CPES8R and four-node shell elements with reduced Integratl%eﬁicientsbj. In this way, the reproducing kernel can be de-
(ABAQUS type S4R were employed. A total of 100 elements pefiyed.

layer along the blank were used for both the CPE8R elementsy the numerical implementation, the continuous equatin

with 6 layers through the sheet thickness and the shell elemes§ needs to be discretized by replacing the integral with a sum-
with 13 integration points through the thickness. The six-laygfation.

model was chosen by considering the effect of the number of
layers on springback prediction, where the springback angle ob-
tained levels off at a layer number of six. In order to optimize the uR(x)= E N (X)u (8)
efficiency of the calculation, the mesh density is 6.6 elements per =1

millimeter in the middle of the blank and reduced to 2 elemen{ghere

per millimeter at the two ends of the blank in the length direction.

NP

Due to the fact that this flanging problem is mainly a two- M :

dimensional problem, material parameters used in the yield crite- Ni(X) =, E b;(X)(x=x)! | pa(Xx—x)AX, 9)
rion were determined by matching the tensile test in the rolling =1 A 1=0

direction. Material AA5182-O was modeled by von Mises yield u=u(x,) (10)

criterion following the power strain hardening law. Both isotropic
hardening law and kinematic hardening law are under investiga-Note that the coefficients; are solved in the same way as
tion in this paper. The tooling were treated as rigid surfaces apfove by enforcing the moment condition

the friction coefficient was taken to be 0.125 between the tooling

and the blank. The boundary and load conditions during flanging Mi(ax)=dox for k=0.1,...n, (11)
process were set to the same condition as in the experiment. Thigh
blank was clamped between the holder and the die by 20 MPa in NP N
pressure and with free constraints at the ends. ‘
Mi(a,x)= 2 (x=X) Kka(X=X)Ax = 2, bj()m;;((a,)
5 Reproducing Kernel Particle Method =t =0 (12)

5.1 Basic Formulation. Recently, a new generation of nu-whereAx; is the portion of the total length assigned to each node.
merical methods called “meshfree” or “meshfree method” has The reproducing kernel can be implemented into a Galerkin
emerged and is now profoundly influencing almost every branggrmulation in a way similar to as in typical finite elements. The
of engineering and the physical sciences. As one part of the mefdijor difference in construction is the loop that occurs over nodes

free family, the Reproducing Kernel Particle Metho@®KPM) instead of elements, but the formulation is almost identical, start-
originally evolved from the wavelet theory and SPH method. |hg from the weak form of the momentum equation.

has been applied successfully to a broad range of problems. In
addition to the SPH and wavelet theory, meshfree method modi-5.2 Contact Modeling. The simulation of impact and con-
fies the kernel function by introducing a correction function ifidct among two or more objects of any kind has always been a
order to enhance its accuracy near or on the boundary of teallenging problem. It is one of the critical elements in success-
problem domain. Due to this correction function suggested by Lfully simulating the flanging operation. The major issues that are
et al. [7,8], the consistency condition is satisfied. Liu et@] involved include
demonstrated the application of meshfree methods to structura
dynamics, and the method was used successfully for large defor:
mation simulationd10-13, and computational fluid dynamics
[14].

The reproducing kernel particle method can be defined from the
following reproducing condition

h Geometric Representation: An efficient contact-detection al-

"~ gorithm

2 Kinematic Constraint: Implementation of the so-called im-
penetration condition with a reasonable constitutive law at
contact interface and maintainence of the basic conservation
law

3 High-performance Computing: Parallerization.

X2 X2
uR=| u x—y)dy= | u(y)C(x,x— x—y)d
,Ll (Y)ra(x=y)dy fxl ()€ Y)balx=y)dy Numerous contact detection algorithms have been proposed in the

(3) literature, such as Benson-Hallquist algorithm, pinball algorithm,
Point-in-box, Bounding box, etc. In the context of meshfree
method, the moment criterion has been propogEs. In this
proposed criterion, the determinant of the moment matrix in the
context of Reproducing Kernel Particle Methpd is considered

as a natural indicator of the contact condition.

The kernel functionc,(x—Yy) is the product of correction func-
tion C(x,x—y) and the window functionp,(x—y). The proce-
dure to construcC(x,x—y) is based on the desired accuracy
Here we define th&th momentM, of the window function as

X
MK(alX):f z(x—y)kxa(x,x—y)dy 4) Proposition. For a given domair() that has an admissible
X1 meshfree distribution, if a spatial points () is sufficient away
from the domain, the determinant of the moment matriXMét)}
evaluated ax approaches zero, i.e., for give-0, 3¢>0, such
My(a,x)=0bpx for k=0,1,...n (5) that

To ensure the reproducing condition be satisfied, one needs
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Inside the Domain 2M s(j )gn(j)
fnj= Az

based on central difference method. In Eg0) Mg, is the
lumped mass gtnode of the slave body, the normal penetra-
tion, At the time interval ana; the outer normal of théh master

(20)

Outside the Domain segment.
F|g 4 Profile of det {M(X)} on a concave region A S|mp|e COU|Omb frICtIOn mOde| |S Used to COI’]SIder the eﬁect
along the tangential direction, which is given as
[l =min(fiy,fi) (21)
defM(x)}<e (13)  with fy=[vym/At]  and fo=|wd,|.

The direction of the friction force should be chosen to be op-
posite the velocity of the corresponding slave node. Our applica-
Gbn of this simple approach has shown that it can maintain the
WApenetration condition fairly well and is stable during the com-
tation.

Tn summary, the contact algorithm can be outlined as follows:

A detailed proof for this proposition hg_s been giverilinet al.

requirement for the shape of the problem domain, Fig. 4 sho
the application of the criterion for a non-convex shape. A plate
is observed for nodes inside the domain and the value of determi
nant transits to zero as the evaluation point is away from the
domain. More testing of the proposed criterion is given in Li et al. 1 Initialization and discretize the surface into segments
[15]. 2 Calculate the internal force array

To assure the impenetration condition, we consider the problem3 Calculate the external force array
of two domainsQ”* and QB with boundaryl'* andI'®, respec- 4 Use the moment criterion to detect any contact
tively. The momentum equation, the kinematic relation and the 5 If a contact is detected, compute the normal penetration to

constitutive equation are given as further verify the contact
-~ ) A B 6 Compute the normal and frictional forces and redistribute
i, Thi=pvi in Q7UQ (14) them to the nodes
1 7 Get the nodal accelerations
&ij :E(Ui,jJrUj,i) in QAUOB (15) 8 Integrate in time to get the velocities and displacements;
9 Return to step 2 until the maximum step number is reached.
ol = i+ Wiai + Wiy in QAUQP (16) 5.3 Computation of Springback Angle. An explicit dy-

wherep denotes the density;; is the anti-symmetric part of the namic algorithm has been used in the simulation of the forming

velocity gradient andrﬁ represents an objective stress incremen rOCess. As the forming is complgted, the contact detection on
d%?] the upper punch and lower die are terminated. Correspond-

Ingly, the constraints from these two parts are released and the

variables are sheet starts to springback. To obtain a static solution correspond-

vi(O):viO in QAUNB (17) ing to the state of springback, the dynamic relaxation method is
o - A B adopted. A detailed discussion of the method can be found in
aij(0)=oj; in Q°UQ (18)  Underwood[16]. Chou[17] applied the method in FEM simula-

tion of metal forming. To briefly describe the method, the dy-
namic equation is considered

MU+ Cu"+ f"(u") = f{u") (22)

Impenetrability of the two set®” and Q® requires that
0AN0B=0 (19)
A penalty-based method is applied to implement the impenetra- ) . ) ) )
tion condition. whereM is the mass matrixC the damping matrix, superscripts
Figure 5 illustrates a typical situation in the 3D contact probJnt” and “ext” denote internal force and external force, respec-
lem, wheren; is the outer normal of thigh segment of the master tively, and “n” is the nth time increment. Since a static solution
element after discretizatiorg, and g, denotes the normal and ¢@n be seen as a converged result of the dynamic solution, a
tangential penetrations, respectively. The penalty force along tHdical damping coefficient can be used in E2). In the case of

normal direction of the contact surface is given as central difference method, the following integrator can be given

) fex uO _fint uO
ul2=AtM (t()f()) (23)

for n=1 and

: (2—c-At) . (fu™ —f"(u")
. n+1/2_ n-1/2 -1
R u (2+c-AD " 2hM (2+c-Ab)
(24)
for n>1.

To ensure an optimal convergence, numerical experiments are
conducted. By checking the responses using different damping
coefficients, the critical damping coefficient is chosen for the sys-
tem. The criterion to stop the dynamic relaxation is given as
n [t t<s (25)

which indicates the equilibrium state is attained.

Surface of thé ith segment of the

master element ) )
6 Results and Discussion

Figure 6 illustrates the springback results of various die gaps
Fig. 5 Contact between a slave node and a surface with a flange length of 20 mm obtained from experiment, the
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Springback Angle 20
11 T T T T
Al5182, R=3.0mm, t=1mm, L=20mm 4 0> 15‘ gap=1.2mm
o
oD 16
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L o
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= { ------ e S4R, Isotropic hardening sl °
® 3 —©—  Meshfree, Isotropic hardening |4 y
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T o Experimental Data2 i (a)
01 1.|2 1,I4 1?6 1?8 é 2.2 20 T —r
_ _ gap (mm) | gap=2.0mm i !
Fig. 6 Springback angle versus gap distance for 20 mm flange 18 - !
length P
16 i ]
x
[3] |
. 8 1
analytical model, the FEM and the meshfree method. The experi- 2 sl
mental data shown as stars and hexagrams in Fig. 6 were tested or & 12 . :
different dates. It can be seen that springback increases with an ok :
increase in gap. The springback angle obtained by the analytical L;=17.45mm (analytical) >y
method falls in the area between the line of MD (dashed line 8F L =18mm (simulati R
in Fig. 6 and the line of M1=1 (dash-dotted line in Fig.)6 = (sumualon);->:
depending on the value of M(see Eq.(2)). Notice that experi- 8 1 1z 13 14 15 16 7 18 19 20

ment data are within the prediction range, however, further inves-

tigation on M is needed to provide more precise predictions. It is.
worthwhile to mention that the mechanics of bending, not just tHdd
moment distribution as the focus discussed in this paper, affeCts
the prediction of springback. Many works can be found in litera-
ture addressing the bending mechanics issue, for example, the

review paper by Huang and Gerdeldr8]. o ~calculated by Eq(2j). ThelL values marked by “simulation” are
Numerical S|rr_1ulat_|on resu_lts are shown as solid lines with dithe approximation data selected by considering the start points
ferent symbols in Fig. 6. It is clear that the SAR elemduta- \hen the springback angle levels off in Fig. 7. It shows that the
mond3 following the isotropic hardening law give the smalleshnalytical prediction of_, matches the simulation results well.
springback angles and have the largest differences from the g¥hen the flange length is larger than the critical length the
perimental results. 2D solid elemenfstarg have better predic- springback angle is insensitive to the change of the length. On the
tions, which are expected due to the presence of a small ratiogdher hand, when the flange length is smaller thanthe spring-
die radius over sheet thicknes®/(=3) in the experiments. The hack angle increases rapidly as the flange length decreases. In
meshfree(circles method based on the same isotropic hardeningydition, the critical flange length increases as the gap increases.
law falls in between the predictions obtained from 2D solid elefhis indicates that the 20 mm flange length used in Fig. 6, com-
ments and shell elements. Further consideration of the BausgaTed to a critical length of 8 mm shown in Fig(by, is long
inger effect during unloading is taken into account by employingnough to neglect the effect of blank length on springback.
a kinematic hardening law in the 2D solid eleme@PE8R Further investigation where the flange length is smaller than
model. Results obtained by this modsiquares have the best is presented in Fig. 8 with different values of gaps and flange
agreement with the experimental data. lengths. For example, “L8,g1.2” shows one case by setting the
General conclusions obtained from observation of Fig. 6 are fignge length as 8 mm and the gap between the die and punch as
follows: 1.2 mm. Comparison of numerical solutions and experimental

1 Springback angle increases as the gap increases. data is given. The star symbols in Fig. 8 illustrate the springback

2 The FEM with 2D solid elements and meshfree method ha@9!e comparison obtained by experiment and 2D solid elements
better springback predictions than the FEM using shell elé/th the kinematic hardening law while the cross symbols show
ments. e angle comparison obtained by experiment and 2D solid ele-

3 It is evident that the kinematic hardening law has a bett ent with the isotropic hardening law. The circle symbols show
prediction than the isotropic hardening law. e angle comparison obtained by meshfree method and experi-

4 Since the current analytical model is based on the isotro ent. If the point falls on the diagonal line in Fig. 8, it means the
hardening law, further modification of the analytical modefPringback angles obtained by simulation and experiment are the

by considering the Bauschinger effect may move the’ M ame. If the point falls on the left-upper side of the line, it means
limited area upper to a certain level that the springback angle obtained from the simulation is larger

than the experimental data. According to the springback angles
Another study on the effect of flange length on springback ghown in Fig. 8, it can be seen that the simulation solutions have
show in Fig. Ta) and (b). The prediction model is chosen as thea larger discrepancy with experimental data when the flange
2D solid elements with the kinematic hardening law based on tlength and the gap become smallsee L7,g1.1 in Fig. 8 Com-
former conclusions. The springback angles obtained with differeparing the angles predicted by different methods, the first three
flange lengths with two certain die gafis2 mm and 2.0 mpnare  conclusions listed above still hold. The predicted springback angle
shown by solid lines with star symbol in Figs(ay and (b), re- becomes larger if the Bauschinger effect in the material is consid-
spectively. Thel . values marked by “analytical” in Fig. 7 are ered. Finally, the springback angle increases as the flange length

(b)
. 7 (ab) Comparison of L. by numerical and analytical
thod (a) gap=1.2 mm; (b) gap=2.0 mm
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Angle Comparison: Simulation Results Versus Experiment Data ?égceff;ngs of 13th Biennial IDDRG Congreddelbourne, Australia, pp.
AI5182, R=3mm, t=1mm, L(mm), g(mm) Mﬁ [3] Monfort, G. and Bragard, A., 1985, “A simple model of shape errors in form-
+  CPESR, Kinematic hardening L10,g2.0% ing and its application to the reduction of springbacktmputer Modeling of

+  CPEBR, Isotropic hardening (ff E Sheet Metal Forming Process: Theory, Verification and ApplicatidnM.
O Meshfree, Isotropic hardening # Wang and S. C. Tang, eds., pp. 273-287.
L11,g2.0% g:gvgg-g [4] Cao, J., Liu, Z. H. and Liu, W. K., 1999, “Prediction of springback in straight
e flanging operation,”Symposium on Advances in Sheet Metal Forming, ASME
+L8,g1.5 International Mechanical Engineering Congress and ExposjtigtD-Vol.
28 120 10, pp. 921-928,
E [5] Liu, Y. C., 1984, “Springback reduction in U-channels: ‘double-bend’ tech-
nique,” Journal of Applied Metalworking3, pp. 148—156.
[6] Song, N., and Cao, J., 2001, “A multi-approach study on springback in
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[7] Liu, W. K., Adee, J., and Jun, S., 1993, “Reproducing Kernel and Wavelet
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180/PVP 268 ASME, pp. 175-190.
yy 7,911 [8] Liu, W. K., Jun, S., and Zhang, Y. F., 1995, “Reproducing Kernel Particle
L ) L . L Methods,” Int. J. Numer. Methods Eng20, pp. 1081-1106.
6 8 10 12 14 16 18 [9] Liu, W. K., Jun, S,, Li, S., Adee, J., and Belytschko, T., 1995, “Reproducing
Springback Angle, Experiment Data Kernel Particle Methods for Structural Dynamics,” Int. J. Numer. Methods
; : Lo : - Eng.,38, pp. 1655-1679.
Fig. 8 Angle c_omparlson. simulation results versus experi [10] Chen, J. S., Pan, C., Wu, C. T., and Liu, W. K., 1996, “Reproducing Kernel
mental data. le.ferent flange Igngths and gaps _are chosen Particle Methods for Large Deformation Analysis of Nonlinear Structures,”
(L11,92.0 means: flange length is 11 mm and gap is 2.0 mm ). Comput. Methods Appl. Mech. Engl39, pp. 195-228.
[11] Liu, W. K., Chen, Y., Chang, C. T., and Belytschko, T., 1996, “Advances in
Multiple Scale Kernel Methods,” A special feature article for the 10th anni-
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. . un, S., Liu, W. K., and Belytschko, T., 1998, “Explicit Reproducing Kernel
(L10,92.0 with (L11,92.0 and(L8,91.2 with (L8,g1.5. Particle Methods for Large Deformation Problems,” Int. J. Numer. Methods
The overall good agreement between numerical simulations Eng.,41, pp. 137-166.
with kinematic hardening law provides a solid base for furthef3] Liu, W. K., and Jun, S., 1998, “Multiple Scale Reproducing Kernel Particle

investigation of springback in convex or concave flanging 'r‘)"’f‘ggggiolrg'éazfge Deformation Problems,” Int. J. Numer. Methods E.,

operation. [14] Liu, W. K., and Chen, Y., 1995, “Wavelet and Multiple Scale Reproducing
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