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Effective Models for Prediction of
Springback In Flanging
A study on the prediction of springback angle is presented, with focus on the str
flanging operation. The objective of this work is to evaluate the reliability of differ
methods of prediction. An experiment of straight flanging operation is conducted. M
prediction approaches such as analytical model, numerical simulation using the F
Element Method (FEM) and the Meshfree Method using the Reproducing Kernel Pa
Methods (RKPM) are discussed. A set of sample problems is computed and compa
are made with the experiment. The numerical analysis shows that the prediction fro
3D meshfree contact code matches well with the data from the FEM 2D solid mod
material property described by the kinematic hardening law provides a better predic
of springback than the isotropic hardening law.@DOI: 10.1115/1.1395019#

Keywords: Metal Forming, Flanging, Springback, Meshfree Method, Kinematic H
ening, Reproducing Kernel Particle Method
e

t

o

n
t
n
r

a

l

k

h
a
a

t

re,
or in

ion
the
ods
e

ison
ro-
ore

at
ie
-
on-

ved.
dius

2,
ur-

ter
as

he
(
he
in

aps
dius
ing
and
very
k to
be-
ade

p is
ging
e is

s

1 Introduction

The simulation of manufacturing processes such as sheet m
forming is crucial to reducing design cycle times and time
market. As one of the most common processes for sheet m
flanging is used to deform the edge of the part to increase
stiffness of the sheet panel and/or to create the mating surfac
subsequent assembly. Flanging is performed after the drawin
almost all the sheet metal parts and can have three differen
plane curvatures~straight, concave and convex as shown in Fig
@1#!. The shape discrepancy between the fully loaded and
loaded configurations is called springback. The challenge is h
to predict the springback angle and thus design a tooling to c
pensate for the amount of springback.

Efforts to springback prediction of flanging operation have e
ployed both analytical and numerical approaches. For insta
Wang @2# conducted the analytical study by assuming that
bending moment vanishes as the elastic recovery occurs. Mo
and Bragard@3# extended this procedure by using a cantileve
model with a nonuniform moment distribution from the conta
point to the outer sheet. Recently, Cao et al.@4# proposed a linear
moment distribution in the contact area and that model comp
favorably with the experimental results of Liu@5#. The major
difficulty with the analytical solution is due to the lack of unde
standing of the stress distribution throughout the sheet, which
its the analytical approach to simple geometries and simple de
mation. Numerical methods are needed for more complica
cases. However, shortcomings in the numerical modeling a
because current finite element-based simulation methods lac
resolution and smoothness to effectively capture the mechanic
the flanging process.

One promising way of circumventing these difficulties is to u
meshfree method, a recently developed computational met
The advantage of meshfree method is that it can handle a l
variety of material models and account for geometric nonline
ties such as contact. Furthermore, the additional wavelet mo
from the meshfree approximation can effectively capture
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power of the wrinkling and its post-buckling behavior. Therefo
the effects on the stress state can be accurately accounted f
the simulation.

The objective of this paper is to simulate the flanging operat
and springback by using an analytical model, the FEM and
meshfree method using the Reproducing Kernel Particle Meth
~RKPM!. The contact algorithm in the RKPM method and th
computing of springback angle are developed here. Compar
of the data with experimental results for a straight flanging p
cess is given. Investigations are under way for cases where m
complex geometries and deformation are involved.

2 Experiment
A schematic of a flanging operation is shown in Fig. 2. A fl

blank of thicknesst is initially placed between a holder and a d
under a binder force ofF. The blank will experience elastic
plastic deformation to reach a constrained configuration that c
sists of a~nearly! straight partl and a curved partS when the
punch moves down. Springback occurs as the tooling is remo
Design parameters in the flanging operation include the die ra
R, the gap distanceg, the flanging lengthL0 and the flanging
curvature,kout , in the direction out of the paper plane in Fig.
and the material state at flanging, etc. Wrinkling, tearing and s
face distortion could happen if the flanging curvaturekout is not
infinite ~concave flanging or convex flanging!.

A straight flanging test was performed on a 150 Ton Compu
Controlled HPM Hydraulic Press. The material for the test w
AA5182-O, an aluminum alloy commonly used in industry. T
material is assumed to follow the power hardening laws
5K«n) and the material parameters are listed in Table 1. T
blank’s size was 150 mm in length, 150 mm in width and 1 mm
thickness with the rolling direction placed in thex direction.
Flange lengths of 20 mm and around 10 mm at different g
ranging from 1.02 mm to 2.1 mm were tested against a die ra
of 3 mm. The binder force was set at 460 KN during the flang
process resulting an applied pressure of 20 MPa on the blank
no lubricant was used. Since the die radius and gap sizes are
small compared to the sheet thickness, it is a challenging tas
eliminate the noise in the system to obtain the exact relation
tween springback and gap. Considerable efforts have been m
to both control the gap and record the gap correctly. The ga
measured by feeler gauge each time before and after the flan
operation to reach 0.0245 mm in accuracy. Springback angl
2001 by ASME Transactions of the ASME
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s is
measured by a Coordinate Measurement Machine~CMM!, which
results in a 0.09 deg standard deviation. The experiment res
are presented in Fig. 6 and Fig. 7.

3 Analytical Model
As reviewed in the introduction section, an analytical model

calculating the springback angle in a straight flanging operat
was proposed by Cao et al.@4#, which utilized a non-constan
moment distribution in the contact zone. The illustration of t
analytical model is shown in Fig. 3. The springback angleu* can
be calculated in a simple way by following Eqs.~1!–~2a–k!. Note
that the calculation of springback is only valid when the flan
lengthL0 is greater than the critical flange length,Lc , defined in
Eq. ~2i–j!.

u* 5u l* 1uS* 5a•H 1

2
l 1S 12

b

2aDSJ (1)

where

Fig. 2 Schematic of flange operation

Table 1 Material property parameters used in flanging simula-
tion

Fig. 1 Schematics of flanging processes
Journal of Engineering Materials and Technology
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Lc5S1 l 1d ~Lc : Critical Flange Length! (2j)

In the above equations,R is the die radius of flanging,Rp is the
punch radius,g is the gap between the die and the punch,sy is the
initial yield stress of the sheet material,E is the Young’s modulus,
t is the original sheet thickness, andn is the hardening exponent in
the power law. The only unsettled parameter in these equation
M18 , i.e.,

M185
M1

MB
~0<M18,1! (2k)

Fig. 3 Illustration of boundary conditions in the analytical
model
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whereM1 is the moment at the origin O andMB is the moment at
the separation point B. This ratio is a function of material pro
erties and flanging geometry, which is under investigation a
will be presented in Song and Cao@6#.

4 Numerical Simulation Using The Finite Element
Method „FEM …

The straight flanging problem~Fig. 2! was modeled using a
commercial Finite Element package ABAQUS/standard and si
lated as a plane strain problem and therefore, eight-node p
strain solid elements with reduced integration~ABAQUS type
CPE8R! and four-node shell elements with reduced integrat
~ABAQUS type S4R! were employed. A total of 100 elements p
layer along the blank were used for both the CPE8R elem
with 6 layers through the sheet thickness and the shell elem
with 13 integration points through the thickness. The six-la
model was chosen by considering the effect of the numbe
layers on springback prediction, where the springback angle
tained levels off at a layer number of six. In order to optimize t
efficiency of the calculation, the mesh density is 6.6 elements
millimeter in the middle of the blank and reduced to 2 eleme
per millimeter at the two ends of the blank in the length directio
Due to the fact that this flanging problem is mainly a tw
dimensional problem, material parameters used in the yield c
rion were determined by matching the tensile test in the roll
direction. Material AA5182-O was modeled by von Mises yie
criterion following the power strain hardening law. Both isotrop
hardening law and kinematic hardening law are under invest
tion in this paper. The tooling were treated as rigid surfaces
the friction coefficient was taken to be 0.125 between the too
and the blank. The boundary and load conditions during flang
process were set to the same condition as in the experiment.
blank was clamped between the holder and the die by 20 MP
pressure and with free constraints at the ends.

5 Reproducing Kernel Particle Method

5.1 Basic Formulation. Recently, a new generation of nu
merical methods called ‘‘meshfree’’ or ‘‘meshfree method’’ h
emerged and is now profoundly influencing almost every bra
of engineering and the physical sciences. As one part of the m
free family, the Reproducing Kernel Particle Methods~RKPM!
originally evolved from the wavelet theory and SPH method
has been applied successfully to a broad range of problem
addition to the SPH and wavelet theory, meshfree method m
fies the kernel function by introducing a correction function
order to enhance its accuracy near or on the boundary of
problem domain. Due to this correction function suggested by
et al. @7,8#, the consistency condition is satisfied. Liu et al.@9#
demonstrated the application of meshfree methods to struc
dynamics, and the method was used successfully for large de
mation simulations@10–13#, and computational fluid dynamic
@14#.

The reproducing kernel particle method can be defined from
following reproducing condition

uR5E
x1

x2

u~y!ka~x2y!dy5E
x1

x2

u~y!C~x,x2y!fa~x2y!dy

(3)

The kernel functionka(x2y) is the product of correction func
tion C(x,x2y) and the window functionfa(x2y). The proce-
dure to constructC(x,x2y) is based on the desired accurac
Here we define thekth momentMk of the window function as

MK~a,x!5E
x1

x2

~x2y!kka~x,x2y!dy (4)

To ensure the reproducing condition be satisfied, one need

Mk~a,x!5d0,k for k50,1, . . . ,n (5)
458 Õ Vol. 123, OCTOBER 2001
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Construct the correction function using a polynomial basis

C~x,x2y!5(
j 50

n

bj~x!~x2y! j (6)

wherebj (x) are the coefficients to be determined.
Enforcing the reproducing condition by Eq.~5! gives

(
j 50

n

bj~x!mj 1k~a,x!5d0,k for k50,1, . . .n (7)

Equation~7! givesn11 linear equations for solving then11
coefficientsbj . In this way, the reproducing kernel can be d
rived.

In the numerical implementation, the continuous equation~Eq.
~3!! needs to be discretized by replacing the integral with a su
mation.

uR~x!5(
i 51

NP

NI~x!uI (8)

where

NI~x!5(
I 51

NP S (
j 50

n

bj~x!~x2xI !
j D fa~x2xI !DxI (9)

uI5u~xI ! (10)

Note that the coefficientsbj are solved in the same way a
above by enforcing the moment condition

Mk~a,x!5d0,k for k50,1, . . . ,n, (11)

with

Mk~a,x!5(
I 51

NP

~x2xI !
kka~x2xI !DxI5(

j 50

n

bj~x!mj 1k~a,x!

(12)

whereDxI is the portion of the total length assigned to each no
The reproducing kernel can be implemented into a Galer

formulation in a way similar to as in typical finite elements. Th
major difference in construction is the loop that occurs over no
instead of elements, but the formulation is almost identical, st
ing from the weak form of the momentum equation.

5.2 Contact Modeling. The simulation of impact and con
tact among two or more objects of any kind has always bee
challenging problem. It is one of the critical elements in succe
fully simulating the flanging operation. The major issues that
involved include

1 Geometric Representation: An efficient contact-detection
gorithm

2 Kinematic Constraint: Implementation of the so-called im
penetration condition with a reasonable constitutive law
contact interface and maintainence of the basic conserva
law

3 High-performance Computing: Parallerization.

Numerous contact detection algorithms have been proposed in
literature, such as Benson-Hallquist algorithm, pinball algorith
Point-in-box, Bounding box, etc. In the context of meshfr
method, the moment criterion has been proposed@15#. In this
proposed criterion, the determinant of the moment matrix in
context of Reproducing Kernel Particle Method@7# is considered
as a natural indicator of the contact condition.

Proposition. For a given domainV that has an admissible
meshfree distribution, if a spatial pointx¹V is sufficient away
from the domain, the determinant of the moment matrix det$M(x)%
evaluated asx approaches zero, i.e., for givend.0, '«.0, such
that
Transactions of the ASME
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det$M ~x!%<« (13)

A detailed proof for this proposition has been given in~Li et al.
@15#!. One might notice that the proposition does not have a s
requirement for the shape of the problem domain, Fig. 4 sh
the application of the criterion for a non-convex shape. A plat
is observed for nodes inside the domain and the value of dete
nant transits to zero as the evaluation point is away from
domain. More testing of the proposed criterion is given in Li et
@15#.

To assure the impenetration condition, we consider the prob
of two domainsVA and VB with boundaryGA and GB, respec-
tively. The momentum equation, the kinematic relation and
constitutive equation are given as

s i j , j1bi5rv i in VAøVB (14)

«̇ i j 5
1

2
~v i , j1v j ,i ! in VAøVB (15)

s i j
¹5ṡ i j 1Wiksk j1Wjkski in VAøVB (16)

wherer denotes the density;Wi j is the anti-symmetric part of the
velocity gradient ands i j

¹ represents an objective stress increme
e.g., Jaumann stress tensor. The initial conditions of the depen
variables are

v i~0!5v i
0 in VAøVB (17)

s i j ~0!5s i j
0 in VAøVB (18)

Impenetrability of the two setsVA andVB requires that

VAùVB50 (19)

A penalty-based method is applied to implement the impene
tion condition.

Figure 5 illustrates a typical situation in the 3D contact pro
lem, whereni is the outer normal of theith segment of the maste
element after discretization.gn and gt denotes the normal an
tangential penetrations, respectively. The penalty force along
normal direction of the contact surface is given as

Fig. 4 Profile of det ˆM„x…‰ on a concave region

Fig. 5 Contact between a slave node and a surface
Journal of Engineering Materials and Technology
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2Ms~ j !gn~ j !

Dt2 ni (20)

based on central difference method. In Eq.~20! Ms( j ) is the
lumped mass atj node of the slave body,gn the normal penetra-
tion, Dt the time interval andni the outer normal of theith master
segment.

A simple Coulomb friction model is used to consider the effe
along the tangential direction, which is given as

u f tu5min~ f t1 , f t2! (21)

with f t15uv t
im/Dtu and ft25umkfnu.

The direction of the friction force should be chosen to be o
posite the velocity of the corresponding slave node. Our appl
tion of this simple approach has shown that it can maintain
impenetration condition fairly well and is stable during the co
putation.

In summary, the contact algorithm can be outlined as follow

1 Initialization and discretize the surface into segments
2 Calculate the internal force array
3 Calculate the external force array
4 Use the moment criterion to detect any contact
5 If a contact is detected, compute the normal penetration

further verify the contact
6 Compute the normal and frictional forces and redistrib

them to the nodes
7 Get the nodal accelerations
8 Integrate in time to get the velocities and displacements;
9 Return to step 2 until the maximum step number is reach

5.3 Computation of Springback Angle. An explicit dy-
namic algorithm has been used in the simulation of the form
process. As the forming is completed, the contact detection
both the upper punch and lower die are terminated. Correspo
ingly, the constraints from these two parts are released and
sheet starts to springback. To obtain a static solution corresp
ing to the state of springback, the dynamic relaxation metho
adopted. A detailed discussion of the method can be found
Underwood@16#. Chou @17# applied the method in FEM simula
tion of metal forming. To briefly describe the method, the d
namic equation is considered

Mün1Cu̇n1f int~un!5fext~un! (22)

whereM is the mass matrix,C the damping matrix, superscript
‘‘int’’ and ‘‘ext’’ denote internal force and external force, respe
tively, and ‘‘n’’ is the nth time increment. Since a static solutio
can be seen as a converged result of the dynamic solutio
critical damping coefficient can be used in Eq.~22!. In the case of
central difference method, the following integrator can be give

u̇1/25DtM
~ f ext~u0!2 f int~u0!!

2
(23)

for n51 and

u̇n11/25
~22c•Dt !

~21c•Dt !
u̇n21/212hM21

~ f ext~un!2 f int~un!!

~21c•Dt !
(24)

for n.1.
To ensure an optimal convergence, numerical experiments

conducted. By checking the responses using different damp
coefficients, the critical damping coefficient is chosen for the s
tem. The criterion to stop the dynamic relaxation is given as

i f ext2 f inti<d (25)

which indicates the equilibrium state is attained.

6 Results and Discussion
Figure 6 illustrates the springback results of various die g

with a flange length of 20 mm obtained from experiment, t
OCTOBER 2001, Vol. 123 Õ 459
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analytical model, the FEM and the meshfree method. The exp
mental data shown as stars and hexagrams in Fig. 6 were test
different dates. It can be seen that springback increases wit
increase in gap. The springback angle obtained by the analy
method falls in the area between the line of M1850 ~dashed line
in Fig. 6! and the line of M1851 ~dash-dotted line in Fig. 6!
depending on the value of M18 ~see Eq.~2!!. Notice that experi-
ment data are within the prediction range, however, further inv
tigation on M18 is needed to provide more precise predictions. I
worthwhile to mention that the mechanics of bending, not just
moment distribution as the focus discussed in this paper, aff
the prediction of springback. Many works can be found in lite
ture addressing the bending mechanics issue, for example
review paper by Huang and Gerdeen@18#.

Numerical simulation results are shown as solid lines with d
ferent symbols in Fig. 6. It is clear that the S4R elements~dia-
monds! following the isotropic hardening law give the smalle
springback angles and have the largest differences from the
perimental results. 2D solid elements~stars! have better predic-
tions, which are expected due to the presence of a small rati
die radius over sheet thickness (R/t53) in the experiments. The
meshfree~circles! method based on the same isotropic harden
law falls in between the predictions obtained from 2D solid e
ments and shell elements. Further consideration of the Bau
inger effect during unloading is taken into account by employ
a kinematic hardening law in the 2D solid element~CPE8R!
model. Results obtained by this model~squares! have the best
agreement with the experimental data.

General conclusions obtained from observation of Fig. 6 are
follows:

1 Springback angle increases as the gap increases.
2 The FEM with 2D solid elements and meshfree method h

better springback predictions than the FEM using shell e
ments.

3 It is evident that the kinematic hardening law has a be
prediction than the isotropic hardening law.

4 Since the current analytical model is based on the isotro
hardening law, further modification of the analytical mod
by considering the Bauschinger effect may move the M8
limited area upper to a certain level.

Another study on the effect of flange length on springback
show in Fig. 7~a! and ~b!. The prediction model is chosen as th
2D solid elements with the kinematic hardening law based on
former conclusions. The springback angles obtained with differ
flange lengths with two certain die gaps~1.2 mm and 2.0 mm! are
shown by solid lines with star symbol in Figs. 7~a! and ~b!, re-
spectively. TheLc values marked by ‘‘analytical’’ in Fig. 7 are

Fig. 6 Springback angle versus gap distance for 20 mm flange
length
460 Õ Vol. 123, OCTOBER 2001
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calculated by Eq.~2j!. TheLc values marked by ‘‘simulation’’ are
the approximation data selected by considering the start po
when the springback angle levels off in Fig. 7. It shows that
analytical prediction ofLc matches the simulation results wel
When the flange length is larger than the critical lengthLc , the
springback angle is insensitive to the change of the length. On
other hand, when the flange length is smaller thanLc , the spring-
back angle increases rapidly as the flange length decrease
addition, the critical flange length increases as the gap increa
This indicates that the 20 mm flange length used in Fig. 6, co
pared to a critical length of 8 mm shown in Fig. 7~b!, is long
enough to neglect the effect of blank length on springback.

Further investigation where the flange length is smaller thanLc
is presented in Fig. 8 with different values of gaps and flan
lengths. For example, ‘‘L8,g1.2’’ shows one case by setting
flange length as 8 mm and the gap between the die and punc
1.2 mm. Comparison of numerical solutions and experimen
data is given. The star symbols in Fig. 8 illustrate the springb
angle comparison obtained by experiment and 2D solid elem
with the kinematic hardening law while the cross symbols sh
the angle comparison obtained by experiment and 2D solid
ment with the isotropic hardening law. The circle symbols sh
the angle comparison obtained by meshfree method and ex
ment. If the point falls on the diagonal line in Fig. 8, it means t
springback angles obtained by simulation and experiment are
same. If the point falls on the left-upper side of the line, it mea
that the springback angle obtained from the simulation is lar
than the experimental data. According to the springback an
shown in Fig. 8, it can be seen that the simulation solutions h
a larger discrepancy with experimental data when the fla
length and the gap become smaller~see L7,g1.1 in Fig. 8!. Com-
paring the angles predicted by different methods, the first th
conclusions listed above still hold. The predicted springback an
becomes larger if the Bauschinger effect in the material is con
ered. Finally, the springback angle increases as the flange le

Fig. 7 „a-b… Comparison of L c by numerical and analytical
method „a… gapÄ1.2 mm; „b… gapÄ2.0 mm
Transactions of the ASME
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decreases or as the gap increases as can be seen by com
~L10,g2.0! with ~L11,g2.0! and ~L8,g1.2! with ~L8,g1.5!.

The overall good agreement between numerical simulati
with kinematic hardening law provides a solid base for furth
investigation of springback in convex or concave flangi
operation.
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